+++ /dev/null
-#!/usr/bin/env perl
-#
-# Copyright (c) 2010-2011 Intel Corp.
-# Author: Vinodh.Gopal@intel.com
-# Jim Guilford
-# Erdinc.Ozturk@intel.com
-# Maxim.Perminov@intel.com
-#
-# More information about algorithm used can be found at:
-# http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
-#
-# ====================================================================
-# Copyright (c) 2011 The OpenSSL Project. All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions
-# are met:
-#
-# 1. Redistributions of source code must retain the above copyright
-# notice, this list of conditions and the following disclaimer.
-#
-# 2. Redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in
-# the documentation and/or other materials provided with the
-# distribution.
-#
-# 3. All advertising materials mentioning features or use of this
-# software must display the following acknowledgment:
-# "This product includes software developed by the OpenSSL Project
-# for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
-#
-# 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
-# endorse or promote products derived from this software without
-# prior written permission. For written permission, please contact
-# licensing@OpenSSL.org.
-#
-# 5. Products derived from this software may not be called "OpenSSL"
-# nor may "OpenSSL" appear in their names without prior written
-# permission of the OpenSSL Project.
-#
-# 6. Redistributions of any form whatsoever must retain the following
-# acknowledgment:
-# "This product includes software developed by the OpenSSL Project
-# for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
-#
-# THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
-# EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
-# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
-# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
-# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
-# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
-# OF THE POSSIBILITY OF SUCH DAMAGE.
-# ====================================================================
-
-$flavour = shift;
-$output = shift;
-if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
-
-my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
-
-$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
-( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
-( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
-die "can't locate x86_64-xlate.pl";
-
-open OUT,"| \"$^X\" $xlate $flavour $output";
-*STDOUT=*OUT;
-
-use strict;
-my $code=".text\n\n";
-my $m=0;
-
-#
-# Define x512 macros
-#
-
-#MULSTEP_512_ADD MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2
-#
-# uses rax, rdx, and args
-sub MULSTEP_512_ADD
-{
- my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_;
- my @X=@$x; # make a copy
-$code.=<<___;
- mov (+8*0)($SRC2), %rax
- mul $OP # rdx:rax = %OP * [0]
- mov ($ASRC), $X[0]
- add %rax, $X[0]
- adc \$0, %rdx
- mov $X[0], $DST
-___
-for(my $i=1;$i<8;$i++) {
-$code.=<<___;
- mov %rdx, $TMP
-
- mov (+8*$i)($SRC2), %rax
- mul $OP # rdx:rax = %OP * [$i]
- mov (+8*$i)($ASRC), $X[$i]
- add %rax, $X[$i]
- adc \$0, %rdx
- add $TMP, $X[$i]
- adc \$0, %rdx
-___
-}
-$code.=<<___;
- mov %rdx, $X[0]
-___
-}
-
-#MULSTEP_512 MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp
-#
-# uses rax, rdx, and args
-sub MULSTEP_512
-{
- my ($x, $DST, $SRC2, $OP, $TMP)=@_;
- my @X=@$x; # make a copy
-$code.=<<___;
- mov (+8*0)($SRC2), %rax
- mul $OP # rdx:rax = %OP * [0]
- add %rax, $X[0]
- adc \$0, %rdx
- mov $X[0], $DST
-___
-for(my $i=1;$i<8;$i++) {
-$code.=<<___;
- mov %rdx, $TMP
-
- mov (+8*$i)($SRC2), %rax
- mul $OP # rdx:rax = %OP * [$i]
- add %rax, $X[$i]
- adc \$0, %rdx
- add $TMP, $X[$i]
- adc \$0, %rdx
-___
-}
-$code.=<<___;
- mov %rdx, $X[0]
-___
-}
-
-#
-# Swizzle Macros
-#
-
-# macro to copy data from flat space to swizzled table
-#MACRO swizzle pDst, pSrc, tmp1, tmp2
-# pDst and pSrc are modified
-sub swizzle
-{
- my ($pDst, $pSrc, $cnt, $d0)=@_;
-$code.=<<___;
- mov \$8, $cnt
-loop_$m:
- mov ($pSrc), $d0
- mov $d0#w, ($pDst)
- shr \$16, $d0
- mov $d0#w, (+64*1)($pDst)
- shr \$16, $d0
- mov $d0#w, (+64*2)($pDst)
- shr \$16, $d0
- mov $d0#w, (+64*3)($pDst)
- lea 8($pSrc), $pSrc
- lea 64*4($pDst), $pDst
- dec $cnt
- jnz loop_$m
-___
-
- $m++;
-}
-
-# macro to copy data from swizzled table to flat space
-#MACRO unswizzle pDst, pSrc, tmp*3
-sub unswizzle
-{
- my ($pDst, $pSrc, $cnt, $d0, $d1)=@_;
-$code.=<<___;
- mov \$4, $cnt
-loop_$m:
- movzxw (+64*3+256*0)($pSrc), $d0
- movzxw (+64*3+256*1)($pSrc), $d1
- shl \$16, $d0
- shl \$16, $d1
- mov (+64*2+256*0)($pSrc), $d0#w
- mov (+64*2+256*1)($pSrc), $d1#w
- shl \$16, $d0
- shl \$16, $d1
- mov (+64*1+256*0)($pSrc), $d0#w
- mov (+64*1+256*1)($pSrc), $d1#w
- shl \$16, $d0
- shl \$16, $d1
- mov (+64*0+256*0)($pSrc), $d0#w
- mov (+64*0+256*1)($pSrc), $d1#w
- mov $d0, (+8*0)($pDst)
- mov $d1, (+8*1)($pDst)
- lea 256*2($pSrc), $pSrc
- lea 8*2($pDst), $pDst
- sub \$1, $cnt
- jnz loop_$m
-___
-
- $m++;
-}
-
-#
-# Data Structures
-#
-
-# Reduce Data
-#
-#
-# Offset Value
-# 0C0 Carries
-# 0B8 X2[10]
-# 0B0 X2[9]
-# 0A8 X2[8]
-# 0A0 X2[7]
-# 098 X2[6]
-# 090 X2[5]
-# 088 X2[4]
-# 080 X2[3]
-# 078 X2[2]
-# 070 X2[1]
-# 068 X2[0]
-# 060 X1[12] P[10]
-# 058 X1[11] P[9] Z[8]
-# 050 X1[10] P[8] Z[7]
-# 048 X1[9] P[7] Z[6]
-# 040 X1[8] P[6] Z[5]
-# 038 X1[7] P[5] Z[4]
-# 030 X1[6] P[4] Z[3]
-# 028 X1[5] P[3] Z[2]
-# 020 X1[4] P[2] Z[1]
-# 018 X1[3] P[1] Z[0]
-# 010 X1[2] P[0] Y[2]
-# 008 X1[1] Q[1] Y[1]
-# 000 X1[0] Q[0] Y[0]
-
-my $X1_offset = 0; # 13 qwords
-my $X2_offset = $X1_offset + 13*8; # 11 qwords
-my $Carries_offset = $X2_offset + 11*8; # 1 qword
-my $Q_offset = 0; # 2 qwords
-my $P_offset = $Q_offset + 2*8; # 11 qwords
-my $Y_offset = 0; # 3 qwords
-my $Z_offset = $Y_offset + 3*8; # 9 qwords
-
-my $Red_Data_Size = $Carries_offset + 1*8; # (25 qwords)
-
-#
-# Stack Frame
-#
-#
-# offset value
-# ... <old stack contents>
-# ...
-# 280 Garray
-
-# 278 tmp16[15]
-# ... ...
-# 200 tmp16[0]
-
-# 1F8 tmp[7]
-# ... ...
-# 1C0 tmp[0]
-
-# 1B8 GT[7]
-# ... ...
-# 180 GT[0]
-
-# 178 Reduce Data
-# ... ...
-# 0B8 Reduce Data
-# 0B0 reserved
-# 0A8 reserved
-# 0A0 reserved
-# 098 reserved
-# 090 reserved
-# 088 reduce result addr
-# 080 exp[8]
-
-# ...
-# 048 exp[1]
-# 040 exp[0]
-
-# 038 reserved
-# 030 loop_idx
-# 028 pg
-# 020 i
-# 018 pData ; arg 4
-# 010 pG ; arg 2
-# 008 pResult ; arg 1
-# 000 rsp ; stack pointer before subtract
-
-my $rsp_offset = 0;
-my $pResult_offset = 8*1 + $rsp_offset;
-my $pG_offset = 8*1 + $pResult_offset;
-my $pData_offset = 8*1 + $pG_offset;
-my $i_offset = 8*1 + $pData_offset;
-my $pg_offset = 8*1 + $i_offset;
-my $loop_idx_offset = 8*1 + $pg_offset;
-my $reserved1_offset = 8*1 + $loop_idx_offset;
-my $exp_offset = 8*1 + $reserved1_offset;
-my $red_result_addr_offset= 8*9 + $exp_offset;
-my $reserved2_offset = 8*1 + $red_result_addr_offset;
-my $Reduce_Data_offset = 8*5 + $reserved2_offset;
-my $GT_offset = $Red_Data_Size + $Reduce_Data_offset;
-my $tmp_offset = 8*8 + $GT_offset;
-my $tmp16_offset = 8*8 + $tmp_offset;
-my $garray_offset = 8*16 + $tmp16_offset;
-my $mem_size = 8*8*32 + $garray_offset;
-
-#
-# Offsets within Reduce Data
-#
-#
-# struct MODF_2FOLD_MONT_512_C1_DATA {
-# UINT64 t[8][8];
-# UINT64 m[8];
-# UINT64 m1[8]; /* 2^768 % m */
-# UINT64 m2[8]; /* 2^640 % m */
-# UINT64 k1[2]; /* (- 1/m) % 2^128 */
-# };
-
-my $T = 0;
-my $M = 512; # = 8 * 8 * 8
-my $M1 = 576; # = 8 * 8 * 9 /* += 8 * 8 */
-my $M2 = 640; # = 8 * 8 * 10 /* += 8 * 8 */
-my $K1 = 704; # = 8 * 8 * 11 /* += 8 * 8 */
-
-#
-# FUNCTIONS
-#
-
-{{{
-#
-# MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords)
-# and add 512-bits (8 qwords)
-# to get 640 bits (10 qwords)
-# Input: 128-bit mul source: [rdi+8*1], rbp
-# 512-bit mul source: [rsi+8*n]
-# 512-bit add source: r15, r14, ..., r9, r8
-# Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0]
-# Clobbers all regs except: rcx, rsi, rdi
-$code.=<<___;
-.type MULADD_128x512,\@abi-omnipotent
-.align 16
-MULADD_128x512:
-___
- &MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx");
-$code.=<<___;
- mov (+8*1)(%rdi), %rbp
-___
- &MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx");
-$code.=<<___;
- ret
-.size MULADD_128x512,.-MULADD_128x512
-___
-}}}
-
-{{{
-#MULADD_256x512 MACRO pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0
-#
-# Inputs: pDst: Destination (768 bits, 12 qwords)
-# pA: Multiplicand (1024 bits, 16 qwords)
-# pB: Multiplicand (512 bits, 8 qwords)
-# Dst = Ah * B + Al
-# where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits)
-# Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0]
-# Uses registers: arguments, RAX, RDX
-sub MULADD_256x512
-{
- my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_;
-$code.=<<___;
- mov (+8*12)($pA), $OP
-___
- &MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP);
- push(@$X,shift(@$X));
-
-$code.=<<___;
- mov (+8*13)($pA), $OP
-___
- &MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP);
- push(@$X,shift(@$X));
-
-$code.=<<___;
- mov (+8*14)($pA), $OP
-___
- &MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP);
- push(@$X,shift(@$X));
-
-$code.=<<___;
- mov (+8*15)($pA), $OP
-___
- &MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP);
- push(@$X,shift(@$X));
-}
-
-#
-# mont_reduce(UINT64 *x, /* 1024 bits, 16 qwords */
-# UINT64 *m, /* 512 bits, 8 qwords */
-# MODF_2FOLD_MONT_512_C1_DATA *data,
-# UINT64 *r) /* 512 bits, 8 qwords */
-# Input: x (number to be reduced): tmp16 (Implicit)
-# m (modulus): [pM] (Implicit)
-# data (reduce data): [pData] (Implicit)
-# Output: r (result): Address in [red_res_addr]
-# result also in: r9, r8, r15, r14, r13, r12, r11, r10
-
-my @X=map("%r$_",(8..15));
-
-$code.=<<___;
-.type mont_reduce,\@abi-omnipotent
-.align 16
-mont_reduce:
-___
-
-my $STACK_DEPTH = 8;
- #
- # X1 = Xh * M1 + Xl
-$code.=<<___;
- lea (+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi # pX1 (Dst) 769 bits, 13 qwords
- mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rsi # pM1 (Bsrc) 512 bits, 8 qwords
- add \$$M1, %rsi
- lea (+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx # X (Asrc) 1024 bits, 16 qwords
-
-___
-
- &MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X); # rotates @X 4 times
- # results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0]
-
-$code.=<<___;
- xor %rax, %rax
- # X1 += xl
- add (+8*8)(%rcx), $X[4]
- adc (+8*9)(%rcx), $X[5]
- adc (+8*10)(%rcx), $X[6]
- adc (+8*11)(%rcx), $X[7]
- adc \$0, %rax
- # X1 is now rax, r11-r8, r15-r12, tmp16[3:0]
-
- #
- # check for carry ;; carry stored in rax
- mov $X[4], (+8*8)(%rdi) # rdi points to X1
- mov $X[5], (+8*9)(%rdi)
- mov $X[6], %rbp
- mov $X[7], (+8*11)(%rdi)
-
- mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
-
- mov (+8*0)(%rdi), $X[4]
- mov (+8*1)(%rdi), $X[5]
- mov (+8*2)(%rdi), $X[6]
- mov (+8*3)(%rdi), $X[7]
-
- # X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8
- # rdi -> X1
- # rsi -> M1
-
- #
- # X2 = Xh * M2 + Xl
- # do first part (X2 = Xh * M2)
- add \$8*10, %rdi # rdi -> pXh ; 128 bits, 2 qwords
- # Xh is actually { [rdi+8*1], rbp }
- add \$`$M2-$M1`, %rsi # rsi -> M2
- lea (+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx # rcx -> pX2 ; 641 bits, 11 qwords
-___
- unshift(@X,pop(@X)); unshift(@X,pop(@X));
-$code.=<<___;
-
- call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8
- # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
- mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax
-
- # X2 += Xl
- add (+8*8-8*10)(%rdi), $X[6] # (-8*10) is to adjust rdi -> Xh to Xl
- adc (+8*9-8*10)(%rdi), $X[7]
- mov $X[6], (+8*8)(%rcx)
- mov $X[7], (+8*9)(%rcx)
-
- adc %rax, %rax
- mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
-
- lea (+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi # rdi -> pQ ; 128 bits, 2 qwords
- add \$`$K1-$M2`, %rsi # rsi -> pK1 ; 128 bits, 2 qwords
-
- # MUL_128x128t128 rdi, rcx, rsi ; Q = X2 * K1 (bottom half)
- # B1:B0 = rsi[1:0] = K1[1:0]
- # A1:A0 = rcx[1:0] = X2[1:0]
- # Result = rdi[1],rbp = Q[1],rbp
- mov (%rsi), %r8 # B0
- mov (+8*1)(%rsi), %rbx # B1
-
- mov (%rcx), %rax # A0
- mul %r8 # B0
- mov %rax, %rbp
- mov %rdx, %r9
-
- mov (+8*1)(%rcx), %rax # A1
- mul %r8 # B0
- add %rax, %r9
-
- mov (%rcx), %rax # A0
- mul %rbx # B1
- add %rax, %r9
-
- mov %r9, (+8*1)(%rdi)
- # end MUL_128x128t128
-
- sub \$`$K1-$M`, %rsi
-
- mov (%rcx), $X[6]
- mov (+8*1)(%rcx), $X[7] # r9:r8 = X2[1:0]
-
- call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8
- # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
-
- # load first half of m to rdx, rdi, rbx, rax
- # moved this here for efficiency
- mov (+8*0)(%rsi), %rax
- mov (+8*1)(%rsi), %rbx
- mov (+8*2)(%rsi), %rdi
- mov (+8*3)(%rsi), %rdx
-
- # continue with reduction
- mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp
-
- add (+8*8)(%rcx), $X[6]
- adc (+8*9)(%rcx), $X[7]
-
- #accumulate the final carry to rbp
- adc %rbp, %rbp
-
- # Add in overflow corrections: R = (X2>>128) += T[overflow]
- # R = {r9, r8, r15, r14, ..., r10}
- shl \$3, %rbp
- mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rcx # rsi -> Data (and points to T)
- add %rcx, %rbp # pT ; 512 bits, 8 qwords, spread out
-
- # rsi will be used to generate a mask after the addition
- xor %rsi, %rsi
-
- add (+8*8*0)(%rbp), $X[0]
- adc (+8*8*1)(%rbp), $X[1]
- adc (+8*8*2)(%rbp), $X[2]
- adc (+8*8*3)(%rbp), $X[3]
- adc (+8*8*4)(%rbp), $X[4]
- adc (+8*8*5)(%rbp), $X[5]
- adc (+8*8*6)(%rbp), $X[6]
- adc (+8*8*7)(%rbp), $X[7]
-
- # if there is a carry: rsi = 0xFFFFFFFFFFFFFFFF
- # if carry is clear: rsi = 0x0000000000000000
- sbb \$0, %rsi
-
- # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
- and %rsi, %rax
- and %rsi, %rbx
- and %rsi, %rdi
- and %rsi, %rdx
-
- mov \$1, %rbp
- sub %rax, $X[0]
- sbb %rbx, $X[1]
- sbb %rdi, $X[2]
- sbb %rdx, $X[3]
-
- # if there is a borrow: rbp = 0
- # if there is no borrow: rbp = 1
- # this is used to save the borrows in between the first half and the 2nd half of the subtraction of m
- sbb \$0, %rbp
-
- #load second half of m to rdx, rdi, rbx, rax
-
- add \$$M, %rcx
- mov (+8*4)(%rcx), %rax
- mov (+8*5)(%rcx), %rbx
- mov (+8*6)(%rcx), %rdi
- mov (+8*7)(%rcx), %rdx
-
- # use the rsi mask as before
- # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
- and %rsi, %rax
- and %rsi, %rbx
- and %rsi, %rdi
- and %rsi, %rdx
-
- # if rbp = 0, there was a borrow before, it is moved to the carry flag
- # if rbp = 1, there was not a borrow before, carry flag is cleared
- sub \$1, %rbp
-
- sbb %rax, $X[4]
- sbb %rbx, $X[5]
- sbb %rdi, $X[6]
- sbb %rdx, $X[7]
-
- # write R back to memory
-
- mov (+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi
- mov $X[0], (+8*0)(%rsi)
- mov $X[1], (+8*1)(%rsi)
- mov $X[2], (+8*2)(%rsi)
- mov $X[3], (+8*3)(%rsi)
- mov $X[4], (+8*4)(%rsi)
- mov $X[5], (+8*5)(%rsi)
- mov $X[6], (+8*6)(%rsi)
- mov $X[7], (+8*7)(%rsi)
-
- ret
-.size mont_reduce,.-mont_reduce
-___
-}}}
-
-{{{
-#MUL_512x512 MACRO pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2
-#
-# Inputs: pDst: Destination (1024 bits, 16 qwords)
-# pA: Multiplicand (512 bits, 8 qwords)
-# pB: Multiplicand (512 bits, 8 qwords)
-# Uses registers rax, rdx, args
-# B operand in [pB] and also in x7...x0
-sub MUL_512x512
-{
- my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_;
- my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
- my @X=@$x; # make a copy
-
-$code.=<<___;
- mov (+8*0)($pA), $OP
-
- mov $X[0], %rax
- mul $OP # rdx:rax = %OP * [0]
- mov %rax, (+$pDst_o+8*0)($pDst)
- mov %rdx, $X[0]
-___
-for(my $i=1;$i<8;$i++) {
-$code.=<<___;
- mov $X[$i], %rax
- mul $OP # rdx:rax = %OP * [$i]
- add %rax, $X[$i-1]
- adc \$0, %rdx
- mov %rdx, $X[$i]
-___
-}
-
-for(my $i=1;$i<8;$i++) {
-$code.=<<___;
- mov (+8*$i)($pA), $OP
-___
-
- &MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP);
- push(@X,shift(@X));
-}
-
-$code.=<<___;
- mov $X[0], (+$pDst_o+8*8)($pDst)
- mov $X[1], (+$pDst_o+8*9)($pDst)
- mov $X[2], (+$pDst_o+8*10)($pDst)
- mov $X[3], (+$pDst_o+8*11)($pDst)
- mov $X[4], (+$pDst_o+8*12)($pDst)
- mov $X[5], (+$pDst_o+8*13)($pDst)
- mov $X[6], (+$pDst_o+8*14)($pDst)
- mov $X[7], (+$pDst_o+8*15)($pDst)
-___
-}
-
-#
-# mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits)
-# Input: src1: Address of source 1: rdi
-# src2: Address of source 2: rsi
-# Output: dst: Address of destination: [red_res_addr]
-# src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10
-# Temp: Clobbers [tmp16], all registers
-$code.=<<___;
-.type mont_mul_a3b,\@abi-omnipotent
-.align 16
-mont_mul_a3b:
- #
- # multiply tmp = src1 * src2
- # For multiply: dst = rcx, src1 = rdi, src2 = rsi
- # stack depth is extra 8 from call
-___
- &MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx");
-$code.=<<___;
- #
- # Dst = tmp % m
- # Call reduce(tmp, m, data, dst)
-
- # tail recursion optimization: jmp to mont_reduce and return from there
- jmp mont_reduce
- # call mont_reduce
- # ret
-.size mont_mul_a3b,.-mont_mul_a3b
-___
-}}}
-
-{{{
-#SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4
-#
-# Input in memory [pA] and also in x7...x0
-# Uses all argument registers plus rax and rdx
-#
-# This version computes all of the off-diagonal terms into memory,
-# and then it adds in the diagonal terms
-
-sub SQR_512
-{
- my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_;
- my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
- my @X=@$x; # make a copy
-$code.=<<___;
- # ------------------
- # first pass 01...07
- # ------------------
- mov $X[0], $A
-
- mov $X[1],%rax
- mul $A
- mov %rax, (+$pDst_o+8*1)($pDst)
-___
-for(my $i=2;$i<8;$i++) {
-$code.=<<___;
- mov %rdx, $X[$i-2]
- mov $X[$i],%rax
- mul $A
- add %rax, $X[$i-2]
- adc \$0, %rdx
-___
-}
-$code.=<<___;
- mov %rdx, $x7
-
- mov $X[0], (+$pDst_o+8*2)($pDst)
-
- # ------------------
- # second pass 12...17
- # ------------------
-
- mov (+8*1)($pA), $A
-
- mov (+8*2)($pA),%rax
- mul $A
- add %rax, $X[1]
- adc \$0, %rdx
- mov $X[1], (+$pDst_o+8*3)($pDst)
-
- mov %rdx, $X[0]
- mov (+8*3)($pA),%rax
- mul $A
- add %rax, $X[2]
- adc \$0, %rdx
- add $X[0], $X[2]
- adc \$0, %rdx
- mov $X[2], (+$pDst_o+8*4)($pDst)
-
- mov %rdx, $X[0]
- mov (+8*4)($pA),%rax
- mul $A
- add %rax, $X[3]
- adc \$0, %rdx
- add $X[0], $X[3]
- adc \$0, %rdx
-
- mov %rdx, $X[0]
- mov (+8*5)($pA),%rax
- mul $A
- add %rax, $X[4]
- adc \$0, %rdx
- add $X[0], $X[4]
- adc \$0, %rdx
-
- mov %rdx, $X[0]
- mov $X[6],%rax
- mul $A
- add %rax, $X[5]
- adc \$0, %rdx
- add $X[0], $X[5]
- adc \$0, %rdx
-
- mov %rdx, $X[0]
- mov $X[7],%rax
- mul $A
- add %rax, $x7
- adc \$0, %rdx
- add $X[0], $x7
- adc \$0, %rdx
-
- mov %rdx, $X[1]
-
- # ------------------
- # third pass 23...27
- # ------------------
- mov (+8*2)($pA), $A
-
- mov (+8*3)($pA),%rax
- mul $A
- add %rax, $X[3]
- adc \$0, %rdx
- mov $X[3], (+$pDst_o+8*5)($pDst)
-
- mov %rdx, $X[0]
- mov (+8*4)($pA),%rax
- mul $A
- add %rax, $X[4]
- adc \$0, %rdx
- add $X[0], $X[4]
- adc \$0, %rdx
- mov $X[4], (+$pDst_o+8*6)($pDst)
-
- mov %rdx, $X[0]
- mov (+8*5)($pA),%rax
- mul $A
- add %rax, $X[5]
- adc \$0, %rdx
- add $X[0], $X[5]
- adc \$0, %rdx
-
- mov %rdx, $X[0]
- mov $X[6],%rax
- mul $A
- add %rax, $x7
- adc \$0, %rdx
- add $X[0], $x7
- adc \$0, %rdx
-
- mov %rdx, $X[0]
- mov $X[7],%rax
- mul $A
- add %rax, $X[1]
- adc \$0, %rdx
- add $X[0], $X[1]
- adc \$0, %rdx
-
- mov %rdx, $X[2]
-
- # ------------------
- # fourth pass 34...37
- # ------------------
-
- mov (+8*3)($pA), $A
-
- mov (+8*4)($pA),%rax
- mul $A
- add %rax, $X[5]
- adc \$0, %rdx
- mov $X[5], (+$pDst_o+8*7)($pDst)
-
- mov %rdx, $X[0]
- mov (+8*5)($pA),%rax
- mul $A
- add %rax, $x7
- adc \$0, %rdx
- add $X[0], $x7
- adc \$0, %rdx
- mov $x7, (+$pDst_o+8*8)($pDst)
-
- mov %rdx, $X[0]
- mov $X[6],%rax
- mul $A
- add %rax, $X[1]
- adc \$0, %rdx
- add $X[0], $X[1]
- adc \$0, %rdx
-
- mov %rdx, $X[0]
- mov $X[7],%rax
- mul $A
- add %rax, $X[2]
- adc \$0, %rdx
- add $X[0], $X[2]
- adc \$0, %rdx
-
- mov %rdx, $X[5]
-
- # ------------------
- # fifth pass 45...47
- # ------------------
- mov (+8*4)($pA), $A
-
- mov (+8*5)($pA),%rax
- mul $A
- add %rax, $X[1]
- adc \$0, %rdx
- mov $X[1], (+$pDst_o+8*9)($pDst)
-
- mov %rdx, $X[0]
- mov $X[6],%rax
- mul $A
- add %rax, $X[2]
- adc \$0, %rdx
- add $X[0], $X[2]
- adc \$0, %rdx
- mov $X[2], (+$pDst_o+8*10)($pDst)
-
- mov %rdx, $X[0]
- mov $X[7],%rax
- mul $A
- add %rax, $X[5]
- adc \$0, %rdx
- add $X[0], $X[5]
- adc \$0, %rdx
-
- mov %rdx, $X[1]
-
- # ------------------
- # sixth pass 56...57
- # ------------------
- mov (+8*5)($pA), $A
-
- mov $X[6],%rax
- mul $A
- add %rax, $X[5]
- adc \$0, %rdx
- mov $X[5], (+$pDst_o+8*11)($pDst)
-
- mov %rdx, $X[0]
- mov $X[7],%rax
- mul $A
- add %rax, $X[1]
- adc \$0, %rdx
- add $X[0], $X[1]
- adc \$0, %rdx
- mov $X[1], (+$pDst_o+8*12)($pDst)
-
- mov %rdx, $X[2]
-
- # ------------------
- # seventh pass 67
- # ------------------
- mov $X[6], $A
-
- mov $X[7],%rax
- mul $A
- add %rax, $X[2]
- adc \$0, %rdx
- mov $X[2], (+$pDst_o+8*13)($pDst)
-
- mov %rdx, (+$pDst_o+8*14)($pDst)
-
- # start finalize (add in squares, and double off-terms)
- mov (+$pDst_o+8*1)($pDst), $X[0]
- mov (+$pDst_o+8*2)($pDst), $X[1]
- mov (+$pDst_o+8*3)($pDst), $X[2]
- mov (+$pDst_o+8*4)($pDst), $X[3]
- mov (+$pDst_o+8*5)($pDst), $X[4]
- mov (+$pDst_o+8*6)($pDst), $X[5]
-
- mov (+8*3)($pA), %rax
- mul %rax
- mov %rax, $x6
- mov %rdx, $X[6]
-
- add $X[0], $X[0]
- adc $X[1], $X[1]
- adc $X[2], $X[2]
- adc $X[3], $X[3]
- adc $X[4], $X[4]
- adc $X[5], $X[5]
- adc \$0, $X[6]
-
- mov (+8*0)($pA), %rax
- mul %rax
- mov %rax, (+$pDst_o+8*0)($pDst)
- mov %rdx, $A
-
- mov (+8*1)($pA), %rax
- mul %rax
-
- add $A, $X[0]
- adc %rax, $X[1]
- adc \$0, %rdx
-
- mov %rdx, $A
- mov $X[0], (+$pDst_o+8*1)($pDst)
- mov $X[1], (+$pDst_o+8*2)($pDst)
-
- mov (+8*2)($pA), %rax
- mul %rax
-
- add $A, $X[2]
- adc %rax, $X[3]
- adc \$0, %rdx
-
- mov %rdx, $A
-
- mov $X[2], (+$pDst_o+8*3)($pDst)
- mov $X[3], (+$pDst_o+8*4)($pDst)
-
- xor $tmp, $tmp
- add $A, $X[4]
- adc $x6, $X[5]
- adc \$0, $tmp
-
- mov $X[4], (+$pDst_o+8*5)($pDst)
- mov $X[5], (+$pDst_o+8*6)($pDst)
-
- # %%tmp has 0/1 in column 7
- # %%A6 has a full value in column 7
-
- mov (+$pDst_o+8*7)($pDst), $X[0]
- mov (+$pDst_o+8*8)($pDst), $X[1]
- mov (+$pDst_o+8*9)($pDst), $X[2]
- mov (+$pDst_o+8*10)($pDst), $X[3]
- mov (+$pDst_o+8*11)($pDst), $X[4]
- mov (+$pDst_o+8*12)($pDst), $X[5]
- mov (+$pDst_o+8*13)($pDst), $x6
- mov (+$pDst_o+8*14)($pDst), $x7
-
- mov $X[7], %rax
- mul %rax
- mov %rax, $X[7]
- mov %rdx, $A
-
- add $X[0], $X[0]
- adc $X[1], $X[1]
- adc $X[2], $X[2]
- adc $X[3], $X[3]
- adc $X[4], $X[4]
- adc $X[5], $X[5]
- adc $x6, $x6
- adc $x7, $x7
- adc \$0, $A
-
- add $tmp, $X[0]
-
- mov (+8*4)($pA), %rax
- mul %rax
-
- add $X[6], $X[0]
- adc %rax, $X[1]
- adc \$0, %rdx
-
- mov %rdx, $tmp
-
- mov $X[0], (+$pDst_o+8*7)($pDst)
- mov $X[1], (+$pDst_o+8*8)($pDst)
-
- mov (+8*5)($pA), %rax
- mul %rax
-
- add $tmp, $X[2]
- adc %rax, $X[3]
- adc \$0, %rdx
-
- mov %rdx, $tmp
-
- mov $X[2], (+$pDst_o+8*9)($pDst)
- mov $X[3], (+$pDst_o+8*10)($pDst)
-
- mov (+8*6)($pA), %rax
- mul %rax
-
- add $tmp, $X[4]
- adc %rax, $X[5]
- adc \$0, %rdx
-
- mov $X[4], (+$pDst_o+8*11)($pDst)
- mov $X[5], (+$pDst_o+8*12)($pDst)
-
- add %rdx, $x6
- adc $X[7], $x7
- adc \$0, $A
-
- mov $x6, (+$pDst_o+8*13)($pDst)
- mov $x7, (+$pDst_o+8*14)($pDst)
- mov $A, (+$pDst_o+8*15)($pDst)
-___
-}
-
-#
-# sqr_reduce: subroutine to compute Result = reduce(Result * Result)
-#
-# input and result also in: r9, r8, r15, r14, r13, r12, r11, r10
-#
-$code.=<<___;
-.type sqr_reduce,\@abi-omnipotent
-.align 16
-sqr_reduce:
- mov (+$pResult_offset+8)(%rsp), %rcx
-___
- &SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%rbx", "%rbp", "%rsi", "%rdi");
-$code.=<<___;
- # tail recursion optimization: jmp to mont_reduce and return from there
- jmp mont_reduce
- # call mont_reduce
- # ret
-.size sqr_reduce,.-sqr_reduce
-___
-}}}
-
-#
-# MAIN FUNCTION
-#
-
-#mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
-# UINT64 *g, /* 512 bits, 8 qwords */
-# UINT64 *exp, /* 512 bits, 8 qwords */
-# struct mod_ctx_512 *data)
-
-# window size = 5
-# table size = 2^5 = 32
-#table_entries equ 32
-#table_size equ table_entries * 8
-$code.=<<___;
-.globl mod_exp_512
-.type mod_exp_512,\@function,4
-mod_exp_512:
- push %rbp
- push %rbx
- push %r12
- push %r13
- push %r14
- push %r15
-
- # adjust stack down and then align it with cache boundary
- mov %rsp, %r8
- sub \$$mem_size, %rsp
- and \$-64, %rsp
-
- # store previous stack pointer and arguments
- mov %r8, (+$rsp_offset)(%rsp)
- mov %rdi, (+$pResult_offset)(%rsp)
- mov %rsi, (+$pG_offset)(%rsp)
- mov %rcx, (+$pData_offset)(%rsp)
-.Lbody:
- # transform g into montgomery space
- # GT = reduce(g * C2) = reduce(g * (2^256))
- # reduce expects to have the input in [tmp16]
- pxor %xmm4, %xmm4
- movdqu (+16*0)(%rsi), %xmm0
- movdqu (+16*1)(%rsi), %xmm1
- movdqu (+16*2)(%rsi), %xmm2
- movdqu (+16*3)(%rsi), %xmm3
- movdqa %xmm4, (+$tmp16_offset+16*0)(%rsp)
- movdqa %xmm4, (+$tmp16_offset+16*1)(%rsp)
- movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
- movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
- movdqa %xmm0, (+$tmp16_offset+16*2)(%rsp)
- movdqa %xmm1, (+$tmp16_offset+16*3)(%rsp)
- movdqa %xmm2, (+$tmp16_offset+16*4)(%rsp)
- movdqa %xmm3, (+$tmp16_offset+16*5)(%rsp)
-
- # load pExp before rdx gets blown away
- movdqu (+16*0)(%rdx), %xmm0
- movdqu (+16*1)(%rdx), %xmm1
- movdqu (+16*2)(%rdx), %xmm2
- movdqu (+16*3)(%rdx), %xmm3
-
- lea (+$GT_offset)(%rsp), %rbx
- mov %rbx, (+$red_result_addr_offset)(%rsp)
- call mont_reduce
-
- # Initialize tmp = C
- lea (+$tmp_offset)(%rsp), %rcx
- xor %rax, %rax
- mov %rax, (+8*0)(%rcx)
- mov %rax, (+8*1)(%rcx)
- mov %rax, (+8*3)(%rcx)
- mov %rax, (+8*4)(%rcx)
- mov %rax, (+8*5)(%rcx)
- mov %rax, (+8*6)(%rcx)
- mov %rax, (+8*7)(%rcx)
- mov %rax, (+$exp_offset+8*8)(%rsp)
- movq \$1, (+8*2)(%rcx)
-
- lea (+$garray_offset)(%rsp), %rbp
- mov %rcx, %rsi # pTmp
- mov %rbp, %rdi # Garray[][0]
-___
-
- &swizzle("%rdi", "%rcx", "%rax", "%rbx");
-
- # for (rax = 31; rax != 0; rax--) {
- # tmp = reduce(tmp * G)
- # swizzle(pg, tmp);
- # pg += 2; }
-$code.=<<___;
- mov \$31, %rax
- mov %rax, (+$i_offset)(%rsp)
- mov %rbp, (+$pg_offset)(%rsp)
- # rsi -> pTmp
- mov %rsi, (+$red_result_addr_offset)(%rsp)
- mov (+8*0)(%rsi), %r10
- mov (+8*1)(%rsi), %r11
- mov (+8*2)(%rsi), %r12
- mov (+8*3)(%rsi), %r13
- mov (+8*4)(%rsi), %r14
- mov (+8*5)(%rsi), %r15
- mov (+8*6)(%rsi), %r8
- mov (+8*7)(%rsi), %r9
-init_loop:
- lea (+$GT_offset)(%rsp), %rdi
- call mont_mul_a3b
- lea (+$tmp_offset)(%rsp), %rsi
- mov (+$pg_offset)(%rsp), %rbp
- add \$2, %rbp
- mov %rbp, (+$pg_offset)(%rsp)
- mov %rsi, %rcx # rcx = rsi = addr of tmp
-___
-
- &swizzle("%rbp", "%rcx", "%rax", "%rbx");
-$code.=<<___;
- mov (+$i_offset)(%rsp), %rax
- sub \$1, %rax
- mov %rax, (+$i_offset)(%rsp)
- jne init_loop
-
- #
- # Copy exponent onto stack
- movdqa %xmm0, (+$exp_offset+16*0)(%rsp)
- movdqa %xmm1, (+$exp_offset+16*1)(%rsp)
- movdqa %xmm2, (+$exp_offset+16*2)(%rsp)
- movdqa %xmm3, (+$exp_offset+16*3)(%rsp)
-
-
- #
- # Do exponentiation
- # Initialize result to G[exp{511:507}]
- mov (+$exp_offset+62)(%rsp), %eax
- mov %rax, %rdx
- shr \$11, %rax
- and \$0x07FF, %edx
- mov %edx, (+$exp_offset+62)(%rsp)
- lea (+$garray_offset)(%rsp,%rax,2), %rsi
- mov (+$pResult_offset)(%rsp), %rdx
-___
-
- &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
-
- #
- # Loop variables
- # rcx = [loop_idx] = index: 510-5 to 0 by 5
-$code.=<<___;
- movq \$505, (+$loop_idx_offset)(%rsp)
-
- mov (+$pResult_offset)(%rsp), %rcx
- mov %rcx, (+$red_result_addr_offset)(%rsp)
- mov (+8*0)(%rcx), %r10
- mov (+8*1)(%rcx), %r11
- mov (+8*2)(%rcx), %r12
- mov (+8*3)(%rcx), %r13
- mov (+8*4)(%rcx), %r14
- mov (+8*5)(%rcx), %r15
- mov (+8*6)(%rcx), %r8
- mov (+8*7)(%rcx), %r9
- jmp sqr_2
-
-main_loop_a3b:
- call sqr_reduce
- call sqr_reduce
- call sqr_reduce
-sqr_2:
- call sqr_reduce
- call sqr_reduce
-
- #
- # Do multiply, first look up proper value in Garray
- mov (+$loop_idx_offset)(%rsp), %rcx # bit index
- mov %rcx, %rax
- shr \$4, %rax # rax is word pointer
- mov (+$exp_offset)(%rsp,%rax,2), %edx
- and \$15, %rcx
- shrq %cl, %rdx
- and \$0x1F, %rdx
-
- lea (+$garray_offset)(%rsp,%rdx,2), %rsi
- lea (+$tmp_offset)(%rsp), %rdx
- mov %rdx, %rdi
-___
-
- &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
- # rdi = tmp = pG
-
- #
- # Call mod_mul_a1(pDst, pSrc1, pSrc2, pM, pData)
- # result result pG M Data
-$code.=<<___;
- mov (+$pResult_offset)(%rsp), %rsi
- call mont_mul_a3b
-
- #
- # finish loop
- mov (+$loop_idx_offset)(%rsp), %rcx
- sub \$5, %rcx
- mov %rcx, (+$loop_idx_offset)(%rsp)
- jge main_loop_a3b
-
- #
-
-end_main_loop_a3b:
- # transform result out of Montgomery space
- # result = reduce(result)
- mov (+$pResult_offset)(%rsp), %rdx
- pxor %xmm4, %xmm4
- movdqu (+16*0)(%rdx), %xmm0
- movdqu (+16*1)(%rdx), %xmm1
- movdqu (+16*2)(%rdx), %xmm2
- movdqu (+16*3)(%rdx), %xmm3
- movdqa %xmm4, (+$tmp16_offset+16*4)(%rsp)
- movdqa %xmm4, (+$tmp16_offset+16*5)(%rsp)
- movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
- movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
- movdqa %xmm0, (+$tmp16_offset+16*0)(%rsp)
- movdqa %xmm1, (+$tmp16_offset+16*1)(%rsp)
- movdqa %xmm2, (+$tmp16_offset+16*2)(%rsp)
- movdqa %xmm3, (+$tmp16_offset+16*3)(%rsp)
- call mont_reduce
-
- # If result > m, subract m
- # load result into r15:r8
- mov (+$pResult_offset)(%rsp), %rax
- mov (+8*0)(%rax), %r8
- mov (+8*1)(%rax), %r9
- mov (+8*2)(%rax), %r10
- mov (+8*3)(%rax), %r11
- mov (+8*4)(%rax), %r12
- mov (+8*5)(%rax), %r13
- mov (+8*6)(%rax), %r14
- mov (+8*7)(%rax), %r15
-
- # subtract m
- mov (+$pData_offset)(%rsp), %rbx
- add \$$M, %rbx
-
- sub (+8*0)(%rbx), %r8
- sbb (+8*1)(%rbx), %r9
- sbb (+8*2)(%rbx), %r10
- sbb (+8*3)(%rbx), %r11
- sbb (+8*4)(%rbx), %r12
- sbb (+8*5)(%rbx), %r13
- sbb (+8*6)(%rbx), %r14
- sbb (+8*7)(%rbx), %r15
-
- # if Carry is clear, replace result with difference
- mov (+8*0)(%rax), %rsi
- mov (+8*1)(%rax), %rdi
- mov (+8*2)(%rax), %rcx
- mov (+8*3)(%rax), %rdx
- cmovnc %r8, %rsi
- cmovnc %r9, %rdi
- cmovnc %r10, %rcx
- cmovnc %r11, %rdx
- mov %rsi, (+8*0)(%rax)
- mov %rdi, (+8*1)(%rax)
- mov %rcx, (+8*2)(%rax)
- mov %rdx, (+8*3)(%rax)
-
- mov (+8*4)(%rax), %rsi
- mov (+8*5)(%rax), %rdi
- mov (+8*6)(%rax), %rcx
- mov (+8*7)(%rax), %rdx
- cmovnc %r12, %rsi
- cmovnc %r13, %rdi
- cmovnc %r14, %rcx
- cmovnc %r15, %rdx
- mov %rsi, (+8*4)(%rax)
- mov %rdi, (+8*5)(%rax)
- mov %rcx, (+8*6)(%rax)
- mov %rdx, (+8*7)(%rax)
-
- mov (+$rsp_offset)(%rsp), %rsi
- mov 0(%rsi),%r15
- mov 8(%rsi),%r14
- mov 16(%rsi),%r13
- mov 24(%rsi),%r12
- mov 32(%rsi),%rbx
- mov 40(%rsi),%rbp
- lea 48(%rsi),%rsp
-.Lepilogue:
- ret
-.size mod_exp_512, . - mod_exp_512
-___
-
-if ($win64) {
-# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
-# CONTEXT *context,DISPATCHER_CONTEXT *disp)
-my $rec="%rcx";
-my $frame="%rdx";
-my $context="%r8";
-my $disp="%r9";
-
-$code.=<<___;
-.extern __imp_RtlVirtualUnwind
-.type mod_exp_512_se_handler,\@abi-omnipotent
-.align 16
-mod_exp_512_se_handler:
- push %rsi
- push %rdi
- push %rbx
- push %rbp
- push %r12
- push %r13
- push %r14
- push %r15
- pushfq
- sub \$64,%rsp
-
- mov 120($context),%rax # pull context->Rax
- mov 248($context),%rbx # pull context->Rip
-
- lea .Lbody(%rip),%r10
- cmp %r10,%rbx # context->Rip<prologue label
- jb .Lin_prologue
-
- mov 152($context),%rax # pull context->Rsp
-
- lea .Lepilogue(%rip),%r10
- cmp %r10,%rbx # context->Rip>=epilogue label
- jae .Lin_prologue
-
- mov $rsp_offset(%rax),%rax # pull saved Rsp
-
- mov 32(%rax),%rbx
- mov 40(%rax),%rbp
- mov 24(%rax),%r12
- mov 16(%rax),%r13
- mov 8(%rax),%r14
- mov 0(%rax),%r15
- lea 48(%rax),%rax
- mov %rbx,144($context) # restore context->Rbx
- mov %rbp,160($context) # restore context->Rbp
- mov %r12,216($context) # restore context->R12
- mov %r13,224($context) # restore context->R13
- mov %r14,232($context) # restore context->R14
- mov %r15,240($context) # restore context->R15
-
-.Lin_prologue:
- mov 8(%rax),%rdi
- mov 16(%rax),%rsi
- mov %rax,152($context) # restore context->Rsp
- mov %rsi,168($context) # restore context->Rsi
- mov %rdi,176($context) # restore context->Rdi
-
- mov 40($disp),%rdi # disp->ContextRecord
- mov $context,%rsi # context
- mov \$154,%ecx # sizeof(CONTEXT)
- .long 0xa548f3fc # cld; rep movsq
-
- mov $disp,%rsi
- xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
- mov 8(%rsi),%rdx # arg2, disp->ImageBase
- mov 0(%rsi),%r8 # arg3, disp->ControlPc
- mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
- mov 40(%rsi),%r10 # disp->ContextRecord
- lea 56(%rsi),%r11 # &disp->HandlerData
- lea 24(%rsi),%r12 # &disp->EstablisherFrame
- mov %r10,32(%rsp) # arg5
- mov %r11,40(%rsp) # arg6
- mov %r12,48(%rsp) # arg7
- mov %rcx,56(%rsp) # arg8, (NULL)
- call *__imp_RtlVirtualUnwind(%rip)
-
- mov \$1,%eax # ExceptionContinueSearch
- add \$64,%rsp
- popfq
- pop %r15
- pop %r14
- pop %r13
- pop %r12
- pop %rbp
- pop %rbx
- pop %rdi
- pop %rsi
- ret
-.size mod_exp_512_se_handler,.-mod_exp_512_se_handler
-
-.section .pdata
-.align 4
- .rva .LSEH_begin_mod_exp_512
- .rva .LSEH_end_mod_exp_512
- .rva .LSEH_info_mod_exp_512
-
-.section .xdata
-.align 8
-.LSEH_info_mod_exp_512:
- .byte 9,0,0,0
- .rva mod_exp_512_se_handler
-___
-}
-
-sub reg_part {
-my ($reg,$conv)=@_;
- if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
- elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
- elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
- elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
- return $reg;
-}
-
-$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
-$code =~ s/\`([^\`]*)\`/eval $1/gem;
-$code =~ s/(\(\+[^)]+\))/eval $1/gem;
-print $code;
-close STDOUT;
+++ /dev/null
-/* crypto/engine/eng_rsax.c */
-/* Copyright (c) 2010-2010 Intel Corp.
- * Author: Vinodh.Gopal@intel.com
- * Jim Guilford
- * Erdinc.Ozturk@intel.com
- * Maxim.Perminov@intel.com
- * Ying.Huang@intel.com
- *
- * More information about algorithm used can be found at:
- * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
- */
-/* ====================================================================
- * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * licensing@OpenSSL.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- */
-
-#include <openssl/opensslconf.h>
-
-#include <stdio.h>
-#include <string.h>
-#include <openssl/crypto.h>
-#include <openssl/buffer.h>
-#include <openssl/engine.h>
-#ifndef OPENSSL_NO_RSA
-# include <openssl/rsa.h>
-#endif
-#include <openssl/bn.h>
-#include <openssl/err.h>
-
-/* RSAX is available **ONLY* on x86_64 CPUs */
-#undef COMPILE_RSAX
-
-#if (defined(__x86_64) || defined(__x86_64__) || \
- defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
-# define COMPILE_RSAX
-static ENGINE *ENGINE_rsax(void);
-#endif
-
-void ENGINE_load_rsax(void)
-{
-/* On non-x86 CPUs it just returns. */
-#ifdef COMPILE_RSAX
- ENGINE *toadd = ENGINE_rsax();
- if (!toadd)
- return;
- ENGINE_add(toadd);
- ENGINE_free(toadd);
- ERR_clear_error();
-#endif
-}
-
-#ifdef COMPILE_RSAX
-# define E_RSAX_LIB_NAME "rsax engine"
-
-static int e_rsax_destroy(ENGINE *e);
-static int e_rsax_init(ENGINE *e);
-static int e_rsax_finish(ENGINE *e);
-static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
-
-# ifndef OPENSSL_NO_RSA
-/* RSA stuff */
-static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa,
- BN_CTX *ctx);
-static int e_rsax_rsa_finish(RSA *r);
-# endif
-
-static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
- {0, NULL, NULL, 0}
-};
-
-# ifndef OPENSSL_NO_RSA
-/* Our internal RSA_METHOD that we provide pointers to */
-static RSA_METHOD e_rsax_rsa = {
- "Intel RSA-X method",
- NULL,
- NULL,
- NULL,
- NULL,
- e_rsax_rsa_mod_exp,
- NULL,
- NULL,
- e_rsax_rsa_finish,
- RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE,
- NULL,
- NULL,
- NULL
-};
-# endif
-
-/* Constants used when creating the ENGINE */
-static const char *engine_e_rsax_id = "rsax";
-static const char *engine_e_rsax_name = "RSAX engine support";
-
-/* This internal function is used by ENGINE_rsax() */
-static int bind_helper(ENGINE *e)
-{
-# ifndef OPENSSL_NO_RSA
- const RSA_METHOD *meth1;
-# endif
- if (!ENGINE_set_id(e, engine_e_rsax_id) ||
- !ENGINE_set_name(e, engine_e_rsax_name) ||
-# ifndef OPENSSL_NO_RSA
- !ENGINE_set_RSA(e, &e_rsax_rsa) ||
-# endif
- !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
- !ENGINE_set_init_function(e, e_rsax_init) ||
- !ENGINE_set_finish_function(e, e_rsax_finish) ||
- !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
- !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
- return 0;
-
-# ifndef OPENSSL_NO_RSA
- meth1 = RSA_PKCS1_SSLeay();
- e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
- e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
- e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
- e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
- e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
-# endif
- return 1;
-}
-
-static ENGINE *ENGINE_rsax(void)
-{
- ENGINE *ret = ENGINE_new();
- if (!ret)
- return NULL;
- if (!bind_helper(ret)) {
- ENGINE_free(ret);
- return NULL;
- }
- return ret;
-}
-
-# ifndef OPENSSL_NO_RSA
-/* Used to attach our own key-data to an RSA structure */
-static int rsax_ex_data_idx = -1;
-# endif
-
-static int e_rsax_destroy(ENGINE *e)
-{
- return 1;
-}
-
-/* (de)initialisation functions. */
-static int e_rsax_init(ENGINE *e)
-{
-# ifndef OPENSSL_NO_RSA
- if (rsax_ex_data_idx == -1)
- rsax_ex_data_idx = RSA_get_ex_new_index(0, NULL, NULL, NULL, NULL);
-# endif
- if (rsax_ex_data_idx == -1)
- return 0;
- return 1;
-}
-
-static int e_rsax_finish(ENGINE *e)
-{
- return 1;
-}
-
-static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
-{
- int to_return = 1;
-
- switch (cmd) {
- /* The command isn't understood by this engine */
- default:
- to_return = 0;
- break;
- }
-
- return to_return;
-}
-
-# ifndef OPENSSL_NO_RSA
-
-# ifdef _WIN32
-typedef unsigned __int64 UINT64;
-# else
-typedef unsigned long long UINT64;
-# endif
-typedef unsigned short UINT16;
-
-/*
- * Table t is interleaved in the following manner: The order in memory is
- * t[0][0], t[0][1], ..., t[0][7], t[1][0], ... A particular 512-bit value is
- * stored in t[][index] rather than the more normal t[index][]; i.e. the
- * qwords of a particular entry in t are not adjacent in memory
- */
-
-/* Init BIGNUM b from the interleaved UINT64 array */
-static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array);
-
-/*
- * Extract array elements from BIGNUM b To set the whole array from b, call
- * with n=8
- */
-static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
- UINT64 *array);
-
-struct mod_ctx_512 {
- UINT64 t[8][8];
- UINT64 m[8];
- UINT64 m1[8]; /* 2^278 % m */
- UINT64 m2[8]; /* 2^640 % m */
- UINT64 k1[2]; /* (- 1/m) % 2^128 */
-};
-
-static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);
-
-void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
- UINT64 *g, /* 512 bits, 8 qwords */
- UINT64 *exp, /* 512 bits, 8 qwords */
- struct mod_ctx_512 *data);
-
-typedef struct st_e_rsax_mod_ctx {
- UINT64 type;
- union {
- struct mod_ctx_512 b512;
- } ctx;
-
-} E_RSAX_MOD_CTX;
-
-static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM *m)
-{
- E_RSAX_MOD_CTX *hptr;
-
- if (idx < 0 || idx > 2)
- return NULL;
-
- hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
- if (!hptr) {
- hptr = OPENSSL_malloc(3 * sizeof(E_RSAX_MOD_CTX));
- if (!hptr)
- return NULL;
- hptr[2].type = hptr[1].type = hptr[0].type = 0;
- RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
- }
-
- if (hptr[idx].type == (UINT64)BN_num_bits(m))
- return hptr + idx;
-
- if (BN_num_bits(m) == 512) {
- UINT64 _m[8];
- bn_extract_to_array_512(m, 8, _m);
- memset(&hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
- mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
- }
-
- hptr[idx].type = BN_num_bits(m);
- return hptr + idx;
-}
-
-static int e_rsax_rsa_finish(RSA *rsa)
-{
- E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
- if (hptr) {
- OPENSSL_free(hptr);
- RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
- }
- if (rsa->_method_mod_n)
- BN_MONT_CTX_free(rsa->_method_mod_n);
- if (rsa->_method_mod_p)
- BN_MONT_CTX_free(rsa->_method_mod_p);
- if (rsa->_method_mod_q)
- BN_MONT_CTX_free(rsa->_method_mod_q);
- return 1;
-}
-
-static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
- const BIGNUM *m, BN_CTX *ctx,
- BN_MONT_CTX *in_mont,
- E_RSAX_MOD_CTX *rsax_mod_ctx)
-{
- if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
- if (BN_num_bits(m) == 512) {
- UINT64 _r[8];
- UINT64 _g[8];
- UINT64 _e[8];
-
- /* Init the arrays from the BIGNUMs */
- bn_extract_to_array_512(g, 8, _g);
- bn_extract_to_array_512(e, 8, _e);
-
- mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
- /* Return the result in the BIGNUM */
- interleaved_array_to_bn_512(r, _r);
- return 1;
- }
- }
-
- return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
-}
-
-/*
- * Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
- * exponentiation routine precalculations and a structure to hold the
- * necessary values. These files are meant to live in crypto/rsa/ in the
- * target openssl.
- */
-
-/*
- * Local method: extracts a piece from a BIGNUM, to fit it into
- * an array. Call with n=8 to extract an entire 512-bit BIGNUM
- */
-static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
- UINT64 *array)
-{
- int i;
- UINT64 tmp;
- unsigned char bn_buff[64];
- memset(bn_buff, 0, 64);
- if (BN_num_bytes(b) > 64) {
- printf("Can't support this byte size\n");
- return 0;
- }
- if (BN_num_bytes(b) != 0) {
- if (!BN_bn2bin(b, bn_buff + (64 - BN_num_bytes(b)))) {
- printf("Error's in bn2bin\n");
- /* We have to error, here */
- return 0;
- }
- }
- while (n-- > 0) {
- array[n] = 0;
- for (i = 7; i >= 0; i--) {
- tmp = bn_buff[63 - (n * 8 + i)];
- array[n] |= tmp << (8 * i);
- }
- }
- return 1;
-}
-
-/* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
-static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array)
-{
- unsigned char tmp[64];
- int n = 8;
- int i;
- while (n-- > 0) {
- for (i = 7; i >= 0; i--) {
- tmp[63 - (n * 8 + i)] = (unsigned char)(array[n] >> (8 * i));
- }}
- BN_bin2bn(tmp, 64, b);
- return 0;
-}
-
-/* The main 512bit precompute call */
-static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
-{
- BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;
-
- /* We need a BN_CTX for the modulo functions */
- BN_CTX *ctx;
- /* Some tmps */
- UINT64 _t[8];
- int i, j, ret = 0;
-
- /* Init _m with m */
- BN_init(&_m);
- interleaved_array_to_bn_512(&_m, m);
- memset(_t, 0, 64);
-
- /* Inits */
- BN_init(&two_768);
- BN_init(&two_640);
- BN_init(&two_128);
- BN_init(&two_512);
- BN_init(&tmp);
- BN_init(&tmp2);
-
- /* Create our context */
- if ((ctx = BN_CTX_new()) == NULL) {
- goto err;
- }
- BN_CTX_start(ctx);
-
- /*
- * For production, if you care, these only need to be set once,
- * and may be made constants.
- */
- BN_lshift(&two_768, BN_value_one(), 768);
- BN_lshift(&two_640, BN_value_one(), 640);
- BN_lshift(&two_128, BN_value_one(), 128);
- BN_lshift(&two_512, BN_value_one(), 512);
-
- if (0 == (m[7] & 0x8000000000000000)) {
- exit(1);
- }
- if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */
- exit(1);
- }
-
- /* Precompute m1 */
- BN_mod(&tmp, &two_768, &_m, ctx);
- if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
- goto err;
- }
-
- /* Precompute m2 */
- BN_mod(&tmp, &two_640, &_m, ctx);
- if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
- goto err;
- }
-
- /*
- * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
- * be non-negative.
- */
- BN_mod_inverse(&tmp, &_m, &two_128, ctx);
- if (!BN_is_zero(&tmp)) {
- BN_sub(&tmp, &two_128, &tmp);
- }
- if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
- goto err;
- }
-
- /* Precompute t */
- for (i = 0; i < 8; i++) {
- BN_zero(&tmp);
- if (i & 1) {
- BN_add(&tmp, &two_512, &tmp);
- }
- if (i & 2) {
- BN_add(&tmp, &two_512, &tmp);
- }
- if (i & 4) {
- BN_add(&tmp, &two_640, &tmp);
- }
-
- BN_nnmod(&tmp2, &tmp, &_m, ctx);
- if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
- goto err;
- }
- for (j = 0; j < 8; j++)
- data->t[j][i] = _t[j];
- }
-
- /* Precompute m */
- for (i = 0; i < 8; i++) {
- data->m[i] = m[i];
- }
-
- ret = 1;
-
- err:
- /* Cleanup */
- if (ctx != NULL) {
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- }
- BN_free(&two_768);
- BN_free(&two_640);
- BN_free(&two_128);
- BN_free(&two_512);
- BN_free(&tmp);
- BN_free(&tmp2);
- BN_free(&_m);
-
- return ret;
-}
-
-static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
- BN_CTX *ctx)
-{
- BIGNUM *r1, *m1, *vrfy;
- BIGNUM local_dmp1, local_dmq1, local_c, local_r1;
- BIGNUM *dmp1, *dmq1, *c, *pr1;
- int ret = 0;
-
- BN_CTX_start(ctx);
- r1 = BN_CTX_get(ctx);
- m1 = BN_CTX_get(ctx);
- vrfy = BN_CTX_get(ctx);
-
- {
- BIGNUM local_p, local_q;
- BIGNUM *p = NULL, *q = NULL;
- int error = 0;
-
- /*
- * Make sure BN_mod_inverse in Montgomery intialization uses the
- * BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set)
- */
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- BN_init(&local_p);
- p = &local_p;
- BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
-
- BN_init(&local_q);
- q = &local_q;
- BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
- } else {
- p = rsa->p;
- q = rsa->q;
- }
-
- if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
- if (!BN_MONT_CTX_set_locked
- (&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
- error = 1;
- if (!BN_MONT_CTX_set_locked
- (&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
- error = 1;
- }
-
- /* clean up */
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- BN_free(&local_p);
- BN_free(&local_q);
- }
- if (error)
- goto err;
- }
-
- if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
- if (!BN_MONT_CTX_set_locked
- (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
- goto err;
-
- /* compute I mod q */
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- c = &local_c;
- BN_with_flags(c, I, BN_FLG_CONSTTIME);
- if (!BN_mod(r1, c, rsa->q, ctx))
- goto err;
- } else {
- if (!BN_mod(r1, I, rsa->q, ctx))
- goto err;
- }
-
- /* compute r1^dmq1 mod q */
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- dmq1 = &local_dmq1;
- BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
- } else
- dmq1 = rsa->dmq1;
-
- if (!e_rsax_bn_mod_exp(m1, r1, dmq1, rsa->q, ctx,
- rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0,
- rsa->q)))
- goto err;
-
- /* compute I mod p */
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- c = &local_c;
- BN_with_flags(c, I, BN_FLG_CONSTTIME);
- if (!BN_mod(r1, c, rsa->p, ctx))
- goto err;
- } else {
- if (!BN_mod(r1, I, rsa->p, ctx))
- goto err;
- }
-
- /* compute r1^dmp1 mod p */
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- dmp1 = &local_dmp1;
- BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
- } else
- dmp1 = rsa->dmp1;
-
- if (!e_rsax_bn_mod_exp(r0, r1, dmp1, rsa->p, ctx,
- rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1,
- rsa->p)))
- goto err;
-
- if (!BN_sub(r0, r0, m1))
- goto err;
- /*
- * This will help stop the size of r0 increasing, which does affect the
- * multiply if it optimised for a power of 2 size
- */
- if (BN_is_negative(r0))
- if (!BN_add(r0, r0, rsa->p))
- goto err;
-
- if (!BN_mul(r1, r0, rsa->iqmp, ctx))
- goto err;
-
- /* Turn BN_FLG_CONSTTIME flag on before division operation */
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- pr1 = &local_r1;
- BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
- } else
- pr1 = r1;
- if (!BN_mod(r0, pr1, rsa->p, ctx))
- goto err;
-
- /*
- * If p < q it is occasionally possible for the correction of adding 'p'
- * if r0 is negative above to leave the result still negative. This can
- * break the private key operations: the following second correction
- * should *always* correct this rare occurrence. This will *never* happen
- * with OpenSSL generated keys because they ensure p > q [steve]
- */
- if (BN_is_negative(r0))
- if (!BN_add(r0, r0, rsa->p))
- goto err;
- if (!BN_mul(r1, r0, rsa->q, ctx))
- goto err;
- if (!BN_add(r0, r1, m1))
- goto err;
-
- if (rsa->e && rsa->n) {
- if (!e_rsax_bn_mod_exp
- (vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n,
- e_rsax_get_ctx(rsa, 2, rsa->n)))
- goto err;
-
- /*
- * If 'I' was greater than (or equal to) rsa->n, the operation will
- * be equivalent to using 'I mod n'. However, the result of the
- * verify will *always* be less than 'n' so we don't check for
- * absolute equality, just congruency.
- */
- if (!BN_sub(vrfy, vrfy, I))
- goto err;
- if (!BN_mod(vrfy, vrfy, rsa->n, ctx))
- goto err;
- if (BN_is_negative(vrfy))
- if (!BN_add(vrfy, vrfy, rsa->n))
- goto err;
- if (!BN_is_zero(vrfy)) {
- /*
- * 'I' and 'vrfy' aren't congruent mod n. Don't leak
- * miscalculated CRT output, just do a raw (slower) mod_exp and
- * return that instead.
- */
-
- BIGNUM local_d;
- BIGNUM *d = NULL;
-
- if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
- d = &local_d;
- BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
- } else
- d = rsa->d;
- if (!e_rsax_bn_mod_exp(r0, I, d, rsa->n, ctx,
- rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2,
- rsa->n)))
- goto err;
- }
- }
- ret = 1;
-
- err:
- BN_CTX_end(ctx);
-
- return ret;
-}
-# endif /* !OPENSSL_NO_RSA */
-#endif /* !COMPILE_RSAX */