y_min = 1,
y_max = 31000,
-- ^ Lower and upper limits for biome.
+ vertical_blend = 8,
+ -- ^ Vertical distance in nodes above 'y_max' over which the biome will
+ -- ^ blend with the biome above.
+ -- ^ Set to 0 for no vertical blend. Defaults to 0.
heat_point = 0,
humidity_point = 50,
- -- ^ Characteristic average temperature and humidity for the biome.
- -- ^ These values create 'biome points' on a voronoi diagram that has heat
- -- ^ and humidity as axes. The resulting voronoi cells determine which
- -- ^ heat/humidity points belong to which biome, and therefore determine
- -- ^ the area and location of each biome in the world.
- -- ^ The biome points need to be carefully and evenly spaced on the voronoi
- -- ^ diagram to result in roughly equal size biomes.
+ -- ^ Characteristic temperature and humidity for the biome.
+ -- ^ These values create 'biome points' on a voronoi diagram with heat and
+ -- ^ humidity as axes. The resulting voronoi cells determine the
+ -- ^ distribution of the biomes.
-- ^ Heat and humidity have average values of 50, vary mostly between
- -- ^ 0 and 100 but also often exceed these values.
- -- ^ Heat is not in degrees Celsius, both values are abstract.
+ -- ^ 0 and 100 but can exceed these values.
}
### Decoration definition (`register_decoration`)
b->y_max = MAX_MAP_GENERATION_LIMIT;
b->heat_point = 0.0;
b->humidity_point = 0.0;
+ b->vertical_blend = 0;
b->m_nodenames.emplace_back("mapgen_stone");
b->m_nodenames.emplace_back("mapgen_stone");
Biome *BiomeGenOriginal::calcBiomeFromNoise(float heat, float humidity, s16 y) const
{
- Biome *b, *biome_closest = NULL;
+ Biome *biome_closest = nullptr;
+ Biome *biome_closest_blend = nullptr;
float dist_min = FLT_MAX;
+ float dist_min_blend = FLT_MAX;
for (size_t i = 1; i < m_bmgr->getNumObjects(); i++) {
- b = (Biome *)m_bmgr->getRaw(i);
- if (!b || y > b->y_max || y < b->y_min)
+ Biome *b = (Biome *)m_bmgr->getRaw(i);
+ if (!b || y > b->y_max + b->vertical_blend || y < b->y_min)
continue;
- float d_heat = heat - b->heat_point;
+ float d_heat = heat - b->heat_point;
float d_humidity = humidity - b->humidity_point;
- float dist = (d_heat * d_heat) +
- (d_humidity * d_humidity);
- if (dist < dist_min) {
- dist_min = dist;
- biome_closest = b;
+ float dist = (d_heat * d_heat) + (d_humidity * d_humidity);
+
+ if (y <= b->y_max) { // Within y limits of biome b
+ if (dist < dist_min) {
+ dist_min = dist;
+ biome_closest = b;
+ }
+ } else if (dist < dist_min_blend) { // Blend area above biome b
+ dist_min_blend = dist;
+ biome_closest_blend = b;
}
}
- return biome_closest ? biome_closest : (Biome *)m_bmgr->getRaw(BIOME_NONE);
+ // Carefully tune pseudorandom seed variation to avoid single node dither
+ // and create larger scale blending patterns.
+ mysrand(y + (heat - humidity) * 2);
+
+ if (biome_closest_blend &&
+ myrand_range(0, biome_closest_blend->vertical_blend) >=
+ y - biome_closest_blend->y_max)
+ return biome_closest_blend;
+
+ return (biome_closest) ? biome_closest : (Biome *)m_bmgr->getRaw(BIOME_NONE);
}
b->y_max = getintfield_default(L, index, "y_max", 31000);
b->heat_point = getfloatfield_default(L, index, "heat_point", 0.f);
b->humidity_point = getfloatfield_default(L, index, "humidity_point", 0.f);
+ b->vertical_blend = getintfield_default(L, index, "vertical_blend", 0);
b->flags = 0; //reserved
std::vector<std::string> &nn = b->m_nodenames;