extern void setup_environment(const char *shell, int clear_env, int change_env, const struct passwd *pw);
extern int correct_password(const struct passwd *pw);
/* Returns a ptr to static storage */
-extern char *pw_encrypt(const char *clear, const char *salt);
+extern char *pw_encrypt(const char *clear, const char *salt, int cleanup);
extern int obscure(const char *old, const char *newval, const struct passwd *pwdp);
-
-int index_in_str_array(const char *const string_array[], const char *key);
-int index_in_strings(const char *strings, const char *key);
-int index_in_substr_array(const char *const string_array[], const char *key);
-int index_in_substrings(const char *strings, const char *key);
-const char *nth_string(const char *strings, int n);
-
-extern void print_login_issue(const char *issue_file, const char *tty);
-extern void print_login_prompt(void);
-
/* rnd is additional random input. New one is returned.
* Useful if you call crypt_make_salt many times in a row:
* rnd = crypt_make_salt(buf1, 4, 0);
* (otherwise we risk having same salt generated)
*/
extern int crypt_make_salt(char *p, int cnt, int rnd);
-
/* Returns number of lines changed, or -1 on error */
extern int update_passwd(const char *filename, const char *username,
const char *new_pw);
+int index_in_str_array(const char *const string_array[], const char *key);
+int index_in_strings(const char *strings, const char *key);
+int index_in_substr_array(const char *const string_array[], const char *key);
+int index_in_substrings(const char *strings, const char *key);
+const char *nth_string(const char *strings, int n);
+
+extern void print_login_issue(const char *issue_file, const char *tty);
+extern void print_login_prompt(void);
+
/* NB: typically you want to pass fd 0, not 1. Think 'applet | grep something' */
int get_terminal_width_height(int fd, unsigned *width, unsigned *height);
if (!unencrypted) {
return 0;
}
- encrypted = crypt(unencrypted, correct);
+ encrypted = pw_encrypt(unencrypted, correct, 1);
memset(unencrypted, 0, strlen(unencrypted));
return strcmp(encrypted, correct) == 0;
}
*/
#include "libbb.h"
-#include <crypt.h>
-char *pw_encrypt(const char *clear, const char *salt)
+/*
+ * DES and MD5 crypt implementations are taken from uclibc.
+ * They were modified to not use static buffers.
+ * Comparison with uclibc (before uclibc had 70k staic buffers reinstated):
+ * text data bss dec hex filename
+ * 759909 604 6684 767197 bb4dd busybox_old
+ * 759579 604 6684 766867 bb393 busybox_unstripped
+ */
+/* Common for them */
+static const uint8_t ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+#include "pw_encrypt_des.c"
+#include "pw_encrypt_md5.c"
+
+
+static struct const_des_ctx *des_cctx;
+static struct des_ctx *des_ctx;
+
+/* my_crypt returns malloc'ed data */
+static char *my_crypt(const char *key, const char *salt)
+{
+ /* First, check if we are supposed to be using the MD5 replacement
+ * instead of DES... */
+ if (salt[0] == '$' && salt[1] == '1' && salt[2] == '$') {
+ return md5_crypt(xzalloc(MD5_OUT_BUFSIZE), (unsigned char*)key, (unsigned char*)salt);
+ }
+
+ {
+ if (!des_cctx)
+ des_cctx = const_des_init();
+ des_ctx = des_init(des_ctx, des_cctx);
+ return des_crypt(des_ctx, xzalloc(DES_OUT_BUFSIZE), (unsigned char*)key, (unsigned char*)salt);
+ }
+}
+
+/* So far nobody wants to have it public */
+static void my_crypt_cleanup(void)
+{
+ free(des_cctx);
+ free(des_ctx);
+ des_cctx = NULL;
+ des_ctx = NULL;
+}
+
+char *pw_encrypt(const char *clear, const char *salt, int cleanup)
{
- /* Was static char[BIGNUM]. Malloced thing works as well */
static char *cipher;
#if 0 /* was CONFIG_FEATURE_SHA1_PASSWORDS, but there is no such thing??? */
#endif
free(cipher);
- cipher = xstrdup(crypt(clear, salt));
+ cipher = my_crypt(clear, salt);
+
+ if (cleanup)
+ my_crypt_cleanup();
+
return cipher;
}
--- /dev/null
+/*
+ * FreeSec: libcrypt for NetBSD
+ *
+ * Copyright (c) 1994 David Burren
+ * All rights reserved.
+ *
+ * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
+ * this file should now *only* export crypt(), in order to make
+ * binaries of libcrypt exportable from the USA
+ *
+ * Adapted for FreeBSD-4.0 by Mark R V Murray
+ * this file should now *only* export crypt_des(), in order to make
+ * a module that can be optionally included in libcrypt.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the author nor the names of other contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * This is an original implementation of the DES and the crypt(3) interfaces
+ * by David Burren <davidb@werj.com.au>.
+ *
+ * An excellent reference on the underlying algorithm (and related
+ * algorithms) is:
+ *
+ * B. Schneier, Applied Cryptography: protocols, algorithms,
+ * and source code in C, John Wiley & Sons, 1994.
+ *
+ * Note that in that book's description of DES the lookups for the initial,
+ * pbox, and final permutations are inverted (this has been brought to the
+ * attention of the author). A list of errata for this book has been
+ * posted to the sci.crypt newsgroup by the author and is available for FTP.
+ *
+ * ARCHITECTURE ASSUMPTIONS:
+ * It is assumed that the 8-byte arrays passed by reference can be
+ * addressed as arrays of uint32_t's (ie. the CPU is not picky about
+ * alignment).
+ */
+
+/* A pile of data */
+static const uint8_t IP[64] = {
+ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
+ 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
+ 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
+ 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
+};
+
+static const uint8_t key_perm[56] = {
+ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
+ 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
+ 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
+ 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
+};
+
+static const uint8_t key_shifts[16] = {
+ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
+};
+
+static const uint8_t comp_perm[48] = {
+ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
+ 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
+ 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
+ 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
+};
+
+/*
+ * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
+ */
+
+static const uint8_t sbox[8][64] = {
+ {
+ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
+ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
+ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
+ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
+ },
+ {
+ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
+ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
+ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
+ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
+ },
+ {
+ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
+ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
+ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
+ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
+ },
+ {
+ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
+ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
+ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
+ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
+ },
+ {
+ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
+ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
+ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
+ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
+ },
+ {
+ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
+ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
+ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
+ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
+ },
+ {
+ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
+ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
+ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
+ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
+ },
+ {
+ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
+ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
+ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
+ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
+ }
+};
+
+static const uint8_t pbox[32] = {
+ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
+ 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
+};
+
+static const uint32_t bits32[32] =
+{
+ 0x80000000, 0x40000000, 0x20000000, 0x10000000,
+ 0x08000000, 0x04000000, 0x02000000, 0x01000000,
+ 0x00800000, 0x00400000, 0x00200000, 0x00100000,
+ 0x00080000, 0x00040000, 0x00020000, 0x00010000,
+ 0x00008000, 0x00004000, 0x00002000, 0x00001000,
+ 0x00000800, 0x00000400, 0x00000200, 0x00000100,
+ 0x00000080, 0x00000040, 0x00000020, 0x00000010,
+ 0x00000008, 0x00000004, 0x00000002, 0x00000001
+};
+
+static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
+
+
+static int
+ascii_to_bin(char ch)
+{
+ if (ch > 'z')
+ return 0;
+ if (ch >= 'a')
+ return (ch - 'a' + 38);
+ if (ch > 'Z')
+ return 0;
+ if (ch >= 'A')
+ return (ch - 'A' + 12);
+ if (ch > '9')
+ return 0;
+ if (ch >= '.')
+ return (ch - '.');
+ return 0;
+}
+
+
+/* Static stuff that stays resident and doesn't change after
+ * being initialized, and therefore doesn't need to be made
+ * reentrant. */
+struct const_des_ctx {
+ uint8_t init_perm[64], final_perm[64]; /* referenced 2 times each */
+ uint8_t m_sbox[4][4096]; /* 5 times */
+};
+#define C (*cctx)
+#define init_perm (C.init_perm )
+#define final_perm (C.final_perm)
+#define m_sbox (C.m_sbox )
+
+static struct const_des_ctx*
+const_des_init(void)
+{
+ int i, j, b;
+ uint8_t u_sbox[8][64];
+ struct const_des_ctx *cctx;
+
+ cctx = xmalloc(sizeof(*cctx));
+
+ /*
+ * Invert the S-boxes, reordering the input bits.
+ */
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 64; j++) {
+ b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
+ u_sbox[i][j] = sbox[i][b];
+ }
+ }
+
+ /*
+ * Convert the inverted S-boxes into 4 arrays of 8 bits.
+ * Each will handle 12 bits of the S-box input.
+ */
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 64; i++)
+ for (j = 0; j < 64; j++)
+ m_sbox[b][(i << 6) | j] =
+ (uint8_t)((u_sbox[(b << 1)][i] << 4) |
+ u_sbox[(b << 1) + 1][j]);
+
+ /*
+ * Set up the initial & final permutations into a useful form.
+ */
+ for (i = 0; i < 64; i++) {
+ final_perm[i] = IP[i] - 1;
+ init_perm[final_perm[i]] = (uint8_t)i;
+ }
+
+ return cctx;
+}
+
+
+struct des_ctx {
+ const struct const_des_ctx *const_ctx;
+ uint32_t saltbits; /* referenced 5 times */
+ uint32_t old_salt; /* 3 times */
+ uint32_t old_rawkey0, old_rawkey1; /* 3 times each */
+ uint8_t un_pbox[32]; /* 2 times */
+ uint8_t inv_comp_perm[56]; /* 3 times */
+ uint8_t inv_key_perm[64]; /* 3 times */
+ uint32_t en_keysl[16], en_keysr[16]; /* 2 times each */
+ uint32_t de_keysl[16], de_keysr[16]; /* 2 times each */
+ uint32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */
+ uint32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */
+ uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */
+ uint32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */
+ uint32_t psbox[4][256]; /* 5 times */
+};
+#define D (*ctx)
+#define const_ctx (D.const_ctx )
+#define saltbits (D.saltbits )
+#define old_salt (D.old_salt )
+#define old_rawkey0 (D.old_rawkey0 )
+#define old_rawkey1 (D.old_rawkey1 )
+#define un_pbox (D.un_pbox )
+#define inv_comp_perm (D.inv_comp_perm )
+#define inv_key_perm (D.inv_key_perm )
+#define en_keysl (D.en_keysl )
+#define en_keysr (D.en_keysr )
+#define de_keysl (D.de_keysl )
+#define de_keysr (D.de_keysr )
+#define ip_maskl (D.ip_maskl )
+#define ip_maskr (D.ip_maskr )
+#define fp_maskl (D.fp_maskl )
+#define fp_maskr (D.fp_maskr )
+#define key_perm_maskl (D.key_perm_maskl )
+#define key_perm_maskr (D.key_perm_maskr )
+#define comp_maskl (D.comp_maskl )
+#define comp_maskr (D.comp_maskr )
+#define psbox (D.psbox )
+
+static struct des_ctx*
+des_init(struct des_ctx *ctx, const struct const_des_ctx *cctx)
+{
+ int i, j, b, k, inbit, obit;
+ uint32_t *p, *il, *ir, *fl, *fr;
+ const uint32_t *bits28, *bits24;
+
+ if (!ctx)
+ ctx = xmalloc(sizeof(*ctx));
+ const_ctx = cctx;
+
+ old_rawkey0 = old_rawkey1 = 0L;
+ saltbits = 0L;
+ old_salt = 0L;
+ bits28 = bits32 + 4;
+ bits24 = bits28 + 4;
+
+ /*
+ * Initialise the inverted key permutation.
+ */
+ for (i = 0; i < 64; i++) {
+ inv_key_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key permutation and initialise the inverted key
+ * compression permutation.
+ */
+ for (i = 0; i < 56; i++) {
+ inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
+ inv_comp_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key compression permutation.
+ */
+ for (i = 0; i < 48; i++) {
+ inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
+ }
+
+ /*
+ * Set up the OR-mask arrays for the initial and final permutations,
+ * and for the key initial and compression permutations.
+ */
+ for (k = 0; k < 8; k++) {
+ for (i = 0; i < 256; i++) {
+ il = &ip_maskl[k][i];
+ ir = &ip_maskr[k][i];
+ fl = &fp_maskl[k][i];
+ fr = &fp_maskr[k][i];
+ *il = 0;
+ *ir = 0;
+ *fl = 0;
+ *fr = 0;
+ for (j = 0; j < 8; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j]) {
+ obit = init_perm[inbit];
+ if (obit < 32)
+ *il |= bits32[obit];
+ else
+ *ir |= bits32[obit - 32];
+ obit = final_perm[inbit];
+ if (obit < 32)
+ *fl |= bits32[obit];
+ else
+ *fr |= bits32[obit - 32];
+ }
+ }
+ }
+ for (i = 0; i < 128; i++) {
+ il = &key_perm_maskl[k][i];
+ ir = &key_perm_maskr[k][i];
+ *il = 0;
+ *ir = 0;
+ for (j = 0; j < 7; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j + 1]) {
+ obit = inv_key_perm[inbit];
+ if (obit == 255)
+ continue;
+ if (obit < 28)
+ *il |= bits28[obit];
+ else
+ *ir |= bits28[obit - 28];
+ }
+ }
+ il = &comp_maskl[k][i];
+ ir = &comp_maskr[k][i];
+ *il = 0;
+ *ir = 0;
+ for (j = 0; j < 7; j++) {
+ inbit = 7 * k + j;
+ if (i & bits8[j + 1]) {
+ obit = inv_comp_perm[inbit];
+ if (obit == 255)
+ continue;
+ if (obit < 24)
+ *il |= bits24[obit];
+ else
+ *ir |= bits24[obit - 24];
+ }
+ }
+ }
+ }
+
+ /*
+ * Invert the P-box permutation, and convert into OR-masks for
+ * handling the output of the S-box arrays setup above.
+ */
+ for (i = 0; i < 32; i++)
+ un_pbox[pbox[i] - 1] = (uint8_t)i;
+
+ for (b = 0; b < 4; b++) {
+ for (i = 0; i < 256; i++) {
+ p = &psbox[b][i];
+ *p = 0;
+ for (j = 0; j < 8; j++) {
+ if (i & bits8[j])
+ *p |= bits32[un_pbox[8 * b + j]];
+ }
+ }
+ }
+
+ return ctx;
+}
+
+
+static void
+setup_salt(struct des_ctx *ctx, uint32_t salt)
+{
+// const struct const_des_ctx *cctx = const_ctx;
+ uint32_t obit, saltbit;
+ int i;
+
+ if (salt == old_salt)
+ return;
+ old_salt = salt;
+
+ saltbits = 0L;
+ saltbit = 1;
+ obit = 0x800000;
+ for (i = 0; i < 24; i++) {
+ if (salt & saltbit)
+ saltbits |= obit;
+ saltbit <<= 1;
+ obit >>= 1;
+ }
+}
+
+static void
+des_setkey(struct des_ctx *ctx, const char *key)
+{
+// const struct const_des_ctx *cctx = const_ctx;
+ uint32_t k0, k1, rawkey0, rawkey1;
+ int shifts, round;
+
+ rawkey0 = ntohl(*(const uint32_t *) key);
+ rawkey1 = ntohl(*(const uint32_t *) (key + 4));
+
+ if ((rawkey0 | rawkey1)
+ && rawkey0 == old_rawkey0
+ && rawkey1 == old_rawkey1
+ ) {
+ /*
+ * Already setup for this key.
+ * This optimisation fails on a zero key (which is weak and
+ * has bad parity anyway) in order to simplify the starting
+ * conditions.
+ */
+ return;
+ }
+ old_rawkey0 = rawkey0;
+ old_rawkey1 = rawkey1;
+
+ /*
+ * Do key permutation and split into two 28-bit subkeys.
+ */
+ k0 = key_perm_maskl[0][rawkey0 >> 25]
+ | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskl[4][rawkey1 >> 25]
+ | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
+ k1 = key_perm_maskr[0][rawkey0 >> 25]
+ | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskr[4][rawkey1 >> 25]
+ | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
+ /*
+ * Rotate subkeys and do compression permutation.
+ */
+ shifts = 0;
+ for (round = 0; round < 16; round++) {
+ uint32_t t0, t1;
+
+ shifts += key_shifts[round];
+
+ t0 = (k0 << shifts) | (k0 >> (28 - shifts));
+ t1 = (k1 << shifts) | (k1 >> (28 - shifts));
+
+ de_keysl[15 - round] =
+ en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
+ | comp_maskl[1][(t0 >> 14) & 0x7f]
+ | comp_maskl[2][(t0 >> 7) & 0x7f]
+ | comp_maskl[3][t0 & 0x7f]
+ | comp_maskl[4][(t1 >> 21) & 0x7f]
+ | comp_maskl[5][(t1 >> 14) & 0x7f]
+ | comp_maskl[6][(t1 >> 7) & 0x7f]
+ | comp_maskl[7][t1 & 0x7f];
+
+ de_keysr[15 - round] =
+ en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
+ | comp_maskr[1][(t0 >> 14) & 0x7f]
+ | comp_maskr[2][(t0 >> 7) & 0x7f]
+ | comp_maskr[3][t0 & 0x7f]
+ | comp_maskr[4][(t1 >> 21) & 0x7f]
+ | comp_maskr[5][(t1 >> 14) & 0x7f]
+ | comp_maskr[6][(t1 >> 7) & 0x7f]
+ | comp_maskr[7][t1 & 0x7f];
+ }
+}
+
+
+static int
+do_des(struct des_ctx *ctx, uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out, int count)
+{
+ const struct const_des_ctx *cctx = const_ctx;
+ /*
+ * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
+ */
+ uint32_t l, r, *kl, *kr, *kl1, *kr1;
+ uint32_t f = f; /* silence gcc */
+ uint32_t r48l, r48r;
+ int round;
+
+ /*
+ * Encrypting
+ */
+ kl1 = en_keysl;
+ kr1 = en_keysr;
+
+ /*
+ * Do initial permutation (IP).
+ */
+ l = ip_maskl[0][l_in >> 24]
+ | ip_maskl[1][(l_in >> 16) & 0xff]
+ | ip_maskl[2][(l_in >> 8) & 0xff]
+ | ip_maskl[3][l_in & 0xff]
+ | ip_maskl[4][r_in >> 24]
+ | ip_maskl[5][(r_in >> 16) & 0xff]
+ | ip_maskl[6][(r_in >> 8) & 0xff]
+ | ip_maskl[7][r_in & 0xff];
+ r = ip_maskr[0][l_in >> 24]
+ | ip_maskr[1][(l_in >> 16) & 0xff]
+ | ip_maskr[2][(l_in >> 8) & 0xff]
+ | ip_maskr[3][l_in & 0xff]
+ | ip_maskr[4][r_in >> 24]
+ | ip_maskr[5][(r_in >> 16) & 0xff]
+ | ip_maskr[6][(r_in >> 8) & 0xff]
+ | ip_maskr[7][r_in & 0xff];
+
+ while (count--) {
+ /*
+ * Do each round.
+ */
+ kl = kl1;
+ kr = kr1;
+ round = 16;
+ while (round--) {
+ /*
+ * Expand R to 48 bits (simulate the E-box).
+ */
+ r48l = ((r & 0x00000001) << 23)
+ | ((r & 0xf8000000) >> 9)
+ | ((r & 0x1f800000) >> 11)
+ | ((r & 0x01f80000) >> 13)
+ | ((r & 0x001f8000) >> 15);
+
+ r48r = ((r & 0x0001f800) << 7)
+ | ((r & 0x00001f80) << 5)
+ | ((r & 0x000001f8) << 3)
+ | ((r & 0x0000001f) << 1)
+ | ((r & 0x80000000) >> 31);
+ /*
+ * Do salting for crypt() and friends, and
+ * XOR with the permuted key.
+ */
+ f = (r48l ^ r48r) & saltbits;
+ r48l ^= f ^ *kl++;
+ r48r ^= f ^ *kr++;
+ /*
+ * Do sbox lookups (which shrink it back to 32 bits)
+ * and do the pbox permutation at the same time.
+ */
+ f = psbox[0][m_sbox[0][r48l >> 12]]
+ | psbox[1][m_sbox[1][r48l & 0xfff]]
+ | psbox[2][m_sbox[2][r48r >> 12]]
+ | psbox[3][m_sbox[3][r48r & 0xfff]];
+ /*
+ * Now that we've permuted things, complete f().
+ */
+ f ^= l;
+ l = r;
+ r = f;
+ }
+ r = l;
+ l = f;
+ }
+ /*
+ * Do final permutation (inverse of IP).
+ */
+ *l_out = fp_maskl[0][l >> 24]
+ | fp_maskl[1][(l >> 16) & 0xff]
+ | fp_maskl[2][(l >> 8) & 0xff]
+ | fp_maskl[3][l & 0xff]
+ | fp_maskl[4][r >> 24]
+ | fp_maskl[5][(r >> 16) & 0xff]
+ | fp_maskl[6][(r >> 8) & 0xff]
+ | fp_maskl[7][r & 0xff];
+ *r_out = fp_maskr[0][l >> 24]
+ | fp_maskr[1][(l >> 16) & 0xff]
+ | fp_maskr[2][(l >> 8) & 0xff]
+ | fp_maskr[3][l & 0xff]
+ | fp_maskr[4][r >> 24]
+ | fp_maskr[5][(r >> 16) & 0xff]
+ | fp_maskr[6][(r >> 8) & 0xff]
+ | fp_maskr[7][r & 0xff];
+ return 0;
+}
+
+#define DES_OUT_BUFSIZE 21
+
+static char *
+des_crypt(struct des_ctx *ctx, char output[21], const unsigned char *key, const unsigned char *setting)
+{
+ uint32_t salt, l, r0, r1, keybuf[2];
+ uint8_t *p, *q;
+
+ /*
+ * Copy the key, shifting each character up by one bit
+ * and padding with zeros.
+ */
+ q = (uint8_t *)keybuf;
+ while (q - (uint8_t *)keybuf - 8) {
+ *q++ = *key << 1;
+ if (*(q - 1))
+ key++;
+ }
+ des_setkey(ctx, (char *)keybuf);
+
+ /*
+ * setting - 2 bytes of salt
+ * key - up to 8 characters
+ */
+ salt = (ascii_to_bin(setting[1]) << 6)
+ | ascii_to_bin(setting[0]);
+
+ output[0] = setting[0];
+ /*
+ * If the encrypted password that the salt was extracted from
+ * is only 1 character long, the salt will be corrupted. We
+ * need to ensure that the output string doesn't have an extra
+ * NUL in it!
+ */
+ output[1] = setting[1] ? setting[1] : output[0];
+
+ p = (uint8_t *)output + 2;
+
+ setup_salt(ctx, salt);
+ /*
+ * Do it.
+ */
+ do_des(ctx, 0L, 0L, &r0, &r1, 25 /* count */);
+
+ /*
+ * Now encode the result...
+ */
+ l = (r0 >> 8);
+ *p++ = ascii64[(l >> 18) & 0x3f];
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+
+ l = (r0 << 16) | ((r1 >> 16) & 0xffff);
+ *p++ = ascii64[(l >> 18) & 0x3f];
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+
+ l = r1 << 2;
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+ *p = 0;
+
+ return output;
+}
+
+// des_setkey never fails
+
+#undef C
+#undef init_perm
+#undef final_perm
+#undef m_sbox
+#undef D
+#undef const_ctx
+#undef saltbits
+#undef old_salt
+#undef old_rawkey0
+#undef old_rawkey1
+#undef un_pbox
+#undef inv_comp_perm
+#undef inv_key_perm
+#undef en_keysl
+#undef en_keysr
+#undef de_keysl
+#undef de_keysr
+#undef ip_maskl
+#undef ip_maskr
+#undef fp_maskl
+#undef fp_maskr
+#undef key_perm_maskl
+#undef key_perm_maskr
+#undef comp_maskl
+#undef comp_maskr
+#undef psbox
--- /dev/null
+/*
+ * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
+ *
+ * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
+ * rights reserved.
+ *
+ * License to copy and use this software is granted provided that it
+ * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
+ * Algorithm" in all material mentioning or referencing this software
+ * or this function.
+ *
+ * License is also granted to make and use derivative works provided
+ * that such works are identified as "derived from the RSA Data
+ * Security, Inc. MD5 Message-Digest Algorithm" in all material
+ * mentioning or referencing the derived work.
+ *
+ * RSA Data Security, Inc. makes no representations concerning either
+ * the merchantability of this software or the suitability of this
+ * software for any particular purpose. It is provided "as is"
+ * without express or implied warranty of any kind.
+ *
+ * These notices must be retained in any copies of any part of this
+ * documentation and/or software.
+ *
+ * $FreeBSD: src/lib/libmd/md5c.c,v 1.9.2.1 1999/08/29 14:57:12 peter Exp $
+ *
+ * This code is the same as the code published by RSA Inc. It has been
+ * edited for clarity and style only.
+ *
+ * ----------------------------------------------------------------------------
+ * The md5_crypt() function was taken from freeBSD's libcrypt and contains
+ * this license:
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
+ *
+ * $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $
+ *
+ * ----------------------------------------------------------------------------
+ * On April 19th, 2001 md5_crypt() was modified to make it reentrant
+ * by Erik Andersen <andersen@uclibc.org>
+ *
+ *
+ * June 28, 2001 Manuel Novoa III
+ *
+ * "Un-inlined" code using loops and static const tables in order to
+ * reduce generated code size (on i386 from approx 4k to approx 2.5k).
+ *
+ * June 29, 2001 Manuel Novoa III
+ *
+ * Completely removed static PADDING array.
+ *
+ * Reintroduced the loop unrolling in MD5_Transform and added the
+ * MD5_SIZE_OVER_SPEED option for configurability. Define below as:
+ * 0 fully unrolled loops
+ * 1 partially unrolled (4 ops per loop)
+ * 2 no unrolling -- introduces the need to swap 4 variables (slow)
+ * 3 no unrolling and all 4 loops merged into one with switch
+ * in each loop (glacial)
+ * On i386, sizes are roughly (-Os -fno-builtin):
+ * 0: 3k 1: 2.5k 2: 2.2k 3: 2k
+ *
+ *
+ * Since SuSv3 does not require crypt_r, modified again August 7, 2002
+ * by Erik Andersen to remove reentrance stuff...
+ */
+
+/*
+ * Valid values are 1 (fastest/largest) to 3 (smallest/slowest).
+ */
+#define MD5_SIZE_OVER_SPEED 3
+
+/**********************************************************************/
+
+/* MD5 context. */
+struct MD5Context {
+ uint32_t state[4]; /* state (ABCD) */
+ uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
+ unsigned char buffer[64]; /* input buffer */
+};
+
+static void __md5_Init(struct MD5Context *);
+static void __md5_Update(struct MD5Context *, const unsigned char *, unsigned int);
+static void __md5_Pad(struct MD5Context *);
+static void __md5_Final(unsigned char [16], struct MD5Context *);
+static void __md5_Transform(uint32_t [4], const unsigned char [64]);
+
+
+#define MD5_MAGIC_STR "$1$"
+#define MD5_MAGIC_LEN (sizeof(MD5_MAGIC_STR) - 1)
+static const unsigned char __md5__magic[] = MD5_MAGIC_STR;
+
+
+#ifdef i386
+#define __md5_Encode memcpy
+#define __md5_Decode memcpy
+#else /* i386 */
+
+/*
+ * __md5_Encodes input (uint32_t) into output (unsigned char). Assumes len is
+ * a multiple of 4.
+ */
+
+static void
+__md5_Encode(unsigned char *output, uint32_t *input, unsigned int len)
+{
+ unsigned int i, j;
+
+ for (i = 0, j = 0; j < len; i++, j += 4) {
+ output[j] = input[i];
+ output[j+1] = (input[i] >> 8);
+ output[j+2] = (input[i] >> 16);
+ output[j+3] = (input[i] >> 24);
+ }
+}
+
+/*
+ * __md5_Decodes input (unsigned char) into output (uint32_t). Assumes len is
+ * a multiple of 4.
+ */
+
+static void
+__md5_Decode(uint32_t *output, const unsigned char *input, unsigned int len)
+{
+ unsigned int i, j;
+
+ for (i = 0, j = 0; j < len; i++, j += 4)
+ output[i] = ((uint32_t)input[j]) | (((uint32_t)input[j+1]) << 8) |
+ (((uint32_t)input[j+2]) << 16) | (((uint32_t)input[j+3]) << 24);
+}
+#endif /* i386 */
+
+/* F, G, H and I are basic MD5 functions. */
+#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
+#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
+#define H(x, y, z) ((x) ^ (y) ^ (z))
+#define I(x, y, z) ((y) ^ ((x) | ~(z)))
+
+/* ROTATE_LEFT rotates x left n bits. */
+#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
+
+/*
+ * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
+ * Rotation is separate from addition to prevent recomputation.
+ */
+#define FF(a, b, c, d, x, s, ac) { \
+ (a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \
+ (a) = ROTATE_LEFT((a), (s)); \
+ (a) += (b); \
+ }
+#define GG(a, b, c, d, x, s, ac) { \
+ (a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \
+ (a) = ROTATE_LEFT((a), (s)); \
+ (a) += (b); \
+ }
+#define HH(a, b, c, d, x, s, ac) { \
+ (a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \
+ (a) = ROTATE_LEFT((a), (s)); \
+ (a) += (b); \
+ }
+#define II(a, b, c, d, x, s, ac) { \
+ (a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \
+ (a) = ROTATE_LEFT((a), (s)); \
+ (a) += (b); \
+ }
+
+/* MD5 initialization. Begins an MD5 operation, writing a new context. */
+
+static void __md5_Init(struct MD5Context *context)
+{
+ context->count[0] = context->count[1] = 0;
+
+ /* Load magic initialization constants. */
+ context->state[0] = 0x67452301;
+ context->state[1] = 0xefcdab89;
+ context->state[2] = 0x98badcfe;
+ context->state[3] = 0x10325476;
+}
+
+/*
+ * MD5 block update operation. Continues an MD5 message-digest
+ * operation, processing another message block, and updating the
+ * context.
+ */
+
+static void __md5_Update(struct MD5Context *context, const unsigned char *input, unsigned int inputLen)
+{
+ unsigned int i, idx, partLen;
+
+ /* Compute number of bytes mod 64 */
+ idx = (context->count[0] >> 3) & 0x3F;
+
+ /* Update number of bits */
+ context->count[0] += (inputLen << 3);
+ if (context->count[0] < (inputLen << 3))
+ context->count[1]++;
+ context->count[1] += (inputLen >> 29);
+
+ partLen = 64 - idx;
+
+ /* Transform as many times as possible. */
+ if (inputLen >= partLen) {
+ memcpy(&context->buffer[idx], input, partLen);
+ __md5_Transform(context->state, context->buffer);
+
+ for (i = partLen; i + 63 < inputLen; i += 64)
+ __md5_Transform(context->state, &input[i]);
+
+ idx = 0;
+ } else
+ i = 0;
+
+ /* Buffer remaining input */
+ memcpy(&context->buffer[idx], &input[i], inputLen - i);
+}
+
+/*
+ * MD5 padding. Adds padding followed by original length.
+ */
+
+static void __md5_Pad(struct MD5Context *context)
+{
+ unsigned char bits[8];
+ unsigned int idx, padLen;
+ unsigned char PADDING[64];
+
+ memset(PADDING, 0, sizeof(PADDING));
+ PADDING[0] = 0x80;
+
+ /* Save number of bits */
+ __md5_Encode(bits, context->count, 8);
+
+ /* Pad out to 56 mod 64. */
+ idx = (context->count[0] >> 3) & 0x3f;
+ padLen = (idx < 56) ? (56 - idx) : (120 - idx);
+ __md5_Update(context, PADDING, padLen);
+
+ /* Append length (before padding) */
+ __md5_Update(context, bits, 8);
+}
+
+/*
+ * MD5 finalization. Ends an MD5 message-digest operation, writing the
+ * the message digest and zeroizing the context.
+ */
+
+static void __md5_Final(unsigned char digest[16], struct MD5Context *context)
+{
+ /* Do padding. */
+ __md5_Pad(context);
+
+ /* Store state in digest */
+ __md5_Encode(digest, context->state, 16);
+
+ /* Zeroize sensitive information. */
+ memset(context, 0, sizeof(*context));
+}
+
+/* MD5 basic transformation. Transforms state based on block. */
+
+static void __md5_Transform(uint32_t state[4], const unsigned char block[64])
+{
+ uint32_t a, b, c, d, x[16];
+#if MD5_SIZE_OVER_SPEED > 1
+ uint32_t temp;
+ const unsigned char *ps;
+
+ static const unsigned char S[] = {
+ 7, 12, 17, 22,
+ 5, 9, 14, 20,
+ 4, 11, 16, 23,
+ 6, 10, 15, 21
+ };
+#endif /* MD5_SIZE_OVER_SPEED > 1 */
+
+#if MD5_SIZE_OVER_SPEED > 0
+ const uint32_t *pc;
+ const unsigned char *pp;
+ int i;
+
+ static const uint32_t C[] = {
+ /* round 1 */
+ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
+ 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
+ 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
+ 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
+ /* round 2 */
+ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
+ 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
+ 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
+ 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
+ /* round 3 */
+ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
+ 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
+ 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
+ 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
+ /* round 4 */
+ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
+ 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
+ 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
+ 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
+ };
+
+ static const unsigned char P[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
+ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
+ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
+ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
+ };
+
+#endif /* MD5_SIZE_OVER_SPEED > 0 */
+
+ __md5_Decode(x, block, 64);
+
+ a = state[0]; b = state[1]; c = state[2]; d = state[3];
+
+#if MD5_SIZE_OVER_SPEED > 2
+ pc = C; pp = P; ps = S - 4;
+
+ for (i = 0; i < 64; i++) {
+ if ((i & 0x0f) == 0) ps += 4;
+ temp = a;
+ switch (i>>4) {
+ case 0:
+ temp += F(b, c, d);
+ break;
+ case 1:
+ temp += G(b, c, d);
+ break;
+ case 2:
+ temp += H(b, c, d);
+ break;
+ case 3:
+ temp += I(b, c, d);
+ break;
+ }
+ temp += x[*pp++] + *pc++;
+ temp = ROTATE_LEFT(temp, ps[i & 3]);
+ temp += b;
+ a = d; d = c; c = b; b = temp;
+ }
+#elif MD5_SIZE_OVER_SPEED > 1
+ pc = C; pp = P; ps = S;
+
+ /* Round 1 */
+ for (i = 0; i < 16; i++) {
+ FF(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+
+ /* Round 2 */
+ ps += 4;
+ for (; i < 32; i++) {
+ GG(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+ /* Round 3 */
+ ps += 4;
+ for (; i < 48; i++) {
+ HH(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+
+ /* Round 4 */
+ ps += 4;
+ for (; i < 64; i++) {
+ II(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+#elif MD5_SIZE_OVER_SPEED > 0
+ pc = C; pp = P;
+
+ /* Round 1 */
+ for (i = 0; i < 4; i++) {
+ FF(a, b, c, d, x[*pp], 7, *pc); pp++; pc++;
+ FF(d, a, b, c, x[*pp], 12, *pc); pp++; pc++;
+ FF(c, d, a, b, x[*pp], 17, *pc); pp++; pc++;
+ FF(b, c, d, a, x[*pp], 22, *pc); pp++; pc++;
+ }
+
+ /* Round 2 */
+ for (i = 0; i < 4; i++) {
+ GG(a, b, c, d, x[*pp], 5, *pc); pp++; pc++;
+ GG(d, a, b, c, x[*pp], 9, *pc); pp++; pc++;
+ GG(c, d, a, b, x[*pp], 14, *pc); pp++; pc++;
+ GG(b, c, d, a, x[*pp], 20, *pc); pp++; pc++;
+ }
+ /* Round 3 */
+ for (i = 0; i < 4; i++) {
+ HH(a, b, c, d, x[*pp], 4, *pc); pp++; pc++;
+ HH(d, a, b, c, x[*pp], 11, *pc); pp++; pc++;
+ HH(c, d, a, b, x[*pp], 16, *pc); pp++; pc++;
+ HH(b, c, d, a, x[*pp], 23, *pc); pp++; pc++;
+ }
+
+ /* Round 4 */
+ for (i = 0; i < 4; i++) {
+ II(a, b, c, d, x[*pp], 6, *pc); pp++; pc++;
+ II(d, a, b, c, x[*pp], 10, *pc); pp++; pc++;
+ II(c, d, a, b, x[*pp], 15, *pc); pp++; pc++;
+ II(b, c, d, a, x[*pp], 21, *pc); pp++; pc++;
+ }
+#else
+ /* Round 1 */
+#define S11 7
+#define S12 12
+#define S13 17
+#define S14 22
+ FF(a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
+ FF(d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
+ FF(c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
+ FF(b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
+ FF(a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
+ FF(d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
+ FF(c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
+ FF(b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
+ FF(a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
+ FF(d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
+ FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
+ FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
+ FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
+ FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
+ FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
+ FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
+
+ /* Round 2 */
+#define S21 5
+#define S22 9
+#define S23 14
+#define S24 20
+ GG(a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
+ GG(d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
+ GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
+ GG(b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
+ GG(a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
+ GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
+ GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
+ GG(b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
+ GG(a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
+ GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
+ GG(c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
+ GG(b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
+ GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
+ GG(d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
+ GG(c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
+ GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
+
+ /* Round 3 */
+#define S31 4
+#define S32 11
+#define S33 16
+#define S34 23
+ HH(a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
+ HH(d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
+ HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
+ HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
+ HH(a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
+ HH(d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
+ HH(c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
+ HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
+ HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
+ HH(d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
+ HH(c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
+ HH(b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
+ HH(a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
+ HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
+ HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
+ HH(b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
+
+ /* Round 4 */
+#define S41 6
+#define S42 10
+#define S43 15
+#define S44 21
+ II(a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
+ II(d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
+ II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
+ II(b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
+ II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
+ II(d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
+ II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
+ II(b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
+ II(a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
+ II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
+ II(c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
+ II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
+ II(a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
+ II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
+ II(c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
+ II(b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
+#endif
+
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+
+ /* Zeroize sensitive information. */
+ memset(x, 0, sizeof(x));
+}
+
+
+static void
+__md5_to64(char *s, unsigned long v, int n)
+{
+ while (--n >= 0) {
+ *s++ = ascii64[v & 0x3f];
+ v >>= 6;
+ }
+}
+
+/*
+ * UNIX password
+ *
+ * Use MD5 for what it is best at...
+ */
+#define MD5_OUT_BUFSIZE 120
+
+static char *
+md5_crypt(char passwd[120], const unsigned char *pw, const unsigned char *salt)
+{
+ const unsigned char *sp, *ep;
+ char *p;
+ unsigned char final[17]; /* final[16] exists only to aid in looping */
+ int sl, pl, i, pw_len;
+ struct MD5Context ctx, ctx1;
+ unsigned long l;
+
+ /* Refine the Salt first */
+ sp = salt;
+
+// always true for bbox
+// /* If it starts with the magic string, then skip that */
+// if (!strncmp(sp, __md5__magic, MD5_MAGIC_LEN))
+ sp += MD5_MAGIC_LEN;
+
+ /* It stops at the first '$', max 8 chars */
+ for (ep = sp; *ep && *ep != '$' && ep < (sp+8); ep++)
+ continue;
+
+ /* get the length of the true salt */
+ sl = ep - sp;
+
+ __md5_Init(&ctx);
+
+ /* The password first, since that is what is most unknown */
+ pw_len = strlen((char*)pw);
+ __md5_Update(&ctx, pw, pw_len);
+
+ /* Then our magic string */
+ __md5_Update(&ctx, __md5__magic, MD5_MAGIC_LEN);
+
+ /* Then the raw salt */
+ __md5_Update(&ctx, sp, sl);
+
+ /* Then just as many characters of the MD5(pw, salt, pw) */
+ __md5_Init(&ctx1);
+ __md5_Update(&ctx1, pw, pw_len);
+ __md5_Update(&ctx1, sp, sl);
+ __md5_Update(&ctx1, pw, pw_len);
+ __md5_Final(final, &ctx1);
+ for (pl = pw_len; pl > 0; pl -= 16)
+ __md5_Update(&ctx, final, pl > 16 ? 16 : pl);
+
+ /* Don't leave anything around in vm they could use. */
+//TODO: the above comment seems to be wrong. final is used later.
+ memset(final, 0, sizeof(final));
+
+ /* Then something really weird... */
+ for (i = pw_len; i; i >>= 1) {
+ __md5_Update(&ctx, ((i & 1) ? final : (const unsigned char *) pw), 1);
+ }
+
+ /* Now make the output string */
+ passwd[0] = '$';
+ passwd[1] = '1';
+ passwd[2] = '$';
+ strncpy(passwd + 3, (char*)sp, sl);
+ passwd[sl + 3] = '$';
+ passwd[sl + 4] = '\0';
+
+ __md5_Final(final, &ctx);
+
+ /*
+ * and now, just to make sure things don't run too fast
+ * On a 60 Mhz Pentium this takes 34 msec, so you would
+ * need 30 seconds to build a 1000 entry dictionary...
+ */
+ for (i = 0; i < 1000; i++) {
+ __md5_Init(&ctx1);
+ if (i & 1)
+ __md5_Update(&ctx1, pw, pw_len);
+ else
+ __md5_Update(&ctx1, final, 16);
+
+ if (i % 3)
+ __md5_Update(&ctx1, sp, sl);
+
+ if (i % 7)
+ __md5_Update(&ctx1, pw, pw_len);
+
+ if (i & 1)
+ __md5_Update(&ctx1, final, 16);
+ else
+ __md5_Update(&ctx1, pw, pw_len);
+ __md5_Final(final, &ctx1);
+ }
+
+ p = passwd + sl + 4; /*strlen(passwd);*/
+
+ final[16] = final[5];
+ for (i = 0; i < 5; i++) {
+ l = (final[i] << 16) | (final[i+6] << 8) | final[i+12];
+ __md5_to64(p, l, 4); p += 4;
+ }
+ l = final[11];
+ __md5_to64(p, l, 2); p += 2;
+ *p = '\0';
+
+ /* Don't leave anything around in vm they could use. */
+ memset(final, 0, sizeof(final));
+
+ return passwd;
+}
+
+#undef MD5_SIZE_OVER_SPEED
+#undef MD5_MAGIC_STR
+#undef MD5_MAGIC_LEN
+#undef __md5_Encode
+#undef __md5_Decode
+#undef F
+#undef G
+#undef H
+#undef I
+#undef ROTATE_LEFT
+#undef FF
+#undef GG
+#undef HH
+#undef II
+#undef S11
+#undef S12
+#undef S13
+#undef S14
+#undef S21
+#undef S22
+#undef S23
+#undef S24
+#undef S31
+#undef S32
+#undef S33
+#undef S34
+#undef S41
+#undef S42
+#undef S43
+#undef S44
strcpy(salt, "$1$");
rnd = crypt_make_salt(salt + 3, 4, rnd);
}
- pass = pw_encrypt(pass, salt);
+ pass = pw_encrypt(pass, salt, 0);
}
/* This is rather complex: if user is not found in /etc/shadow,
#include "libbb.h"
+#define TESTING 0
+
+/*
+set TESTING to 1 and pipe some file through this script
+if you played with bbox's crypt implementation.
+
+while read line; do
+ n=`./busybox cryptpw -a des -- "$line"`
+ o=`./busybox_old cryptpw -a des -- "$line"`
+ test "$n" != "$o" && {
+ echo n="$n"
+ echo o="$o"
+ exit
+ }
+ n=`./busybox cryptpw -- "$line"`
+ o=`./busybox_old cryptpw -- "$line"`
+ test "$n" != "$o" && {
+ echo n="$n"
+ echo o="$o"
+ exit
+ }
+done
+ */
+
int cryptpw_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int cryptpw_main(int argc ATTRIBUTE_UNUSED, char **argv)
{
//((uint32_t*)&salt)[0] = '$' + '1'*0x100 + '$'*0x10000;
/* Hope one day gcc will do it itself (inlining strcpy) */
crypt_make_salt(salt + 3, 4, 0); /* md5 */
+#if TESTING
+ strcpy(salt + 3, "ajg./bcf");
+#endif
} else {
crypt_make_salt(salt, 1, 0); /* des */
+#if TESTING
+ strcpy(salt, "a.");
+#endif
}
- puts(pw_encrypt(argv[optind] ? argv[optind] : xmalloc_fgetline(stdin), salt));
+ puts(pw_encrypt(argv[optind] ? argv[optind] : xmalloc_fgetline(stdin), salt, 1));
return 0;
}
orig = bb_askpass(0, "Old password:"); /* returns ptr to static */
if (!orig)
goto err_ret;
- cipher = pw_encrypt(orig, pw->pw_passwd); /* returns ptr to static */
+ cipher = pw_encrypt(orig, pw->pw_passwd, 1); /* returns ptr to static */
if (strcmp(cipher, pw->pw_passwd) != 0) {
syslog(LOG_WARNING, "incorrect password for '%s'",
pw->pw_name);
crypt_make_salt(salt + 3, 4, 0);
}
/* pw_encrypt returns ptr to static */
- ret = xstrdup(pw_encrypt(newp, salt));
+ ret = xstrdup(pw_encrypt(newp, salt, 1));
/* whee, success! */
err_ret:
bb_info_msg("Normal startup");
return 0;
}
- if (strcmp(pw_encrypt(cp, pwd->pw_passwd), pwd->pw_passwd) == 0) {
+ if (strcmp(pw_encrypt(cp, pwd->pw_passwd, 1), pwd->pw_passwd) == 0) {
break;
}
bb_do_delay(FAIL_DELAY);
&& pp[3] == '$' && pp[4]
) {
pp++;
- cipher = pw_encrypt(u+1, pp);
+ cipher = pw_encrypt(u+1, pp, 1);
if (strcmp(cipher, pp) == 0)
goto set_remoteuser_var; /* Ok */
/* unauthorized */
#endif
#if ENABLE_FEATURE_HTTPD_AUTH_MD5
if (opt & OPT_MD5) {
- puts(pw_encrypt(pass, "$1$"));
+ puts(pw_encrypt(pass, "$1$", 1));
return 0;
}
#endif