common/dlmalloc.c: Delete content that was moved to malloc.h
authorRobert P. J. Day <rpjday@crashcourse.ca>
Thu, 21 Apr 2016 11:35:55 +0000 (07:35 -0400)
committerTom Rini <trini@konsulko.com>
Mon, 25 Apr 2016 19:10:36 +0000 (15:10 -0400)
Remove several hundred lines of content surrounded by:

#if 0  /* Moved to malloc.h */
... moved stuff ...
#endif /* 0 */                 /* Moved to malloc.h */

Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Reviewed-by: Tom Rini <trini@konsulko.com>
common/dlmalloc.c

index d66e80c647ce6b26b8a3a83a65808b0652d5600a..b09f5249a902c7991986517dc91f0cfd447789f9 100644 (file)
@@ -4,935 +4,6 @@
 #define DEBUG
 #endif
 
-#if 0  /* Moved to malloc.h */
-/* ---------- To make a malloc.h, start cutting here ------------ */
-
-/*
-  A version of malloc/free/realloc written by Doug Lea and released to the
-  public domain.  Send questions/comments/complaints/performance data
-  to dl@cs.oswego.edu
-
-* VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
-
-   Note: There may be an updated version of this malloc obtainable at
-          ftp://g.oswego.edu/pub/misc/malloc.c
-        Check before installing!
-
-* Why use this malloc?
-
-  This is not the fastest, most space-conserving, most portable, or
-  most tunable malloc ever written. However it is among the fastest
-  while also being among the most space-conserving, portable and tunable.
-  Consistent balance across these factors results in a good general-purpose
-  allocator. For a high-level description, see
-     http://g.oswego.edu/dl/html/malloc.html
-
-* Synopsis of public routines
-
-  (Much fuller descriptions are contained in the program documentation below.)
-
-  malloc(size_t n);
-     Return a pointer to a newly allocated chunk of at least n bytes, or null
-     if no space is available.
-  free(Void_t* p);
-     Release the chunk of memory pointed to by p, or no effect if p is null.
-  realloc(Void_t* p, size_t n);
-     Return a pointer to a chunk of size n that contains the same data
-     as does chunk p up to the minimum of (n, p's size) bytes, or null
-     if no space is available. The returned pointer may or may not be
-     the same as p. If p is null, equivalent to malloc.  Unless the
-     #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
-     size argument of zero (re)allocates a minimum-sized chunk.
-  memalign(size_t alignment, size_t n);
-     Return a pointer to a newly allocated chunk of n bytes, aligned
-     in accord with the alignment argument, which must be a power of
-     two.
-  valloc(size_t n);
-     Equivalent to memalign(pagesize, n), where pagesize is the page
-     size of the system (or as near to this as can be figured out from
-     all the includes/defines below.)
-  pvalloc(size_t n);
-     Equivalent to valloc(minimum-page-that-holds(n)), that is,
-     round up n to nearest pagesize.
-  calloc(size_t unit, size_t quantity);
-     Returns a pointer to quantity * unit bytes, with all locations
-     set to zero.
-  cfree(Void_t* p);
-     Equivalent to free(p).
-  malloc_trim(size_t pad);
-     Release all but pad bytes of freed top-most memory back
-     to the system. Return 1 if successful, else 0.
-  malloc_usable_size(Void_t* p);
-     Report the number usable allocated bytes associated with allocated
-     chunk p. This may or may not report more bytes than were requested,
-     due to alignment and minimum size constraints.
-  malloc_stats();
-     Prints brief summary statistics.
-  mallinfo()
-     Returns (by copy) a struct containing various summary statistics.
-  mallopt(int parameter_number, int parameter_value)
-     Changes one of the tunable parameters described below. Returns
-     1 if successful in changing the parameter, else 0.
-
-* Vital statistics:
-
-  Alignment:                            8-byte
-       8 byte alignment is currently hardwired into the design.  This
-       seems to suffice for all current machines and C compilers.
-
-  Assumed pointer representation:       4 or 8 bytes
-       Code for 8-byte pointers is untested by me but has worked
-       reliably by Wolfram Gloger, who contributed most of the
-       changes supporting this.
-
-  Assumed size_t  representation:       4 or 8 bytes
-       Note that size_t is allowed to be 4 bytes even if pointers are 8.
-
-  Minimum overhead per allocated chunk: 4 or 8 bytes
-       Each malloced chunk has a hidden overhead of 4 bytes holding size
-       and status information.
-
-  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
-                         8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
-
-       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
-       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
-       needed; 4 (8) for a trailing size field
-       and 8 (16) bytes for free list pointers. Thus, the minimum
-       allocatable size is 16/24/32 bytes.
-
-       Even a request for zero bytes (i.e., malloc(0)) returns a
-       pointer to something of the minimum allocatable size.
-
-  Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
-                         8-byte size_t: 2^63 - 16 bytes
-
-       It is assumed that (possibly signed) size_t bit values suffice to
-       represent chunk sizes. `Possibly signed' is due to the fact
-       that `size_t' may be defined on a system as either a signed or
-       an unsigned type. To be conservative, values that would appear
-       as negative numbers are avoided.
-       Requests for sizes with a negative sign bit when the request
-       size is treaded as a long will return null.
-
-  Maximum overhead wastage per allocated chunk: normally 15 bytes
-
-       Alignnment demands, plus the minimum allocatable size restriction
-       make the normal worst-case wastage 15 bytes (i.e., up to 15
-       more bytes will be allocated than were requested in malloc), with
-       two exceptions:
-        1. Because requests for zero bytes allocate non-zero space,
-           the worst case wastage for a request of zero bytes is 24 bytes.
-        2. For requests >= mmap_threshold that are serviced via
-           mmap(), the worst case wastage is 8 bytes plus the remainder
-           from a system page (the minimal mmap unit); typically 4096 bytes.
-
-* Limitations
-
-    Here are some features that are NOT currently supported
-
-    * No user-definable hooks for callbacks and the like.
-    * No automated mechanism for fully checking that all accesses
-      to malloced memory stay within their bounds.
-    * No support for compaction.
-
-* Synopsis of compile-time options:
-
-    People have reported using previous versions of this malloc on all
-    versions of Unix, sometimes by tweaking some of the defines
-    below. It has been tested most extensively on Solaris and
-    Linux. It is also reported to work on WIN32 platforms.
-    People have also reported adapting this malloc for use in
-    stand-alone embedded systems.
-
-    The implementation is in straight, hand-tuned ANSI C.  Among other
-    consequences, it uses a lot of macros.  Because of this, to be at
-    all usable, this code should be compiled using an optimizing compiler
-    (for example gcc -O2) that can simplify expressions and control
-    paths.
-
-  __STD_C                  (default: derived from C compiler defines)
-     Nonzero if using ANSI-standard C compiler, a C++ compiler, or
-     a C compiler sufficiently close to ANSI to get away with it.
-  DEBUG                    (default: NOT defined)
-     Define to enable debugging. Adds fairly extensive assertion-based
-     checking to help track down memory errors, but noticeably slows down
-     execution.
-  REALLOC_ZERO_BYTES_FREES (default: NOT defined)
-     Define this if you think that realloc(p, 0) should be equivalent
-     to free(p). Otherwise, since malloc returns a unique pointer for
-     malloc(0), so does realloc(p, 0).
-  HAVE_MEMCPY               (default: defined)
-     Define if you are not otherwise using ANSI STD C, but still
-     have memcpy and memset in your C library and want to use them.
-     Otherwise, simple internal versions are supplied.
-  USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
-     Define as 1 if you want the C library versions of memset and
-     memcpy called in realloc and calloc (otherwise macro versions are used).
-     At least on some platforms, the simple macro versions usually
-     outperform libc versions.
-  HAVE_MMAP                 (default: defined as 1)
-     Define to non-zero to optionally make malloc() use mmap() to
-     allocate very large blocks.
-  HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
-     Define to non-zero to optionally make realloc() use mremap() to
-     reallocate very large blocks.
-  malloc_getpagesize        (default: derived from system #includes)
-     Either a constant or routine call returning the system page size.
-  HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
-     Optionally define if you are on a system with a /usr/include/malloc.h
-     that declares struct mallinfo. It is not at all necessary to
-     define this even if you do, but will ensure consistency.
-  INTERNAL_SIZE_T           (default: size_t)
-     Define to a 32-bit type (probably `unsigned int') if you are on a
-     64-bit machine, yet do not want or need to allow malloc requests of
-     greater than 2^31 to be handled. This saves space, especially for
-     very small chunks.
-  INTERNAL_LINUX_C_LIB      (default: NOT defined)
-     Defined only when compiled as part of Linux libc.
-     Also note that there is some odd internal name-mangling via defines
-     (for example, internally, `malloc' is named `mALLOc') needed
-     when compiling in this case. These look funny but don't otherwise
-     affect anything.
-  WIN32                     (default: undefined)
-     Define this on MS win (95, nt) platforms to compile in sbrk emulation.
-  LACKS_UNISTD_H            (default: undefined if not WIN32)
-     Define this if your system does not have a <unistd.h>.
-  LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
-     Define this if your system does not have a <sys/param.h>.
-  MORECORE                  (default: sbrk)
-     The name of the routine to call to obtain more memory from the system.
-  MORECORE_FAILURE          (default: -1)
-     The value returned upon failure of MORECORE.
-  MORECORE_CLEARS           (default 1)
-     true (1) if the routine mapped to MORECORE zeroes out memory (which
-     holds for sbrk).
-  DEFAULT_TRIM_THRESHOLD
-  DEFAULT_TOP_PAD
-  DEFAULT_MMAP_THRESHOLD
-  DEFAULT_MMAP_MAX
-     Default values of tunable parameters (described in detail below)
-     controlling interaction with host system routines (sbrk, mmap, etc).
-     These values may also be changed dynamically via mallopt(). The
-     preset defaults are those that give best performance for typical
-     programs/systems.
-  USE_DL_PREFIX             (default: undefined)
-     Prefix all public routines with the string 'dl'.  Useful to
-     quickly avoid procedure declaration conflicts and linker symbol
-     conflicts with existing memory allocation routines.
-
-
-*/
-
-
-
-/* Preliminaries */
-
-#ifndef __STD_C
-#ifdef __STDC__
-#define __STD_C     1
-#else
-#if __cplusplus
-#define __STD_C     1
-#else
-#define __STD_C     0
-#endif /*__cplusplus*/
-#endif /*__STDC__*/
-#endif /*__STD_C*/
-
-#ifndef Void_t
-#if (__STD_C || defined(WIN32))
-#define Void_t      void
-#else
-#define Void_t      char
-#endif
-#endif /*Void_t*/
-
-#if __STD_C
-#include <stddef.h>   /* for size_t */
-#else
-#include <sys/types.h>
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <stdio.h>    /* needed for malloc_stats */
-
-
-/*
-  Compile-time options
-*/
-
-
-/*
-    Debugging:
-
-    Because freed chunks may be overwritten with link fields, this
-    malloc will often die when freed memory is overwritten by user
-    programs.  This can be very effective (albeit in an annoying way)
-    in helping track down dangling pointers.
-
-    If you compile with -DDEBUG, a number of assertion checks are
-    enabled that will catch more memory errors. You probably won't be
-    able to make much sense of the actual assertion errors, but they
-    should help you locate incorrectly overwritten memory.  The
-    checking is fairly extensive, and will slow down execution
-    noticeably. Calling malloc_stats or mallinfo with DEBUG set will
-    attempt to check every non-mmapped allocated and free chunk in the
-    course of computing the summmaries. (By nature, mmapped regions
-    cannot be checked very much automatically.)
-
-    Setting DEBUG may also be helpful if you are trying to modify
-    this code. The assertions in the check routines spell out in more
-    detail the assumptions and invariants underlying the algorithms.
-
-*/
-
-/*
-  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
-  of chunk sizes. On a 64-bit machine, you can reduce malloc
-  overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
-  at the expense of not being able to handle requests greater than
-  2^31. This limitation is hardly ever a concern; you are encouraged
-  to set this. However, the default version is the same as size_t.
-*/
-
-#ifndef INTERNAL_SIZE_T
-#define INTERNAL_SIZE_T size_t
-#endif
-
-/*
-  REALLOC_ZERO_BYTES_FREES should be set if a call to
-  realloc with zero bytes should be the same as a call to free.
-  Some people think it should. Otherwise, since this malloc
-  returns a unique pointer for malloc(0), so does realloc(p, 0).
-*/
-
-
-/*   #define REALLOC_ZERO_BYTES_FREES */
-
-
-/*
-  WIN32 causes an emulation of sbrk to be compiled in
-  mmap-based options are not currently supported in WIN32.
-*/
-
-/* #define WIN32 */
-#ifdef WIN32
-#define MORECORE wsbrk
-#define HAVE_MMAP 0
-
-#define LACKS_UNISTD_H
-#define LACKS_SYS_PARAM_H
-
-/*
-  Include 'windows.h' to get the necessary declarations for the
-  Microsoft Visual C++ data structures and routines used in the 'sbrk'
-  emulation.
-
-  Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
-  Visual C++ header files are included.
-*/
-#define WIN32_LEAN_AND_MEAN
-#include <windows.h>
-#endif
-
-
-/*
-  HAVE_MEMCPY should be defined if you are not otherwise using
-  ANSI STD C, but still have memcpy and memset in your C library
-  and want to use them in calloc and realloc. Otherwise simple
-  macro versions are defined here.
-
-  USE_MEMCPY should be defined as 1 if you actually want to
-  have memset and memcpy called. People report that the macro
-  versions are often enough faster than libc versions on many
-  systems that it is better to use them.
-
-*/
-
-#define HAVE_MEMCPY
-
-#ifndef USE_MEMCPY
-#ifdef HAVE_MEMCPY
-#define USE_MEMCPY 1
-#else
-#define USE_MEMCPY 0
-#endif
-#endif
-
-#if (__STD_C || defined(HAVE_MEMCPY))
-
-#if __STD_C
-void* memset(void*, int, size_t);
-void* memcpy(void*, const void*, size_t);
-#else
-#ifdef WIN32
-/* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
-/* 'windows.h' */
-#else
-Void_t* memset();
-Void_t* memcpy();
-#endif
-#endif
-#endif
-
-#if USE_MEMCPY
-
-/* The following macros are only invoked with (2n+1)-multiples of
-   INTERNAL_SIZE_T units, with a positive integer n. This is exploited
-   for fast inline execution when n is small. */
-
-#define MALLOC_ZERO(charp, nbytes)                                            \
-do {                                                                          \
-  INTERNAL_SIZE_T mzsz = (nbytes);                                            \
-  if(mzsz <= 9*sizeof(mzsz)) {                                                \
-    INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
-    if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
-                                    *mz++ = 0;                               \
-      if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
-                                    *mz++ = 0;                               \
-       if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
-                                    *mz++ = 0; }}}                           \
-                                    *mz++ = 0;                               \
-                                    *mz++ = 0;                               \
-                                    *mz   = 0;                               \
-  } else memset((charp), 0, mzsz);                                            \
-} while(0)
-
-#define MALLOC_COPY(dest,src,nbytes)                                          \
-do {                                                                          \
-  INTERNAL_SIZE_T mcsz = (nbytes);                                            \
-  if(mcsz <= 9*sizeof(mcsz)) {                                                \
-    INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
-    INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
-    if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
-                                    *mcdst++ = *mcsrc++;                     \
-      if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
-                                    *mcdst++ = *mcsrc++;                     \
-       if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
-                                    *mcdst++ = *mcsrc++; }}}                 \
-                                    *mcdst++ = *mcsrc++;                     \
-                                    *mcdst++ = *mcsrc++;                     \
-                                    *mcdst   = *mcsrc  ;                     \
-  } else memcpy(dest, src, mcsz);                                             \
-} while(0)
-
-#else /* !USE_MEMCPY */
-
-/* Use Duff's device for good zeroing/copying performance. */
-
-#define MALLOC_ZERO(charp, nbytes)                                            \
-do {                                                                          \
-  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
-  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
-  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
-  switch (mctmp) {                                                            \
-    case 0: for(;;) { *mzp++ = 0;                                             \
-    case 7:           *mzp++ = 0;                                             \
-    case 6:           *mzp++ = 0;                                             \
-    case 5:           *mzp++ = 0;                                             \
-    case 4:           *mzp++ = 0;                                             \
-    case 3:           *mzp++ = 0;                                             \
-    case 2:           *mzp++ = 0;                                             \
-    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
-  }                                                                           \
-} while(0)
-
-#define MALLOC_COPY(dest,src,nbytes)                                          \
-do {                                                                          \
-  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
-  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
-  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
-  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
-  switch (mctmp) {                                                            \
-    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
-    case 7:           *mcdst++ = *mcsrc++;                                    \
-    case 6:           *mcdst++ = *mcsrc++;                                    \
-    case 5:           *mcdst++ = *mcsrc++;                                    \
-    case 4:           *mcdst++ = *mcsrc++;                                    \
-    case 3:           *mcdst++ = *mcsrc++;                                    \
-    case 2:           *mcdst++ = *mcsrc++;                                    \
-    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
-  }                                                                           \
-} while(0)
-
-#endif
-
-
-/*
-  Define HAVE_MMAP to optionally make malloc() use mmap() to
-  allocate very large blocks.  These will be returned to the
-  operating system immediately after a free().
-*/
-
-#ifndef HAVE_MMAP
-#define HAVE_MMAP 1
-#endif
-
-/*
-  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
-  large blocks.  This is currently only possible on Linux with
-  kernel versions newer than 1.3.77.
-*/
-
-#ifndef HAVE_MREMAP
-#ifdef INTERNAL_LINUX_C_LIB
-#define HAVE_MREMAP 1
-#else
-#define HAVE_MREMAP 0
-#endif
-#endif
-
-#if HAVE_MMAP
-
-#include <unistd.h>
-#include <fcntl.h>
-#include <sys/mman.h>
-
-#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
-#define MAP_ANONYMOUS MAP_ANON
-#endif
-
-#endif /* HAVE_MMAP */
-
-/*
-  Access to system page size. To the extent possible, this malloc
-  manages memory from the system in page-size units.
-
-  The following mechanics for getpagesize were adapted from
-  bsd/gnu getpagesize.h
-*/
-
-#ifndef LACKS_UNISTD_H
-#  include <unistd.h>
-#endif
-
-#ifndef malloc_getpagesize
-#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
-#    ifndef _SC_PAGE_SIZE
-#      define _SC_PAGE_SIZE _SC_PAGESIZE
-#    endif
-#  endif
-#  ifdef _SC_PAGE_SIZE
-#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
-#  else
-#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
-       extern size_t getpagesize();
-#      define malloc_getpagesize getpagesize()
-#    else
-#      ifdef WIN32
-#        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
-#      else
-#        ifndef LACKS_SYS_PARAM_H
-#          include <sys/param.h>
-#        endif
-#        ifdef EXEC_PAGESIZE
-#          define malloc_getpagesize EXEC_PAGESIZE
-#        else
-#          ifdef NBPG
-#            ifndef CLSIZE
-#              define malloc_getpagesize NBPG
-#            else
-#              define malloc_getpagesize (NBPG * CLSIZE)
-#            endif
-#          else
-#            ifdef NBPC
-#              define malloc_getpagesize NBPC
-#            else
-#              ifdef PAGESIZE
-#                define malloc_getpagesize PAGESIZE
-#              else
-#                define malloc_getpagesize (4096) /* just guess */
-#              endif
-#            endif
-#          endif
-#        endif
-#      endif
-#    endif
-#  endif
-#endif
-
-
-/*
-
-  This version of malloc supports the standard SVID/XPG mallinfo
-  routine that returns a struct containing the same kind of
-  information you can get from malloc_stats. It should work on
-  any SVID/XPG compliant system that has a /usr/include/malloc.h
-  defining struct mallinfo. (If you'd like to install such a thing
-  yourself, cut out the preliminary declarations as described above
-  and below and save them in a malloc.h file. But there's no
-  compelling reason to bother to do this.)
-
-  The main declaration needed is the mallinfo struct that is returned
-  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
-  bunch of fields, most of which are not even meaningful in this
-  version of malloc. Some of these fields are are instead filled by
-  mallinfo() with other numbers that might possibly be of interest.
-
-  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
-  /usr/include/malloc.h file that includes a declaration of struct
-  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
-  version is declared below.  These must be precisely the same for
-  mallinfo() to work.
-
-*/
-
-/* #define HAVE_USR_INCLUDE_MALLOC_H */
-
-#if HAVE_USR_INCLUDE_MALLOC_H
-#include "/usr/include/malloc.h"
-#else
-
-/* SVID2/XPG mallinfo structure */
-
-struct mallinfo {
-  int arena;    /* total space allocated from system */
-  int ordblks;  /* number of non-inuse chunks */
-  int smblks;   /* unused -- always zero */
-  int hblks;    /* number of mmapped regions */
-  int hblkhd;   /* total space in mmapped regions */
-  int usmblks;  /* unused -- always zero */
-  int fsmblks;  /* unused -- always zero */
-  int uordblks; /* total allocated space */
-  int fordblks; /* total non-inuse space */
-  int keepcost; /* top-most, releasable (via malloc_trim) space */
-};
-
-/* SVID2/XPG mallopt options */
-
-#define M_MXFAST  1    /* UNUSED in this malloc */
-#define M_NLBLKS  2    /* UNUSED in this malloc */
-#define M_GRAIN   3    /* UNUSED in this malloc */
-#define M_KEEP    4    /* UNUSED in this malloc */
-
-#endif
-
-/* mallopt options that actually do something */
-
-#define M_TRIM_THRESHOLD    -1
-#define M_TOP_PAD           -2
-#define M_MMAP_THRESHOLD    -3
-#define M_MMAP_MAX          -4
-
-
-#ifndef DEFAULT_TRIM_THRESHOLD
-#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
-#endif
-
-/*
-    M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
-      to keep before releasing via malloc_trim in free().
-
-      Automatic trimming is mainly useful in long-lived programs.
-      Because trimming via sbrk can be slow on some systems, and can
-      sometimes be wasteful (in cases where programs immediately
-      afterward allocate more large chunks) the value should be high
-      enough so that your overall system performance would improve by
-      releasing.
-
-      The trim threshold and the mmap control parameters (see below)
-      can be traded off with one another. Trimming and mmapping are
-      two different ways of releasing unused memory back to the
-      system. Between these two, it is often possible to keep
-      system-level demands of a long-lived program down to a bare
-      minimum. For example, in one test suite of sessions measuring
-      the XF86 X server on Linux, using a trim threshold of 128K and a
-      mmap threshold of 192K led to near-minimal long term resource
-      consumption.
-
-      If you are using this malloc in a long-lived program, it should
-      pay to experiment with these values.  As a rough guide, you
-      might set to a value close to the average size of a process
-      (program) running on your system.  Releasing this much memory
-      would allow such a process to run in memory.  Generally, it's
-      worth it to tune for trimming rather tham memory mapping when a
-      program undergoes phases where several large chunks are
-      allocated and released in ways that can reuse each other's
-      storage, perhaps mixed with phases where there are no such
-      chunks at all.  And in well-behaved long-lived programs,
-      controlling release of large blocks via trimming versus mapping
-      is usually faster.
-
-      However, in most programs, these parameters serve mainly as
-      protection against the system-level effects of carrying around
-      massive amounts of unneeded memory. Since frequent calls to
-      sbrk, mmap, and munmap otherwise degrade performance, the default
-      parameters are set to relatively high values that serve only as
-      safeguards.
-
-      The default trim value is high enough to cause trimming only in
-      fairly extreme (by current memory consumption standards) cases.
-      It must be greater than page size to have any useful effect.  To
-      disable trimming completely, you can set to (unsigned long)(-1);
-
-
-*/
-
-
-#ifndef DEFAULT_TOP_PAD
-#define DEFAULT_TOP_PAD        (0)
-#endif
-
-/*
-    M_TOP_PAD is the amount of extra `padding' space to allocate or
-      retain whenever sbrk is called. It is used in two ways internally:
-
-      * When sbrk is called to extend the top of the arena to satisfy
-       a new malloc request, this much padding is added to the sbrk
-       request.
-
-      * When malloc_trim is called automatically from free(),
-       it is used as the `pad' argument.
-
-      In both cases, the actual amount of padding is rounded
-      so that the end of the arena is always a system page boundary.
-
-      The main reason for using padding is to avoid calling sbrk so
-      often. Having even a small pad greatly reduces the likelihood
-      that nearly every malloc request during program start-up (or
-      after trimming) will invoke sbrk, which needlessly wastes
-      time.
-
-      Automatic rounding-up to page-size units is normally sufficient
-      to avoid measurable overhead, so the default is 0.  However, in
-      systems where sbrk is relatively slow, it can pay to increase
-      this value, at the expense of carrying around more memory than
-      the program needs.
-
-*/
-
-
-#ifndef DEFAULT_MMAP_THRESHOLD
-#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
-#endif
-
-/*
-
-    M_MMAP_THRESHOLD is the request size threshold for using mmap()
-      to service a request. Requests of at least this size that cannot
-      be allocated using already-existing space will be serviced via mmap.
-      (If enough normal freed space already exists it is used instead.)
-
-      Using mmap segregates relatively large chunks of memory so that
-      they can be individually obtained and released from the host
-      system. A request serviced through mmap is never reused by any
-      other request (at least not directly; the system may just so
-      happen to remap successive requests to the same locations).
-
-      Segregating space in this way has the benefit that mmapped space
-      can ALWAYS be individually released back to the system, which
-      helps keep the system level memory demands of a long-lived
-      program low. Mapped memory can never become `locked' between
-      other chunks, as can happen with normally allocated chunks, which
-      menas that even trimming via malloc_trim would not release them.
-
-      However, it has the disadvantages that:
-
-        1. The space cannot be reclaimed, consolidated, and then
-           used to service later requests, as happens with normal chunks.
-        2. It can lead to more wastage because of mmap page alignment
-           requirements
-        3. It causes malloc performance to be more dependent on host
-           system memory management support routines which may vary in
-           implementation quality and may impose arbitrary
-           limitations. Generally, servicing a request via normal
-           malloc steps is faster than going through a system's mmap.
-
-      All together, these considerations should lead you to use mmap
-      only for relatively large requests.
-
-
-*/
-
-
-#ifndef DEFAULT_MMAP_MAX
-#if HAVE_MMAP
-#define DEFAULT_MMAP_MAX       (64)
-#else
-#define DEFAULT_MMAP_MAX       (0)
-#endif
-#endif
-
-/*
-    M_MMAP_MAX is the maximum number of requests to simultaneously
-      service using mmap. This parameter exists because:
-
-        1. Some systems have a limited number of internal tables for
-           use by mmap.
-        2. In most systems, overreliance on mmap can degrade overall
-           performance.
-        3. If a program allocates many large regions, it is probably
-           better off using normal sbrk-based allocation routines that
-           can reclaim and reallocate normal heap memory. Using a
-           small value allows transition into this mode after the
-           first few allocations.
-
-      Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
-      the default value is 0, and attempts to set it to non-zero values
-      in mallopt will fail.
-*/
-
-
-/*
-    USE_DL_PREFIX will prefix all public routines with the string 'dl'.
-      Useful to quickly avoid procedure declaration conflicts and linker
-      symbol conflicts with existing memory allocation routines.
-
-*/
-
-/* #define USE_DL_PREFIX */
-
-
-/*
-
-  Special defines for linux libc
-
-  Except when compiled using these special defines for Linux libc
-  using weak aliases, this malloc is NOT designed to work in
-  multithreaded applications.  No semaphores or other concurrency
-  control are provided to ensure that multiple malloc or free calls
-  don't run at the same time, which could be disasterous. A single
-  semaphore could be used across malloc, realloc, and free (which is
-  essentially the effect of the linux weak alias approach). It would
-  be hard to obtain finer granularity.
-
-*/
-
-
-#ifdef INTERNAL_LINUX_C_LIB
-
-#if __STD_C
-
-Void_t * __default_morecore_init (ptrdiff_t);
-Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
-
-#else
-
-Void_t * __default_morecore_init ();
-Void_t *(*__morecore)() = __default_morecore_init;
-
-#endif
-
-#define MORECORE (*__morecore)
-#define MORECORE_FAILURE 0
-#define MORECORE_CLEARS 1
-
-#else /* INTERNAL_LINUX_C_LIB */
-
-#if __STD_C
-extern Void_t*     sbrk(ptrdiff_t);
-#else
-extern Void_t*     sbrk();
-#endif
-
-#ifndef MORECORE
-#define MORECORE sbrk
-#endif
-
-#ifndef MORECORE_FAILURE
-#define MORECORE_FAILURE -1
-#endif
-
-#ifndef MORECORE_CLEARS
-#define MORECORE_CLEARS 1
-#endif
-
-#endif /* INTERNAL_LINUX_C_LIB */
-
-#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
-
-#define cALLOc         __libc_calloc
-#define fREe           __libc_free
-#define mALLOc         __libc_malloc
-#define mEMALIGn       __libc_memalign
-#define rEALLOc                __libc_realloc
-#define vALLOc         __libc_valloc
-#define pvALLOc                __libc_pvalloc
-#define mALLINFo       __libc_mallinfo
-#define mALLOPt                __libc_mallopt
-
-#pragma weak calloc = __libc_calloc
-#pragma weak free = __libc_free
-#pragma weak cfree = __libc_free
-#pragma weak malloc = __libc_malloc
-#pragma weak memalign = __libc_memalign
-#pragma weak realloc = __libc_realloc
-#pragma weak valloc = __libc_valloc
-#pragma weak pvalloc = __libc_pvalloc
-#pragma weak mallinfo = __libc_mallinfo
-#pragma weak mallopt = __libc_mallopt
-
-#else
-
-#ifdef USE_DL_PREFIX
-#define cALLOc         dlcalloc
-#define fREe           dlfree
-#define mALLOc         dlmalloc
-#define mEMALIGn       dlmemalign
-#define rEALLOc                dlrealloc
-#define vALLOc         dlvalloc
-#define pvALLOc                dlpvalloc
-#define mALLINFo       dlmallinfo
-#define mALLOPt                dlmallopt
-#else /* USE_DL_PREFIX */
-#define cALLOc         calloc
-#define fREe           free
-#define mALLOc         malloc
-#define mEMALIGn       memalign
-#define rEALLOc                realloc
-#define vALLOc         valloc
-#define pvALLOc                pvalloc
-#define mALLINFo       mallinfo
-#define mALLOPt                mallopt
-#endif /* USE_DL_PREFIX */
-
-#endif
-
-/* Public routines */
-
-#if __STD_C
-
-Void_t* mALLOc(size_t);
-void    fREe(Void_t*);
-Void_t* rEALLOc(Void_t*, size_t);
-Void_t* mEMALIGn(size_t, size_t);
-Void_t* vALLOc(size_t);
-Void_t* pvALLOc(size_t);
-Void_t* cALLOc(size_t, size_t);
-void    cfree(Void_t*);
-int     malloc_trim(size_t);
-size_t  malloc_usable_size(Void_t*);
-void    malloc_stats();
-int     mALLOPt(int, int);
-struct mallinfo mALLINFo(void);
-#else
-Void_t* mALLOc();
-void    fREe();
-Void_t* rEALLOc();
-Void_t* mEMALIGn();
-Void_t* vALLOc();
-Void_t* pvALLOc();
-Void_t* cALLOc();
-void    cfree();
-int     malloc_trim();
-size_t  malloc_usable_size();
-void    malloc_stats();
-int     mALLOPt();
-struct mallinfo mALLINFo();
-#endif
-
-
-#ifdef __cplusplus
-};  /* end of extern "C" */
-#endif
-
-/* ---------- To make a malloc.h, end cutting here ------------ */
-#endif /* 0 */                 /* Moved to malloc.h */
-
 #include <malloc.h>
 #include <asm/io.h>