DSA_SIG *sig, DSA *dsa);
static int dsa_init(DSA *dsa);
static int dsa_finish(DSA *dsa);
+static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
+ BN_CTX *ctx);
static DSA_METHOD openssl_dsa_meth = {
"OpenSSL DSA method",
goto err;
/* Compute part of 's = inv(k) (m + xr) mod q' */
- if ((kinv = BN_mod_inverse(NULL, k, dsa->q, ctx)) == NULL)
+ if ((kinv = dsa_mod_inverse_fermat(k, dsa->q, ctx)) == NULL)
goto err;
BN_clear_free(*kinvp);
BN_MONT_CTX_free(dsa->method_mont_p);
return 1;
}
+
+/*
+ * Compute the inverse of k modulo q.
+ * Since q is prime, Fermat's Little Theorem applies, which reduces this to
+ * mod-exp operation. Both the exponent and modulus are public information
+ * so a mod-exp that doesn't leak the base is sufficient. A newly allocated
+ * BIGNUM is returned which the caller must free.
+ */
+static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
+ BN_CTX *ctx)
+{
+ BIGNUM *res = NULL;
+ BIGNUM *r, *e;
+
+ if ((r = BN_new()) == NULL)
+ return NULL;
+
+ BN_CTX_start(ctx);
+ if ((e = BN_CTX_get(ctx)) != NULL
+ && BN_set_word(r, 2)
+ && BN_sub(e, q, r)
+ && BN_mod_exp_mont(r, k, e, q, ctx, NULL))
+ res = r;
+ else
+ BN_free(r);
+ BN_CTX_end(ctx);
+ return res;
+}