#include <nand.h>
#include <asm/arch/pxa-regs.h>
-/* mk@tbd move this to pxa-regs */
-#define OSCR_CLK_FREQ 3.250 /* MHz */
-
-/* usefull */
-#define CFG_DFC_DEBUG1
-/* noisy */
-#undef CFG_DFC_DEBUG2
-/* wild west */
-#undef CFG_DFC_DEBUG3
-
-
#ifdef CFG_DFC_DEBUG1
# define DFC_DEBUG1(fmt, args...) printf(fmt, ##args)
#else
# define DFC_DEBUG3(fmt, args...)
#endif
+#define MIN(x, y) ((x < y) ? x : y)
+
+/* These really don't belong here, as they are specific to the NAND Model */
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr delta_bbt_descr = {
/*
* not required for Monahans DFC
*/
-static void delta_hwcontrol(struct mtd_info *mtdinfo, int cmd)
+static void dfc_hwcontrol(struct mtd_info *mtdinfo, int cmd)
{
return;
}
+#if 0
/* read device ready pin */
-static int delta_device_ready(struct mtd_info *mtdinfo)
+static int dfc_device_ready(struct mtd_info *mtdinfo)
{
if(NDSR & NDSR_RDY)
return 1;
return 0;
return 0;
}
+#endif
/*
* Write buf to the DFC Controller Data Buffer
*/
-static void delta_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static void dfc_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
unsigned long bytes_multi = len & 0xfffffffc;
unsigned long rest = len & 0x3;
unsigned long *long_buf;
int i;
- DFC_DEBUG2("delta_write_buf: writing %d bytes starting with 0x%x.\n", len, *((unsigned long*) buf));
+ DFC_DEBUG2("dfc_write_buf: writing %d bytes starting with 0x%x.\n", len, *((unsigned long*) buf));
if(bytes_multi) {
for(i=0; i<bytes_multi; i+=4) {
long_buf = (unsigned long*) &buf[i];
}
}
if(rest) {
- printf("delta_write_buf: ERROR, writing non 4-byte aligned data.\n");
+ printf("dfc_write_buf: ERROR, writing non 4-byte aligned data.\n");
}
return;
}
*
* Solution: Don't use these with Mona's DFC and complain loudly.
*/
-static void delta_write_word(struct mtd_info *mtd, u16 word)
+static void dfc_write_word(struct mtd_info *mtd, u16 word)
{
- printf("delta_write_word: WARNING, this function does not work with the Monahans DFC!\n");
+ printf("dfc_write_word: WARNING, this function does not work with the Monahans DFC!\n");
}
-static void delta_write_byte(struct mtd_info *mtd, u_char byte)
+static void dfc_write_byte(struct mtd_info *mtd, u_char byte)
{
- printf("delta_write_byte: WARNING, this function does not work with the Monahans DFC!\n");
+ printf("dfc_write_byte: WARNING, this function does not work with the Monahans DFC!\n");
}
/* The original:
- * static void delta_read_buf(struct mtd_info *mtd, const u_char *buf, int len)
+ * static void dfc_read_buf(struct mtd_info *mtd, const u_char *buf, int len)
*
* Shouldn't this be "u_char * const buf" ?
*/
-static void delta_read_buf(struct mtd_info *mtd, u_char* const buf, int len)
+static void dfc_read_buf(struct mtd_info *mtd, u_char* const buf, int len)
{
- int i, j;
+ int i=0, j;
/* we have to be carefull not to overflow the buffer if len is
* not a multiple of 4 */
unsigned long rest = len & 0x3;
unsigned long *long_buf;
- DFC_DEBUG3("delta_read_buf: reading %d bytes.\n", len);
+ DFC_DEBUG3("dfc_read_buf: reading %d bytes.\n", len);
/* if there are any, first copy multiple of 4 bytes */
if(bytes_multi) {
for(i=0; i<bytes_multi; i+=4) {
/*
* read a word. Not implemented as not used in NAND code.
*/
-static u16 delta_read_word(struct mtd_info *mtd)
+static u16 dfc_read_word(struct mtd_info *mtd)
{
- printf("delta_write_byte: UNIMPLEMENTED.\n");
+ printf("dfc_write_byte: UNIMPLEMENTED.\n");
+ return 0;
}
/* global var, too bad: mk@tbd: move to ->priv pointer */
static unsigned long read_buf = 0;
static int bytes_read = -1;
-static unsigned long last_cmd = 0;
-/* read a byte from NDDB Because we can only read 4 bytes from NDDB at
+/*
+ * read a byte from NDDB Because we can only read 4 bytes from NDDB at
* a time, we buffer the remaining bytes. The buffer is reset when a
* new command is sent to the chip.
+ *
+ * WARNING:
+ * This function is currently only used to read status and id
+ * bytes. For these commands always 8 bytes need to be read from
+ * NDDB. So we read and discard these bytes right now. In case this
+ * function is used for anything else in the future, we must check
+ * what was the last command issued and read the appropriate amount of
+ * bytes respectively.
*/
-static u_char delta_read_byte(struct mtd_info *mtd)
+static u_char dfc_read_byte(struct mtd_info *mtd)
{
-/* struct nand_chip *this = mtd->priv; */
unsigned char byte;
unsigned long dummy;
if(bytes_read >= 4)
bytes_read = -1;
- DFC_DEBUG2("delta_read_byte: byte %u: 0x%x of (0x%x).\n", bytes_read - 1, byte, read_buf);
+ DFC_DEBUG2("dfc_read_byte: byte %u: 0x%x of (0x%x).\n", bytes_read - 1, byte, read_buf);
return byte;
}
}
}
-static void delta_clear_nddb()
+static void dfc_clear_nddb()
{
NDCR &= ~NDCR_ND_RUN;
wait_us(CFG_NAND_OTHER_TO);
}
/* wait_event with timeout */
-static unsigned long delta_wait_event2(unsigned long event)
+static unsigned long dfc_wait_event(unsigned long event)
{
unsigned long ndsr, timeout, start = OSCR;
break;
}
if(get_delta(start) > timeout) {
- DFC_DEBUG1("delta_wait_event: TIMEOUT waiting for event: 0x%x.\n", event);
+ DFC_DEBUG1("dfc_wait_event: TIMEOUT waiting for event: 0x%x.\n", event);
return 0xff000000;
}
return ndsr;
}
-
-#if DEADCODE
-/* poll the NAND Controller Status Register for event */
-static void delta_wait_event(unsigned long event)
-{
- if(!event)
- return;
-
- while(1) {
- if(NDSR & event) {
- NDSR |= event;
- break;
- }
- }
-}
-#endif
-
/* we don't always wan't to do this */
-static void delta_new_cmd()
+static void dfc_new_cmd()
{
int retry = 0;
unsigned long status;
if(!(NDCR & NDCR_ND_RUN))
NDCR |= NDCR_ND_RUN;
- status = delta_wait_event2(NDSR_WRCMDREQ);
+ status = dfc_wait_event(NDSR_WRCMDREQ);
if(status & NDSR_WRCMDREQ)
return;
- DFC_DEBUG2("delta_new_cmd: FAILED to get WRITECMDREQ, retry: %d.\n", retry);
- delta_clear_nddb();
- }
- DFC_DEBUG1("delta_new_cmd: giving up after %d retries.\n", retry);
-
-#if DEADCODE
- while(1) {
- if(NDSR & NDSR_WRCMDREQ) {
- NDSR |= NDSR_WRCMDREQ; /* Ack */
- break;
- }
+ DFC_DEBUG2("dfc_new_cmd: FAILED to get WRITECMDREQ, retry: %d.\n", retry);
+ dfc_clear_nddb();
}
-#endif
-
+ DFC_DEBUG1("dfc_new_cmd: giving up after %d retries.\n", retry);
}
+
/* this function is called after Programm and Erase Operations to
* check for success or failure */
-static int delta_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+static int dfc_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
unsigned long ndsr=0, event=0;
event = NDSR_CS0_CMDD | NDSR_CS0_BBD;
}
- ndsr = delta_wait_event2(event);
+ ndsr = dfc_wait_event(event);
if((ndsr & NDSR_CS0_BBD) || (ndsr & 0xff000000))
return(0x1); /* Status Read error */
}
/* cmdfunc send commands to the DFC */
-static void delta_cmdfunc(struct mtd_info *mtd, unsigned command,
- int column, int page_addr)
+static void dfc_cmdfunc(struct mtd_info *mtd, unsigned command,
+ int column, int page_addr)
{
/* register struct nand_chip *this = mtd->priv; */
unsigned long ndcb0=0, ndcb1=0, ndcb2=0, event=0;
- unsigned long what_the_hack;
/* clear the ugly byte read buffer */
bytes_read = -1;
read_buf = 0;
- last_cmd = 0;
-
- /* if command is a double byte cmd, we set bit double cmd bit 19 */
- /* command2 = (command>>8) & 0xFF; */
- /* ndcb0 = command | ((command2 ? 1 : 0) << 19); *\/ */
switch (command) {
case NAND_CMD_READ0:
- DFC_DEBUG3("delta_cmdfunc: NAND_CMD_READ0, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1));
- delta_new_cmd();
+ DFC_DEBUG3("dfc_cmdfunc: NAND_CMD_READ0, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1));
+ dfc_new_cmd();
ndcb0 = (NAND_CMD_READ0 | (4<<16));
column >>= 1; /* adjust for 16 bit bus */
ndcb1 = (((column>>1) & 0xff) |
event = NDSR_RDDREQ;
goto write_cmd;
case NAND_CMD_READ1:
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_READ1 unimplemented!\n");
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_READ1 unimplemented!\n");
goto end;
case NAND_CMD_READOOB:
- DFC_DEBUG1("delta_cmdfunc: NAND_CMD_READOOB unimplemented!\n");
+ DFC_DEBUG1("dfc_cmdfunc: NAND_CMD_READOOB unimplemented!\n");
goto end;
case NAND_CMD_READID:
- last_cmd = NAND_CMD_READID;
- delta_new_cmd();
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_READID.\n");
+ dfc_new_cmd();
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_READID.\n");
ndcb0 = (NAND_CMD_READID | (3 << 21) | (1 << 16)); /* addr cycles*/
event = NDSR_RDDREQ;
goto write_cmd;
case NAND_CMD_PAGEPROG:
/* sent as a multicommand in NAND_CMD_SEQIN */
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_PAGEPROG empty due to multicmd.\n");
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_PAGEPROG empty due to multicmd.\n");
goto end;
case NAND_CMD_ERASE1:
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_ERASE1, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1));
- delta_new_cmd();
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_ERASE1, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1));
+ dfc_new_cmd();
ndcb0 = (0xd060 | (1<<25) | (2<<21) | (1<<19) | (3<<16));
ndcb1 = (page_addr & 0x00ffffff);
goto write_cmd;
case NAND_CMD_ERASE2:
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_ERASE2 empty due to multicmd.\n");
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_ERASE2 empty due to multicmd.\n");
goto end;
case NAND_CMD_SEQIN:
/* send PAGE_PROG command(0x1080) */
- delta_new_cmd();
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1));
+ dfc_new_cmd();
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1));
ndcb0 = (0x1080 | (1<<25) | (1<<21) | (1<<19) | (4<<16));
column >>= 1; /* adjust for 16 bit bus */
ndcb1 = (((column>>1) & 0xff) |
((page_addr<<8) & 0xff000000)); /* make this 0x01000000 ? */
event = NDSR_WRDREQ;
goto write_cmd;
-/* case NAND_CMD_SEQIN_pointer_operation: */
-
-/* /\* This is confusing because the command names are */
-/* * different compared to the ones in the K9K12Q0C */
-/* * datasheet. Infact this has nothing to do with */
-/* * reading, as the but with page programming */
-/* * (writing). */
-/* * Here we send the multibyte commands */
-/* * cmd1=0x00, cmd2=0x80 (for programming main area) or */
-/* * cmd1=0x50, cmd2=0x80 (for spare area) */
-/* * */
-/* * When all data is written to the buffer, the page */
-/* * program command (0x10) is sent to actually write */
-/* * the data. */
-/* *\/ */
-
-/* printf("delta_cmdfunc: NAND_CMD_SEQIN pointer op called.\n"); */
-
-/* ndcb0 = (NAND_CMD_SEQIN<<8) | (1<<21) | (1<<19) | (4<<16); */
-/* if(column >= mtd->oobblock) { */
-/* /\* OOB area *\/ */
-/* column -= mtd->oobblock; */
-/* ndcb0 |= NAND_CMD_READOOB; */
-/* } else if (column < 256) { */
-/* /\* First 256 bytes --> READ0 *\/ */
-/* ndcb0 |= NAND_CMD_READ0; */
-/* } else { */
-/* /\* Only for 8 bit devices - not delta!!! *\/ */
-/* column -= 256; */
-/* ndcb0 |= NAND_CMD_READ1; */
-/* } */
-/* event = NDSR_WRDREQ; */
-/* break; */
case NAND_CMD_STATUS:
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_STATUS.\n");
- /* oh, this is not nice. for some reason the real
- * status byte is in the second read from the data
- * buffer. The hack is to read the first byte right
- * here, so the next read access by the nand code
- * yields the right one.
- */
- delta_new_cmd();
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_STATUS.\n");
+ dfc_new_cmd();
ndcb0 = NAND_CMD_STATUS | (4<<21);
event = NDSR_RDDREQ;
-#undef READ_STATUS_BUG
-#ifdef READ_STATUS_BUG
- NDCB0 = ndcb0;
- NDCB0 = ndcb1;
- NDCB0 = ndcb2;
- delta_wait_event2(event);
- what_the_hack = NDDB;
- if(what_the_hack != 0xffffffff) {
- DFC_DEBUG2("what the hack.\n");
- read_buf = what_the_hack;
- bytes_read = 0;
- }
- goto end;
-#endif
goto write_cmd;
case NAND_CMD_RESET:
- DFC_DEBUG2("delta_cmdfunc: NAND_CMD_RESET.\n");
+ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_RESET.\n");
ndcb0 = NAND_CMD_RESET | (5<<21);
event = NDSR_CS0_CMDD;
goto write_cmd;
default:
- printk("delta_cmdfunc: error, unsupported command.\n");
+ printk("dfc_cmdfunc: error, unsupported command.\n");
goto end;
}
NDCB0 = ndcb1;
NDCB0 = ndcb2;
- wait_event:
- delta_wait_event2(event);
+ /* wait_event: */
+ dfc_wait_event(event);
end:
return;
}
-static void delta_dfc_gpio_init()
+static void dfc_gpio_init()
{
DFC_DEBUG2("Setting up DFC GPIO's.\n");
unsigned long tCH, tCS, tWH, tWP, tRH, tRP, tRP_high, tR, tWHR, tAR;
/* set up GPIO Control Registers */
- delta_dfc_gpio_init();
+ dfc_gpio_init();
/* turn on the NAND Controller Clock (104 MHz @ D0) */
CKENA |= (CKENA_4_NAND | CKENA_9_SMC);
- /* wait ? */
-/* printf("stupid loop start...\n"); */
-/* wait(200); */
-/* printf("stupid loop end.\n"); */
-
-
- /* NAND Timing Parameters (in ns) */
-#define NAND_TIMING_tCH 10
-#define NAND_TIMING_tCS 0
-#define NAND_TIMING_tWH 20
-#define NAND_TIMING_tWP 40
-
-#define NAND_TIMING_tRH 20
-#define NAND_TIMING_tRP 40
-
-/* #define NAND_TIMING_tRH 25 */
-/* #define NAND_TIMING_tRP 50 */
-
-#define NAND_TIMING_tR 11123
-/* #define NAND_TIMING_tWHR 110 */
-#define NAND_TIMING_tWHR 100
-#define NAND_TIMING_tAR 10
-
-/* Maximum values for NAND Interface Timing Registers in DFC clock
- * periods */
-#define DFC_MAX_tCH 7
-#define DFC_MAX_tCS 7
-#define DFC_MAX_tWH 7
-#define DFC_MAX_tWP 7
-#define DFC_MAX_tRH 7
-#define DFC_MAX_tRP 15
-#define DFC_MAX_tR 65535
-#define DFC_MAX_tWHR 15
-#define DFC_MAX_tAR 15
-
-#define DFC_CLOCK 104 /* DFC Clock is 104 MHz */
-#define DFC_CLK_PER_US DFC_CLOCK/1000 /* clock period in ns */
-#define MIN(x, y) ((x < y) ? x : y)
-
-
#undef CFG_TIMING_TIGHT
#ifndef CFG_TIMING_TIGHT
tCH = MIN(((unsigned long) (NAND_TIMING_tCH * DFC_CLK_PER_US) + 1),
/* wait(10); */
- nand->hwcontrol = delta_hwcontrol;
-/* nand->dev_ready = delta_device_ready; */
+ nand->hwcontrol = dfc_hwcontrol;
+/* nand->dev_ready = dfc_device_ready; */
nand->eccmode = NAND_ECC_SOFT;
nand->chip_delay = NAND_DELAY_US;
nand->options = NAND_BUSWIDTH_16;
- nand->waitfunc = delta_wait;
- nand->read_byte = delta_read_byte;
- nand->write_byte = delta_write_byte;
- nand->read_word = delta_read_word;
- nand->write_word = delta_write_word;
- nand->read_buf = delta_read_buf;
- nand->write_buf = delta_write_buf;
-
- nand->cmdfunc = delta_cmdfunc;
+ nand->waitfunc = dfc_wait;
+ nand->read_byte = dfc_read_byte;
+ nand->write_byte = dfc_write_byte;
+ nand->read_word = dfc_read_word;
+ nand->write_word = dfc_write_word;
+ nand->read_buf = dfc_read_buf;
+ nand->write_buf = dfc_write_buf;
+
+ nand->cmdfunc = dfc_cmdfunc;
nand->autooob = &delta_oob;
nand->badblock_pattern = &delta_bbt_descr;
}
#else
- #error "U-Boot legacy NAND support not available for delta board."
+ #error "U-Boot legacy NAND support not available for Monahans DFC."
#endif
#endif