--- /dev/null
+/*
+ * Copyright Altera Corporation (C) 2012-2015
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/arch/sdram.h>
+#include "sequencer.h"
+#include "sequencer_auto.h"
+#include "sequencer_auto_ac_init.h"
+#include "sequencer_auto_inst_init.h"
+#include "sequencer_defines.h"
+
+static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
+
+static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
+ (struct socfpga_sdr_rw_load_manager *)(BASE_RW_MGR + 0x800);
+
+static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
+ (struct socfpga_sdr_rw_load_jump_manager *)(BASE_RW_MGR + 0xC00);
+
+static struct socfpga_sdr_reg_file *sdr_reg_file =
+ (struct socfpga_sdr_reg_file *)(BASE_REG_FILE);
+
+static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
+ (struct socfpga_sdr_scc_mgr *)(BASE_SCC_MGR + 0x0E00);
+
+static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
+ (struct socfpga_phy_mgr_cmd *)(BASE_PHY_MGR);
+
+static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
+ (struct socfpga_phy_mgr_cfg *)(BASE_PHY_MGR + 0x4000);
+
+static struct socfpga_data_mgr *data_mgr =
+ (struct socfpga_data_mgr *)(BASE_DATA_MGR);
+
+#define DELTA_D 1
+#define MGR_SELECT_MASK 0xf8000
+
+/*
+ * In order to reduce ROM size, most of the selectable calibration steps are
+ * decided at compile time based on the user's calibration mode selection,
+ * as captured by the STATIC_CALIB_STEPS selection below.
+ *
+ * However, to support simulation-time selection of fast simulation mode, where
+ * we skip everything except the bare minimum, we need a few of the steps to
+ * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
+ * check, which is based on the rtl-supplied value, or we dynamically compute
+ * the value to use based on the dynamically-chosen calibration mode
+ */
+
+#define DLEVEL 0
+#define STATIC_IN_RTL_SIM 0
+#define STATIC_SKIP_DELAY_LOOPS 0
+
+#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
+ STATIC_SKIP_DELAY_LOOPS)
+
+/* calibration steps requested by the rtl */
+uint16_t dyn_calib_steps;
+
+/*
+ * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
+ * instead of static, we use boolean logic to select between
+ * non-skip and skip values
+ *
+ * The mask is set to include all bits when not-skipping, but is
+ * zero when skipping
+ */
+
+uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
+
+#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
+ ((non_skip_value) & skip_delay_mask)
+
+struct gbl_type *gbl;
+struct param_type *param;
+uint32_t curr_shadow_reg;
+
+static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t use_dm,
+ uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
+
+static u32 sdr_get_addr(u32 *base)
+{
+ u32 addr = (u32)base & MGR_SELECT_MASK;
+
+ switch (addr) {
+ case BASE_PHY_MGR:
+ addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) |
+ SDR_PHYGRP_PHYMGRGRP_ADDRESS;
+ break;
+ case BASE_RW_MGR:
+ addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS;
+ break;
+ case BASE_DATA_MGR:
+ addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS;
+ break;
+ case BASE_SCC_MGR:
+ addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS;
+ break;
+ case BASE_REG_FILE:
+ addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS;
+ break;
+ case BASE_MMR:
+ addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS;
+ break;
+ default:
+ return -1;
+ }
+
+ return addr;
+}
+
+static void set_failing_group_stage(uint32_t group, uint32_t stage,
+ uint32_t substage)
+{
+ /*
+ * Only set the global stage if there was not been any other
+ * failing group
+ */
+ if (gbl->error_stage == CAL_STAGE_NIL) {
+ gbl->error_substage = substage;
+ gbl->error_stage = stage;
+ gbl->error_group = group;
+ }
+}
+
+static void reg_file_set_group(uint32_t set_group)
+{
+ u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
+
+ /* Read the current group and stage */
+ uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Clear the group */
+ cur_stage_group &= 0x0000FFFF;
+
+ /* Set the group */
+ cur_stage_group |= (set_group << 16);
+
+ /* Write the data back */
+ writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void reg_file_set_stage(uint32_t set_stage)
+{
+ u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
+ /* Read the current group and stage */
+ uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Clear the stage and substage */
+ cur_stage_group &= 0xFFFF0000;
+
+ /* Set the stage */
+ cur_stage_group |= (set_stage & 0x000000FF);
+
+ /* Write the data back */
+ writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void reg_file_set_sub_stage(uint32_t set_sub_stage)
+{
+ u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
+ /* Read the current group and stage */
+ uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Clear the substage */
+ cur_stage_group &= 0xFFFF00FF;
+
+ /* Set the sub stage */
+ cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
+
+ /* Write the data back */
+ writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void initialize(void)
+{
+ u32 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
+
+ debug("%s:%d\n", __func__, __LINE__);
+ /* USER calibration has control over path to memory */
+ /*
+ * In Hard PHY this is a 2-bit control:
+ * 0: AFI Mux Select
+ * 1: DDIO Mux Select
+ */
+ writel(0x3, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* USER memory clock is not stable we begin initialization */
+ addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* USER calibration status all set to zero */
+ addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
+ param->read_correct_mask_vg = ((uint32_t)1 <<
+ (RW_MGR_MEM_DQ_PER_READ_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+ param->write_correct_mask_vg = ((uint32_t)1 <<
+ (RW_MGR_MEM_DQ_PER_READ_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+ param->read_correct_mask = ((uint32_t)1 <<
+ RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
+ param->write_correct_mask = ((uint32_t)1 <<
+ RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
+ param->dm_correct_mask = ((uint32_t)1 <<
+ (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
+ - 1;
+ }
+}
+
+static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
+{
+ uint32_t odt_mask_0 = 0;
+ uint32_t odt_mask_1 = 0;
+ uint32_t cs_and_odt_mask;
+ uint32_t addr;
+
+ if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
+ if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+ /*
+ * 1 Rank
+ * Read: ODT = 0
+ * Write: ODT = 1
+ */
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x1;
+ } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+ /* 2 Ranks */
+ if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
+ /* - Dual-Slot , Single-Rank
+ * (1 chip-select per DIMM)
+ * OR
+ * - RDIMM, 4 total CS (2 CS per DIMM)
+ * means 2 DIMM
+ * Since MEM_NUMBER_OF_RANKS is 2 they are
+ * both single rank
+ * with 2 CS each (special for RDIMM)
+ * Read: Turn on ODT on the opposite rank
+ * Write: Turn on ODT on all ranks
+ */
+ odt_mask_0 = 0x3 & ~(1 << rank);
+ odt_mask_1 = 0x3;
+ } else {
+ /*
+ * USER - Single-Slot , Dual-rank DIMMs
+ * (2 chip-selects per DIMM)
+ * USER Read: Turn on ODT off on all ranks
+ * USER Write: Turn on ODT on active rank
+ */
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x3 & (1 << rank);
+ }
+ } else {
+ /* 4 Ranks
+ * Read:
+ * ----------+-----------------------+
+ * | |
+ * | ODT |
+ * Read From +-----------------------+
+ * Rank | 3 | 2 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ * 0 | 0 | 1 | 0 | 0 |
+ * 1 | 1 | 0 | 0 | 0 |
+ * 2 | 0 | 0 | 0 | 1 |
+ * 3 | 0 | 0 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ *
+ * Write:
+ * ----------+-----------------------+
+ * | |
+ * | ODT |
+ * Write To +-----------------------+
+ * Rank | 3 | 2 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ * 0 | 0 | 1 | 0 | 1 |
+ * 1 | 1 | 0 | 1 | 0 |
+ * 2 | 0 | 1 | 0 | 1 |
+ * 3 | 1 | 0 | 1 | 0 |
+ * ----------+-----+-----+-----+-----+
+ */
+ switch (rank) {
+ case 0:
+ odt_mask_0 = 0x4;
+ odt_mask_1 = 0x5;
+ break;
+ case 1:
+ odt_mask_0 = 0x8;
+ odt_mask_1 = 0xA;
+ break;
+ case 2:
+ odt_mask_0 = 0x1;
+ odt_mask_1 = 0x5;
+ break;
+ case 3:
+ odt_mask_0 = 0x2;
+ odt_mask_1 = 0xA;
+ break;
+ }
+ }
+ } else {
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x0;
+ }
+
+ cs_and_odt_mask =
+ (0xFF & ~(1 << rank)) |
+ ((0xFF & odt_mask_0) << 8) |
+ ((0xFF & odt_mask_1) << 16);
+ addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
+ writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void scc_mgr_initialize(void)
+{
+ u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE);
+
+ /*
+ * Clear register file for HPS
+ * 16 (2^4) is the size of the full register file in the scc mgr:
+ * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
+ * MEM_IF_READ_DQS_WIDTH - 1) + 1;
+ */
+ uint32_t i;
+ for (i = 0; i < 16; i++) {
+ debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u",
+ __func__, __LINE__, i);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
+ }
+}
+
+static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
+ uint32_t delay)
+{
+ u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
+
+ /* Load the setting in the SCC manager */
+ writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
+}
+
+static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
+ uint32_t delay)
+{
+ u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
+
+ writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
+}
+
+static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
+{
+ u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE);
+
+ /* Load the setting in the SCC manager */
+ writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
+}
+
+static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
+ uint32_t phase)
+{
+ uint32_t r;
+ uint32_t update_scan_chains;
+ uint32_t addr;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ /*
+ * USER although the h/w doesn't support different phases per
+ * shadow register, for simplicity our scc manager modeling
+ * keeps different phase settings per shadow reg, and it's
+ * important for us to keep them in sync to match h/w.
+ * for efficiency, the scan chain update should occur only
+ * once to sr0.
+ */
+ update_scan_chains = (r == 0) ? 1 : 0;
+
+ scc_mgr_set_dqs_en_phase(read_group, phase);
+
+ if (update_scan_chains) {
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+ writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ }
+}
+
+static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
+ uint32_t phase)
+{
+ u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE);
+
+ /* Load the setting in the SCC manager */
+ writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2));
+}
+
+static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
+ uint32_t phase)
+{
+ uint32_t r;
+ uint32_t update_scan_chains;
+ uint32_t addr;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ /*
+ * USER although the h/w doesn't support different phases per
+ * shadow register, for simplicity our scc manager modeling
+ * keeps different phase settings per shadow reg, and it's
+ * important for us to keep them in sync to match h/w.
+ * for efficiency, the scan chain update should occur only
+ * once to sr0.
+ */
+ update_scan_chains = (r == 0) ? 1 : 0;
+
+ scc_mgr_set_dqdqs_output_phase(write_group, phase);
+
+ if (update_scan_chains) {
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+ writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ }
+}
+
+static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
+{
+ uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY);
+
+ /* Load the setting in the SCC manager */
+ writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr +
+ (read_group << 2));
+}
+
+static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
+ uint32_t delay)
+{
+ uint32_t r;
+ uint32_t addr;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ scc_mgr_set_dqs_en_delay(read_group, delay);
+
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+ writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
+ /*
+ * In shadow register mode, the T11 settings are stored in
+ * registers in the core, which are updated by the DQS_ENA
+ * signals. Not issuing the SCC_MGR_UPD command allows us to
+ * save lots of rank switching overhead, by calling
+ * select_shadow_regs_for_update with update_scan_chains
+ * set to 0.
+ */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ /*
+ * In shadow register mode, the T11 settings are stored in
+ * registers in the core, which are updated by the DQS_ENA
+ * signals. Not issuing the SCC_MGR_UPD command allows us to
+ * save lots of rank switching overhead, by calling
+ * select_shadow_regs_for_update with update_scan_chains
+ * set to 0.
+ */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
+{
+ uint32_t read_group;
+ uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY);
+
+ /*
+ * Load the setting in the SCC manager
+ * Although OCT affects only write data, the OCT delay is controlled
+ * by the DQS logic block which is instantiated once per read group.
+ * For protocols where a write group consists of multiple read groups,
+ * the setting must be set multiple times.
+ */
+ for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+ writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
+}
+
+static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
+ uint32_t dq_in_group, uint32_t delay)
+{
+ uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
+
+ /* Load the setting in the SCC manager */
+ writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
+}
+
+static void scc_mgr_set_dq_in_delay(uint32_t write_group,
+ uint32_t dq_in_group, uint32_t delay)
+{
+ uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
+
+ /* Load the setting in the SCC manager */
+ writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
+}
+
+static void scc_mgr_set_hhp_extras(void)
+{
+ /*
+ * Load the fixed setting in the SCC manager
+ * bits: 0:0 = 1'b1 - dqs bypass
+ * bits: 1:1 = 1'b1 - dq bypass
+ * bits: 4:2 = 3'b001 - rfifo_mode
+ * bits: 6:5 = 2'b01 - rfifo clock_select
+ * bits: 7:7 = 1'b0 - separate gating from ungating setting
+ * bits: 8:8 = 1'b0 - separate OE from Output delay setting
+ */
+ uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
+ uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS);
+
+ writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET);
+}
+
+static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
+ uint32_t delay)
+{
+ uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
+
+ /* Load the setting in the SCC manager */
+ writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
+}
+
+static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
+ uint32_t dm, uint32_t delay)
+{
+ uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
+
+ /* Load the setting in the SCC manager */
+ writel(delay, SOCFPGA_SDR_ADDRESS + addr +
+ ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
+}
+
+/*
+ * USER Zero all DQS config
+ * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
+ */
+static void scc_mgr_zero_all(void)
+{
+ uint32_t i, r;
+ uint32_t addr;
+
+ /*
+ * USER Zero all DQS config settings, across all groups and all
+ * shadow registers
+ */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
+ NUM_RANKS_PER_SHADOW_REG) {
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ /*
+ * The phases actually don't exist on a per-rank basis,
+ * but there's no harm updating them several times, so
+ * let's keep the code simple.
+ */
+ scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
+ scc_mgr_set_dqs_en_phase(i, 0);
+ scc_mgr_set_dqs_en_delay(i, 0);
+ }
+
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ scc_mgr_set_dqdqs_output_phase(i, 0);
+ /* av/cv don't have out2 */
+ scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
+ }
+ }
+
+ /* multicast to all DQS group enables */
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
+{
+ uint32_t addr;
+ /* mode = 0 : Do NOT bypass - Half Rate Mode */
+ /* mode = 1 : Bypass - Full Rate Mode */
+
+ /* only need to set once for all groups, pins, dq, dqs, dm */
+ if (write_group == 0) {
+ debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
+ __LINE__);
+ scc_mgr_set_hhp_extras();
+ debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
+ __func__, __LINE__);
+ }
+ /* multicast to all DQ enables */
+ addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* update current DQS IO enable */
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* update the DQS logic */
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+ writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* hit update */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
+ int32_t out_only)
+{
+ uint32_t i, r;
+ uint32_t addr;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
+ NUM_RANKS_PER_SHADOW_REG) {
+ /* Zero all DQ config settings */
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ scc_mgr_set_dq_out1_delay(write_group, i, 0);
+ if (!out_only)
+ scc_mgr_set_dq_in_delay(write_group, i, 0);
+ }
+
+ /* multicast to all DQ enables */
+ addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Zero all DM config settings */
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+ scc_mgr_set_dm_out1_delay(write_group, i, 0);
+ }
+
+ /* multicast to all DM enables */
+ addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* zero all DQS io settings */
+ if (!out_only)
+ scc_mgr_set_dqs_io_in_delay(write_group, 0);
+ /* av/cv don't have out2 */
+ scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
+ scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
+ scc_mgr_load_dqs_for_write_group(write_group);
+
+ /* multicast to all DQS IO enables (only 1) */
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* hit update to zero everything */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+}
+
+/* load up dqs config settings */
+static void scc_mgr_load_dqs(uint32_t dqs)
+{
+ uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+
+ writel(dqs, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
+{
+ uint32_t read_group;
+ uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+ /*
+ * Although OCT affects only write data, the OCT delay is controlled
+ * by the DQS logic block which is instantiated once per read group.
+ * For protocols where a write group consists of multiple read groups,
+ * the setting must be scanned multiple times.
+ */
+ for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
+ writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+/* load up dqs io config settings */
+static void scc_mgr_load_dqs_io(void)
+{
+ uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
+
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+/* load up dq config settings */
+static void scc_mgr_load_dq(uint32_t dq_in_group)
+{
+ uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
+
+ writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+/* load up dm config settings */
+static void scc_mgr_load_dm(uint32_t dm)
+{
+ uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
+
+ writel(dm, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+/*
+ * apply and load a particular input delay for the DQ pins in a group
+ * group_bgn is the index of the first dq pin (in the write group)
+ */
+static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
+ uint32_t group_bgn, uint32_t delay)
+{
+ uint32_t i, p;
+
+ for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+ scc_mgr_set_dq_in_delay(write_group, p, delay);
+ scc_mgr_load_dq(p);
+ }
+}
+
+/* apply and load a particular output delay for the DQ pins in a group */
+static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
+ uint32_t group_bgn,
+ uint32_t delay1)
+{
+ uint32_t i, p;
+
+ for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ scc_mgr_set_dq_out1_delay(write_group, i, delay1);
+ scc_mgr_load_dq(i);
+ }
+}
+
+/* apply and load a particular output delay for the DM pins in a group */
+static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
+ uint32_t delay1)
+{
+ uint32_t i;
+
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+ scc_mgr_set_dm_out1_delay(write_group, i, delay1);
+ scc_mgr_load_dm(i);
+ }
+}
+
+
+/* apply and load delay on both DQS and OCT out1 */
+static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
+ uint32_t delay)
+{
+ scc_mgr_set_dqs_out1_delay(write_group, delay);
+ scc_mgr_load_dqs_io();
+
+ scc_mgr_set_oct_out1_delay(write_group, delay);
+ scc_mgr_load_dqs_for_write_group(write_group);
+}
+
+/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
+static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
+ uint32_t group_bgn,
+ uint32_t delay)
+{
+ uint32_t i, p, new_delay;
+
+ /* dq shift */
+ for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ new_delay = READ_SCC_DQ_OUT2_DELAY;
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
+ %u > %lu => %lu", __func__, __LINE__,
+ write_group, group_bgn, delay, i, p, new_delay,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_load_dq(i);
+ }
+
+ /* dm shift */
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+ new_delay = READ_SCC_DM_IO_OUT2_DELAY;
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
+ %u > %lu => %lu\n", __func__, __LINE__,
+ write_group, group_bgn, delay, i, new_delay,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_load_dm(i);
+ }
+
+ /* dqs shift */
+ new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
+ " adding %u to OUT1\n", __func__, __LINE__,
+ write_group, group_bgn, delay, new_delay,
+ IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+ new_delay - IO_IO_OUT2_DELAY_MAX);
+ scc_mgr_set_dqs_out1_delay(write_group, new_delay -
+ IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_load_dqs_io();
+
+ /* oct shift */
+ new_delay = READ_SCC_OCT_OUT2_DELAY;
+ new_delay += delay;
+
+ if (new_delay > IO_IO_OUT2_DELAY_MAX) {
+ debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
+ " adding %u to OUT1\n", __func__, __LINE__,
+ write_group, group_bgn, delay, new_delay,
+ IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+ new_delay - IO_IO_OUT2_DELAY_MAX);
+ scc_mgr_set_oct_out1_delay(write_group, new_delay -
+ IO_IO_OUT2_DELAY_MAX);
+ new_delay = IO_IO_OUT2_DELAY_MAX;
+ }
+
+ scc_mgr_load_dqs_for_write_group(write_group);
+}
+
+/*
+ * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
+ * and to all ranks
+ */
+static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
+ uint32_t write_group, uint32_t group_bgn, uint32_t delay)
+{
+ uint32_t r;
+ uint32_t addr = sdr_get_addr(&sdr_scc_mgr->update);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ scc_mgr_apply_group_all_out_delay_add(write_group,
+ group_bgn, delay);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+}
+
+/* optimization used to recover some slots in ddr3 inst_rom */
+/* could be applied to other protocols if we wanted to */
+static void set_jump_as_return(void)
+{
+ uint32_t addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+
+ /*
+ * to save space, we replace return with jump to special shared
+ * RETURN instruction so we set the counter to large value so that
+ * we always jump
+ */
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+/*
+ * should always use constants as argument to ensure all computations are
+ * performed at compile time
+ */
+static void delay_for_n_mem_clocks(const uint32_t clocks)
+{
+ uint32_t afi_clocks;
+ uint8_t inner = 0;
+ uint8_t outer = 0;
+ uint16_t c_loop = 0;
+ uint32_t addr;
+
+ debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
+
+
+ afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
+ /* scale (rounding up) to get afi clocks */
+
+ /*
+ * Note, we don't bother accounting for being off a little bit
+ * because of a few extra instructions in outer loops
+ * Note, the loops have a test at the end, and do the test before
+ * the decrement, and so always perform the loop
+ * 1 time more than the counter value
+ */
+ if (afi_clocks == 0) {
+ ;
+ } else if (afi_clocks <= 0x100) {
+ inner = afi_clocks-1;
+ outer = 0;
+ c_loop = 0;
+ } else if (afi_clocks <= 0x10000) {
+ inner = 0xff;
+ outer = (afi_clocks-1) >> 8;
+ c_loop = 0;
+ } else {
+ inner = 0xff;
+ outer = 0xff;
+ c_loop = (afi_clocks-1) >> 16;
+ }
+
+ /*
+ * rom instructions are structured as follows:
+ *
+ * IDLE_LOOP2: jnz cntr0, TARGET_A
+ * IDLE_LOOP1: jnz cntr1, TARGET_B
+ * return
+ *
+ * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
+ * TARGET_B is set to IDLE_LOOP2 as well
+ *
+ * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
+ * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
+ *
+ * a little confusing, but it helps save precious space in the inst_rom
+ * and sequencer rom and keeps the delays more accurate and reduces
+ * overhead
+ */
+ if (afi_clocks <= 0x100) {
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* hack to get around compiler not being smart enough */
+ if (afi_clocks <= 0x10000) {
+ /* only need to run once */
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ do {
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
+ } while (c_loop-- != 0);
+ }
+ }
+ debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
+}
+
+static void rw_mgr_mem_initialize(void)
+{
+ uint32_t r;
+ uint32_t addr;
+
+ debug("%s:%d\n", __func__, __LINE__);
+
+ /* The reset / cke part of initialization is broadcasted to all ranks */
+ addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
+ writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * Here's how you load register for a loop
+ * Counters are located @ 0x800
+ * Jump address are located @ 0xC00
+ * For both, registers 0 to 3 are selected using bits 3 and 2, like
+ * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+ * I know this ain't pretty, but Avalon bus throws away the 2 least
+ * significant bits
+ */
+
+ /* start with memory RESET activated */
+
+ /* tINIT = 200us */
+
+ /*
+ * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
+ * If a and b are the number of iteration in 2 nested loops
+ * it takes the following number of cycles to complete the operation:
+ * number_of_cycles = ((2 + n) * a + 2) * b
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
+ * b = 6A
+ */
+
+ /* Load counters */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
+ SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
+ SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
+ SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Load jump address */
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Execute count instruction */
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* indicate that memory is stable */
+ addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
+ writel(1, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * transition the RESET to high
+ * Wait for 500us
+ */
+
+ /*
+ * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
+ * If a and b are the number of iteration in 2 nested loops
+ * it takes the following number of cycles to complete the operation
+ * number_of_cycles = ((2 + n) * a + 2) * b
+ * where n is the number of instruction in the inner loop
+ * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
+ * b = FF
+ */
+
+ /* Load counters */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
+ SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
+ SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
+ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
+ SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Load jump address */
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* bring up clock enable */
+
+ /* tXRP < 250 ck cycles */
+ delay_for_n_mem_clocks(250);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r]) {
+ /* request to skip the rank */
+ continue;
+ }
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /*
+ * USER Use Mirror-ed commands for odd ranks if address
+ * mirrorring is on
+ */
+ if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+ set_jump_as_return();
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ set_jump_as_return();
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
+ set_jump_as_return();
+ writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ set_jump_as_return();
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* tZQinit = tDLLK = 512 ck cycles */
+ delay_for_n_mem_clocks(512);
+ }
+}
+
+/*
+ * At the end of calibration we have to program the user settings in, and
+ * USER hand off the memory to the user.
+ */
+static void rw_mgr_mem_handoff(void)
+{
+ uint32_t r;
+ uint32_t addr;
+
+ debug("%s:%d\n", __func__, __LINE__);
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* precharge all banks ... */
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* load up MR settings specified by user */
+
+ /*
+ * Use Mirror-ed commands for odd ranks if address
+ * mirrorring is on
+ */
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
+ set_jump_as_return();
+ writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ set_jump_as_return();
+ writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
+ delay_for_n_mem_clocks(4);
+ set_jump_as_return();
+ writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ /*
+ * USER need to wait tMOD (12CK or 15ns) time before issuing
+ * other commands, but we will have plenty of NIOS cycles before
+ * actual handoff so its okay.
+ */
+ }
+}
+
+/*
+ * performs a guaranteed read on the patterns we are going to use during a
+ * read test to ensure memory works
+ */
+static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
+ uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
+ uint32_t all_ranks)
+{
+ uint32_t r, vg;
+ uint32_t correct_mask_vg;
+ uint32_t tmp_bit_chk;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+ uint32_t addr;
+ uint32_t base_rw_mgr;
+
+ *bit_chk = param->read_correct_mask;
+ correct_mask_vg = param->read_correct_mask_vg;
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ /* Load up a constant bursts of read commands */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr);
+
+ tmp_bit_chk = 0;
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
+ /* reset the fifos to get pointers to known state */
+
+ addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
+ / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr +
+ ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
+ vg) << 2));
+
+ addr = sdr_get_addr((u32 *)BASE_RW_MGR);
+ base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
+ tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
+
+ if (vg == 0)
+ break;
+ }
+ *bit_chk &= tmp_bit_chk;
+ }
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
+
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
+ %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
+ (long unsigned int)(*bit_chk == param->read_correct_mask));
+ return *bit_chk == param->read_correct_mask;
+}
+
+static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+ (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
+{
+ return rw_mgr_mem_calibrate_read_test_patterns(0, group,
+ num_tries, bit_chk, 1);
+}
+
+/* load up the patterns we are going to use during a read test */
+static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
+ uint32_t all_ranks)
+{
+ uint32_t r;
+ uint32_t addr;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+
+ debug("%s:%d\n", __func__, __LINE__);
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ /* Load up a constant bursts */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
+ writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
+ writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
+ writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr);
+ }
+
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+}
+
+/*
+ * try a read and see if it returns correct data back. has dummy reads
+ * inserted into the mix used to align dqs enable. has more thorough checks
+ * than the regular read test.
+ */
+static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
+ uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
+ uint32_t all_groups, uint32_t all_ranks)
+{
+ uint32_t r, vg;
+ uint32_t correct_mask_vg;
+ uint32_t tmp_bit_chk;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+ uint32_t addr;
+ uint32_t base_rw_mgr;
+
+ *bit_chk = param->read_correct_mask;
+ correct_mask_vg = param->read_correct_mask_vg;
+
+ uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r])
+ /* request to skip the rank */
+ continue;
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
+ writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ if (quick_read_mode)
+ writel(0x1, SOCFPGA_SDR_ADDRESS + addr);
+ /* need at least two (1+1) reads to capture failures */
+ else if (all_groups)
+ writel(0x06, SOCFPGA_SDR_ADDRESS + addr);
+ else
+ writel(0x32, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
+ if (all_groups)
+ writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
+ SOCFPGA_SDR_ADDRESS + addr);
+ else
+ writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
+ writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
+
+ tmp_bit_chk = 0;
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
+ /* reset the fifos to get pointers to known state */
+ addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
+ / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+
+ addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS :
+ RW_MGR_RUN_SINGLE_GROUP));
+ writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr +
+ ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
+ vg) << 2));
+
+ addr = sdr_get_addr((u32 *)BASE_RW_MGR);
+ base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
+ tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
+
+ if (vg == 0)
+ break;
+ }
+ *bit_chk &= tmp_bit_chk;
+ }
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
+
+ if (all_correct) {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
+ (%u == %u) => %lu", __func__, __LINE__, group,
+ all_groups, *bit_chk, param->read_correct_mask,
+ (long unsigned int)(*bit_chk ==
+ param->read_correct_mask));
+ return *bit_chk == param->read_correct_mask;
+ } else {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
+ (%u != %lu) => %lu\n", __func__, __LINE__,
+ group, all_groups, *bit_chk, (long unsigned int)0,
+ (long unsigned int)(*bit_chk != 0x00));
+ return *bit_chk != 0x00;
+ }
+}
+
+static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
+ uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
+ uint32_t all_groups)
+{
+ return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
+ bit_chk, all_groups, 1);
+}
+
+static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
+{
+ uint32_t addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
+
+ writel(grp, SOCFPGA_SDR_ADDRESS + addr);
+ (*v)++;
+}
+
+static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
+{
+ uint32_t i;
+
+ for (i = 0; i < VFIFO_SIZE-1; i++)
+ rw_mgr_incr_vfifo(grp, v);
+}
+
+static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
+{
+ uint32_t v;
+ uint32_t fail_cnt = 0;
+ uint32_t test_status;
+
+ for (v = 0; v < VFIFO_SIZE; ) {
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
+ __func__, __LINE__, v);
+ test_status = rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, bit_chk, 0);
+ if (!test_status) {
+ fail_cnt++;
+
+ if (fail_cnt == 2)
+ break;
+ }
+
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ if (v >= VFIFO_SIZE) {
+ /* no failing read found!! Something must have gone wrong */
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
+ __func__, __LINE__);
+ return 0;
+ } else {
+ return v;
+ }
+}
+
+static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
+ uint32_t dtaps_per_ptap, uint32_t *work_bgn,
+ uint32_t *v, uint32_t *d, uint32_t *p,
+ uint32_t *i, uint32_t *max_working_cnt)
+{
+ uint32_t found_begin = 0;
+ uint32_t tmp_delay = 0;
+ uint32_t test_status;
+
+ for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
+ IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ *work_bgn = tmp_delay;
+ scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
+
+ for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
+ for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
+ IO_DELAY_PER_OPA_TAP) {
+ scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
+
+ test_status =
+ rw_mgr_mem_calibrate_read_test_all_ranks
+ (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
+
+ if (test_status) {
+ *max_working_cnt = 1;
+ found_begin = 1;
+ break;
+ }
+ }
+
+ if (found_begin)
+ break;
+
+ if (*p > IO_DQS_EN_PHASE_MAX)
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(*grp, v);
+ }
+
+ if (found_begin)
+ break;
+ }
+
+ if (*i >= VFIFO_SIZE) {
+ /* cannot find working solution */
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
+ ptap/dtap\n", __func__, __LINE__);
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
+ uint32_t *work_bgn, uint32_t *v, uint32_t *d,
+ uint32_t *p, uint32_t *max_working_cnt)
+{
+ uint32_t found_begin = 0;
+ uint32_t tmp_delay;
+
+ /* Special case code for backing up a phase */
+ if (*p == 0) {
+ *p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(*grp, v);
+ } else {
+ (*p)--;
+ }
+ tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
+ scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
+
+ for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
+ (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
+
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
+ PASS_ONE_BIT,
+ bit_chk, 0)) {
+ found_begin = 1;
+ *work_bgn = tmp_delay;
+ break;
+ }
+ }
+
+ /* We have found a working dtap before the ptap found above */
+ if (found_begin == 1)
+ (*max_working_cnt)++;
+
+ /*
+ * Restore VFIFO to old state before we decremented it
+ * (if needed).
+ */
+ (*p)++;
+ if (*p > IO_DQS_EN_PHASE_MAX) {
+ *p = 0;
+ rw_mgr_incr_vfifo(*grp, v);
+ }
+
+ scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
+}
+
+static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
+ uint32_t *work_bgn, uint32_t *v, uint32_t *d,
+ uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
+ uint32_t *work_end)
+{
+ uint32_t found_end = 0;
+
+ (*p)++;
+ *work_end += IO_DELAY_PER_OPA_TAP;
+ if (*p > IO_DQS_EN_PHASE_MAX) {
+ /* fiddle with FIFO */
+ *p = 0;
+ rw_mgr_incr_vfifo(*grp, v);
+ }
+
+ for (; *i < VFIFO_SIZE + 1; (*i)++) {
+ for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
+ += IO_DELAY_PER_OPA_TAP) {
+ scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
+ found_end = 1;
+ break;
+ } else {
+ (*max_working_cnt)++;
+ }
+ }
+
+ if (found_end)
+ break;
+
+ if (*p > IO_DQS_EN_PHASE_MAX) {
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(*grp, v);
+ *p = 0;
+ }
+ }
+
+ if (*i >= VFIFO_SIZE + 1) {
+ /* cannot see edge of failing read */
+ debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
+ failed\n", __func__, __LINE__);
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
+ uint32_t *work_bgn, uint32_t *v, uint32_t *d,
+ uint32_t *p, uint32_t *work_mid,
+ uint32_t *work_end)
+{
+ int i;
+ int tmp_delay = 0;
+
+ *work_mid = (*work_bgn + *work_end) / 2;
+
+ debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
+ *work_bgn, *work_end, *work_mid);
+ /* Get the middle delay to be less than a VFIFO delay */
+ for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
+ (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+ ;
+ debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
+ while (*work_mid > tmp_delay)
+ *work_mid -= tmp_delay;
+ debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
+
+ tmp_delay = 0;
+ for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
+ (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
+ ;
+ tmp_delay -= IO_DELAY_PER_OPA_TAP;
+ debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
+ for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
+ tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
+ ;
+ debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
+
+ scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
+ scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
+
+ /*
+ * push vfifo until we can successfully calibrate. We can do this
+ * because the largest possible margin in 1 VFIFO cycle.
+ */
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
+ *v);
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
+ PASS_ONE_BIT,
+ bit_chk, 0)) {
+ break;
+ }
+
+ /* fiddle with FIFO */
+ rw_mgr_incr_vfifo(*grp, v);
+ }
+
+ if (i >= VFIFO_SIZE) {
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
+ failed\n", __func__, __LINE__);
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+/* find a good dqs enable to use */
+static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
+{
+ uint32_t v, d, p, i;
+ uint32_t max_working_cnt;
+ uint32_t bit_chk;
+ uint32_t dtaps_per_ptap;
+ uint32_t work_bgn, work_mid, work_end;
+ uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
+ uint32_t addr;
+
+ debug("%s:%d %u\n", __func__, __LINE__, grp);
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
+
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
+
+ /* ************************************************************** */
+ /* * Step 0 : Determine number of delay taps for each phase tap * */
+ dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+
+ /* ********************************************************* */
+ /* * Step 1 : First push vfifo until we get a failing read * */
+ v = find_vfifo_read(grp, &bit_chk);
+
+ max_working_cnt = 0;
+
+ /* ******************************************************** */
+ /* * step 2: find first working phase, increment in ptaps * */
+ work_bgn = 0;
+ if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
+ &p, &i, &max_working_cnt) == 0)
+ return 0;
+
+ work_end = work_bgn;
+
+ /*
+ * If d is 0 then the working window covers a phase tap and
+ * we can follow the old procedure otherwise, we've found the beginning,
+ * and we need to increment the dtaps until we find the end.
+ */
+ if (d == 0) {
+ /* ********************************************************* */
+ /* * step 3a: if we have room, back off by one and
+ increment in dtaps * */
+
+ sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
+ &max_working_cnt);
+
+ /* ********************************************************* */
+ /* * step 4a: go forward from working phase to non working
+ phase, increment in ptaps * */
+ if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
+ &i, &max_working_cnt, &work_end) == 0)
+ return 0;
+
+ /* ********************************************************* */
+ /* * step 5a: back off one from last, increment in dtaps * */
+
+ /* Special case code for backing up a phase */
+ if (p == 0) {
+ p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(grp, &v);
+ } else {
+ p = p - 1;
+ }
+
+ work_end -= IO_DELAY_PER_OPA_TAP;
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ /* * The actual increment of dtaps is done outside of
+ the if/else loop to share code */
+ d = 0;
+
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
+ vfifo=%u ptap=%u\n", __func__, __LINE__,
+ v, p);
+ } else {
+ /* ******************************************************* */
+ /* * step 3-5b: Find the right edge of the window using
+ delay taps * */
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
+ ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
+ v, p, d, work_bgn);
+
+ work_end = work_bgn;
+
+ /* * The actual increment of dtaps is done outside of the
+ if/else loop to share code */
+
+ /* Only here to counterbalance a subtract later on which is
+ not needed if this branch of the algorithm is taken */
+ max_working_cnt++;
+ }
+
+ /* The dtap increment to find the failing edge is done here */
+ for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
+ IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
+ end-2: dtap=%u\n", __func__, __LINE__, d);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0)) {
+ break;
+ }
+ }
+
+ /* Go back to working dtap */
+ if (d != 0)
+ work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
+ ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
+ v, p, d-1, work_end);
+
+ if (work_end < work_bgn) {
+ /* nil range */
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
+ failed\n", __func__, __LINE__);
+ return 0;
+ }
+
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
+ __func__, __LINE__, work_bgn, work_end);
+
+ /* *************************************************************** */
+ /*
+ * * We need to calculate the number of dtaps that equal a ptap
+ * * To do that we'll back up a ptap and re-find the edge of the
+ * * window using dtaps
+ */
+
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
+ for tracking\n", __func__, __LINE__);
+
+ /* Special case code for backing up a phase */
+ if (p == 0) {
+ p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(grp, &v);
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
+ cycle/phase: v=%u p=%u\n", __func__, __LINE__,
+ v, p);
+ } else {
+ p = p - 1;
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
+ phase only: v=%u p=%u", __func__, __LINE__,
+ v, p);
+ }
+
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ /*
+ * Increase dtap until we first see a passing read (in case the
+ * window is smaller than a ptap),
+ * and then a failing read to mark the edge of the window again
+ */
+
+ /* Find a passing read */
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
+ __func__, __LINE__);
+ found_passing_read = 0;
+ found_failing_read = 0;
+ initial_failing_dtap = d;
+ for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
+ read d=%u\n", __func__, __LINE__, d);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
+ PASS_ONE_BIT,
+ &bit_chk, 0)) {
+ found_passing_read = 1;
+ break;
+ }
+ }
+
+ if (found_passing_read) {
+ /* Find a failing read */
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
+ read\n", __func__, __LINE__);
+ for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
+ testing read d=%u\n", __func__, __LINE__, d);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ found_failing_read = 1;
+ break;
+ }
+ }
+ } else {
+ debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
+ calculate dtaps", __func__, __LINE__);
+ debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
+ }
+
+ /*
+ * The dynamically calculated dtaps_per_ptap is only valid if we
+ * found a passing/failing read. If we didn't, it means d hit the max
+ * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
+ * statically calculated value.
+ */
+ if (found_passing_read && found_failing_read)
+ dtaps_per_ptap = d - initial_failing_dtap;
+
+ addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap);
+ writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
+ - %u = %u", __func__, __LINE__, d,
+ initial_failing_dtap, dtaps_per_ptap);
+
+ /* ******************************************** */
+ /* * step 6: Find the centre of the window * */
+ if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
+ &work_mid, &work_end) == 0)
+ return 0;
+
+ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
+ vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
+ v, p-1, d);
+ return 1;
+}
+
+/*
+ * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
+ * dq_in_delay values
+ */
+static uint32_t
+rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
+(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
+{
+ uint32_t found;
+ uint32_t i;
+ uint32_t p;
+ uint32_t d;
+ uint32_t r;
+ uint32_t addr;
+
+ const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
+ (RW_MGR_MEM_DQ_PER_READ_DQS-1);
+ /* we start at zero, so have one less dq to devide among */
+
+ debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
+ test_bgn);
+
+ /* try different dq_in_delays since the dq path is shorter than dqs */
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
+ i++, p++, d += delay_step) {
+ debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
+ vfifo_find_dqs_", __func__, __LINE__);
+ debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
+ write_group, read_group);
+ debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
+ scc_mgr_set_dq_in_delay(write_group, p, d);
+ scc_mgr_load_dq(p);
+ }
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+
+ found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
+
+ debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
+ en_phase_sweep_dq", __func__, __LINE__);
+ debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
+ chain to zero\n", write_group, read_group, found);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
+ i++, p++) {
+ scc_mgr_set_dq_in_delay(write_group, p, 0);
+ scc_mgr_load_dq(p);
+ }
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+
+ return found;
+}
+
+/* per-bit deskew DQ and center */
+static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
+ uint32_t use_read_test, uint32_t update_fom)
+{
+ uint32_t i, p, d, min_index;
+ /*
+ * Store these as signed since there are comparisons with
+ * signed numbers.
+ */
+ uint32_t bit_chk;
+ uint32_t sticky_bit_chk;
+ int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t mid;
+ int32_t orig_mid_min, mid_min;
+ int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
+ final_dqs_en;
+ int32_t dq_margin, dqs_margin;
+ uint32_t stop;
+ uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
+ uint32_t addr;
+
+ debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
+
+ addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
+ start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+ start_dqs_en = readl(SOCFPGA_SDR_ADDRESS + addr + ((read_group << 2)
+ - IO_DQS_EN_DELAY_OFFSET));
+
+ /* set the left and right edge of each bit to an illegal value */
+ /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
+ sticky_bit_chk = 0;
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ }
+
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ /* Search for the left edge of the window for each bit */
+ for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
+
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ if (use_read_test) {
+ stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
+ read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
+ &bit_chk, 0, 0);
+ } else {
+ rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT,
+ &bit_chk, 0);
+ bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+ (read_group - (write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
+ stop = (bit_chk == 0);
+ }
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->read_correct_mask);
+ debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
+ && %u", __func__, __LINE__, d,
+ sticky_bit_chk,
+ param->read_correct_mask, stop);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ if (bit_chk & 1) {
+ /* Remember a passing test as the
+ left_edge */
+ left_edge[i] = d;
+ } else {
+ /* If a left edge has not been seen yet,
+ then a future passing test will mark
+ this edge as the right edge */
+ if (left_edge[i] ==
+ IO_IO_IN_DELAY_MAX + 1) {
+ right_edge[i] = -(d + 1);
+ }
+ }
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Reset DQ delay chains to 0 */
+ scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
+ sticky_bit_chk = 0;
+ for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
+ debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
+ %d right_edge[%u]: %d\n", __func__, __LINE__,
+ i, left_edge[i], i, right_edge[i]);
+
+ /*
+ * Check for cases where we haven't found the left edge,
+ * which makes our assignment of the the right edge invalid.
+ * Reset it to the illegal value.
+ */
+ if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
+ right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+ right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
+ right_edge[%u]: %d\n", __func__, __LINE__,
+ i, right_edge[i]);
+ }
+
+ /*
+ * Reset sticky bit (except for bits where we have seen
+ * both the left and right edge).
+ */
+ sticky_bit_chk = sticky_bit_chk << 1;
+ if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
+ (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+ sticky_bit_chk = sticky_bit_chk | 1;
+ }
+
+ if (i == 0)
+ break;
+ }
+
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ /* Search for the right edge of the window for each bit */
+ for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
+ scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ uint32_t delay = d + start_dqs_en;
+ if (delay > IO_DQS_EN_DELAY_MAX)
+ delay = IO_DQS_EN_DELAY_MAX;
+ scc_mgr_set_dqs_en_delay(read_group, delay);
+ }
+ scc_mgr_load_dqs(read_group);
+
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ if (use_read_test) {
+ stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
+ read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
+ &bit_chk, 0, 0);
+ } else {
+ rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT,
+ &bit_chk, 0);
+ bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+ (read_group - (write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
+ stop = (bit_chk == 0);
+ }
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->read_correct_mask);
+
+ debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
+ %u && %u", __func__, __LINE__, d,
+ sticky_bit_chk, param->read_correct_mask, stop);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ if (bit_chk & 1) {
+ /* Remember a passing test as
+ the right_edge */
+ right_edge[i] = d;
+ } else {
+ if (d != 0) {
+ /* If a right edge has not been
+ seen yet, then a future passing
+ test will mark this edge as the
+ left edge */
+ if (right_edge[i] ==
+ IO_IO_IN_DELAY_MAX + 1) {
+ left_edge[i] = -(d + 1);
+ }
+ } else {
+ /* d = 0 failed, but it passed
+ when testing the left edge,
+ so it must be marginal,
+ set it to -1 */
+ if (right_edge[i] ==
+ IO_IO_IN_DELAY_MAX + 1 &&
+ left_edge[i] !=
+ IO_IO_IN_DELAY_MAX
+ + 1) {
+ right_edge[i] = -1;
+ }
+ /* If a right edge has not been
+ seen yet, then a future passing
+ test will mark this edge as the
+ left edge */
+ else if (right_edge[i] ==
+ IO_IO_IN_DELAY_MAX +
+ 1) {
+ left_edge[i] = -(d + 1);
+ }
+ }
+ }
+
+ debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
+ d=%u]: ", __func__, __LINE__, d);
+ debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
+ (int)(bit_chk & 1), i, left_edge[i]);
+ debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
+ right_edge[i]);
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Check that all bits have a window */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
+ %d right_edge[%u]: %d", __func__, __LINE__,
+ i, left_edge[i], i, right_edge[i]);
+ if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
+ == IO_IO_IN_DELAY_MAX + 1)) {
+ /*
+ * Restore delay chain settings before letting the loop
+ * in rw_mgr_mem_calibrate_vfifo to retry different
+ * dqs/ck relationships.
+ */
+ scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ scc_mgr_set_dqs_en_delay(read_group,
+ start_dqs_en);
+ }
+ scc_mgr_load_dqs(read_group);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
+ find edge [%u]: %d %d", __func__, __LINE__,
+ i, left_edge[i], right_edge[i]);
+ if (use_read_test) {
+ set_failing_group_stage(read_group *
+ RW_MGR_MEM_DQ_PER_READ_DQS + i,
+ CAL_STAGE_VFIFO,
+ CAL_SUBSTAGE_VFIFO_CENTER);
+ } else {
+ set_failing_group_stage(read_group *
+ RW_MGR_MEM_DQ_PER_READ_DQS + i,
+ CAL_STAGE_VFIFO_AFTER_WRITES,
+ CAL_SUBSTAGE_VFIFO_CENTER);
+ }
+ return 0;
+ }
+ }
+
+ /* Find middle of window for each DQ bit */
+ mid_min = left_edge[0] - right_edge[0];
+ min_index = 0;
+ for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ mid = left_edge[i] - right_edge[i];
+ if (mid < mid_min) {
+ mid_min = mid;
+ min_index = i;
+ }
+ }
+
+ /*
+ * -mid_min/2 represents the amount that we need to move DQS.
+ * If mid_min is odd and positive we'll need to add one to
+ * make sure the rounding in further calculations is correct
+ * (always bias to the right), so just add 1 for all positive values.
+ */
+ if (mid_min > 0)
+ mid_min++;
+
+ mid_min = mid_min / 2;
+
+ debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
+ __func__, __LINE__, mid_min, min_index);
+
+ /* Determine the amount we can change DQS (which is -mid_min) */
+ orig_mid_min = mid_min;
+ new_dqs = start_dqs - mid_min;
+ if (new_dqs > IO_DQS_IN_DELAY_MAX)
+ new_dqs = IO_DQS_IN_DELAY_MAX;
+ else if (new_dqs < 0)
+ new_dqs = 0;
+
+ mid_min = start_dqs - new_dqs;
+ debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
+ mid_min, new_dqs);
+
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
+ mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
+ else if (start_dqs_en - mid_min < 0)
+ mid_min += start_dqs_en - mid_min;
+ }
+ new_dqs = start_dqs - mid_min;
+
+ debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
+ new_dqs=%d mid_min=%d\n", start_dqs,
+ IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
+ new_dqs, mid_min);
+
+ /* Initialize data for export structures */
+ dqs_margin = IO_IO_IN_DELAY_MAX + 1;
+ dq_margin = IO_IO_IN_DELAY_MAX + 1;
+
+ addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
+ /* add delay to bring centre of all DQ windows to the same "level" */
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+ /* Use values before divide by 2 to reduce round off error */
+ shift_dq = (left_edge[i] - right_edge[i] -
+ (left_edge[min_index] - right_edge[min_index]))/2 +
+ (orig_mid_min - mid_min);
+
+ debug_cond(DLEVEL == 2, "vfifo_center: before: \
+ shift_dq[%u]=%d\n", i, shift_dq);
+
+ temp_dq_in_delay1 = readl(SOCFPGA_SDR_ADDRESS + addr + (p << 2));
+ temp_dq_in_delay2 = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
+
+ if (shift_dq + (int32_t)temp_dq_in_delay1 >
+ (int32_t)IO_IO_IN_DELAY_MAX) {
+ shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
+ } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
+ shift_dq = -(int32_t)temp_dq_in_delay1;
+ }
+ debug_cond(DLEVEL == 2, "vfifo_center: after: \
+ shift_dq[%u]=%d\n", i, shift_dq);
+ final_dq[i] = temp_dq_in_delay1 + shift_dq;
+ scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
+ scc_mgr_load_dq(p);
+
+ debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
+ left_edge[i] - shift_dq + (-mid_min),
+ right_edge[i] + shift_dq - (-mid_min));
+ /* To determine values for export structures */
+ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
+ dq_margin = left_edge[i] - shift_dq + (-mid_min);
+
+ if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
+ dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+ }
+
+ final_dqs = new_dqs;
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
+ final_dqs_en = start_dqs_en - mid_min;
+
+ /* Move DQS-en */
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
+ scc_mgr_load_dqs(read_group);
+ }
+
+ /* Move DQS */
+ scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
+ scc_mgr_load_dqs(read_group);
+ debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
+ dqs_margin=%d", __func__, __LINE__,
+ dq_margin, dqs_margin);
+
+ /*
+ * Do not remove this line as it makes sure all of our decisions
+ * have been applied. Apply the update bit.
+ */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ return (dq_margin >= 0) && (dqs_margin >= 0);
+}
+
+/*
+ * calibrate the read valid prediction FIFO.
+ *
+ * - read valid prediction will consist of finding a good DQS enable phase,
+ * DQS enable delay, DQS input phase, and DQS input delay.
+ * - we also do a per-bit deskew on the DQ lines.
+ */
+static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
+ uint32_t test_bgn)
+{
+ uint32_t p, d, rank_bgn, sr;
+ uint32_t dtaps_per_ptap;
+ uint32_t tmp_delay;
+ uint32_t bit_chk;
+ uint32_t grp_calibrated;
+ uint32_t write_group, write_test_bgn;
+ uint32_t failed_substage;
+
+ debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_VFIFO);
+
+ write_group = read_group;
+ write_test_bgn = test_bgn;
+
+ /* USER Determine number of delay taps for each phase tap */
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+ tmp_delay = 0;
+
+ /* update info for sims */
+ reg_file_set_group(read_group);
+
+ grp_calibrated = 0;
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
+ failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
+
+ for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
+ /*
+ * In RLDRAMX we may be messing the delay of pins in
+ * the same write group but outside of the current read
+ * the group, but that's ok because we haven't
+ * calibrated output side yet.
+ */
+ if (d > 0) {
+ scc_mgr_apply_group_all_out_delay_add_all_ranks
+ (write_group, write_test_bgn, d);
+ }
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
+ p++) {
+ /* set a particular dqdqs phase */
+ scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
+
+ debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
+ p=%u d=%u\n", __func__, __LINE__,
+ read_group, p, d);
+
+ /*
+ * Load up the patterns used by read calibration
+ * using current DQDQS phase.
+ */
+ rw_mgr_mem_calibrate_read_load_patterns(0, 1);
+ if (!(gbl->phy_debug_mode_flags &
+ PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
+ if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+ (read_group, 1, &bit_chk)) {
+ debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
+ __func__, __LINE__);
+ debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
+ read_group, p, d);
+ break;
+ }
+ }
+
+/* case:56390 */
+ grp_calibrated = 1;
+ if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
+ (write_group, read_group, test_bgn)) {
+ /*
+ * USER Read per-bit deskew can be done on a
+ * per shadow register basis.
+ */
+ for (rank_bgn = 0, sr = 0;
+ rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG,
+ ++sr) {
+ /*
+ * Determine if this set of ranks
+ * should be skipped entirely.
+ */
+ if (!param->skip_shadow_regs[sr]) {
+ /*
+ * If doing read after write
+ * calibration, do not update
+ * FOM, now - do it then.
+ */
+ if (!rw_mgr_mem_calibrate_vfifo_center
+ (rank_bgn, write_group,
+ read_group, test_bgn, 1, 0)) {
+ grp_calibrated = 0;
+ failed_substage =
+ CAL_SUBSTAGE_VFIFO_CENTER;
+ }
+ }
+ }
+ } else {
+ grp_calibrated = 0;
+ failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
+ }
+ }
+ }
+
+ if (grp_calibrated == 0) {
+ set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
+ failed_substage);
+ return 0;
+ }
+
+ /*
+ * Reset the delay chains back to zero if they have moved > 1
+ * (check for > 1 because loop will increase d even when pass in
+ * first case).
+ */
+ if (d > 2)
+ scc_mgr_zero_group(write_group, write_test_bgn, 1);
+
+ return 1;
+}
+
+/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
+static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
+ uint32_t test_bgn)
+{
+ uint32_t rank_bgn, sr;
+ uint32_t grp_calibrated;
+ uint32_t write_group;
+
+ debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
+
+ /* update info for sims */
+
+ reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
+
+ write_group = read_group;
+
+ /* update info for sims */
+ reg_file_set_group(read_group);
+
+ grp_calibrated = 1;
+ /* Read per-bit deskew can be done on a per shadow register basis */
+ for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
+ /* Determine if this set of ranks should be skipped entirely */
+ if (!param->skip_shadow_regs[sr]) {
+ /* This is the last calibration round, update FOM here */
+ if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
+ write_group,
+ read_group,
+ test_bgn, 0,
+ 1)) {
+ grp_calibrated = 0;
+ }
+ }
+ }
+
+
+ if (grp_calibrated == 0) {
+ set_failing_group_stage(write_group,
+ CAL_STAGE_VFIFO_AFTER_WRITES,
+ CAL_SUBSTAGE_VFIFO_CENTER);
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Calibrate LFIFO to find smallest read latency */
+static uint32_t rw_mgr_mem_calibrate_lfifo(void)
+{
+ uint32_t found_one;
+ uint32_t bit_chk;
+ uint32_t addr;
+
+ debug("%s:%d\n", __func__, __LINE__);
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_LFIFO);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
+
+ /* Load up the patterns used by read calibration for all ranks */
+ rw_mgr_mem_calibrate_read_load_patterns(0, 1);
+ found_one = 0;
+
+ addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
+ do {
+ writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
+ debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
+ __func__, __LINE__, gbl->curr_read_lat);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
+ NUM_READ_TESTS,
+ PASS_ALL_BITS,
+ &bit_chk, 1)) {
+ break;
+ }
+
+ found_one = 1;
+ /* reduce read latency and see if things are working */
+ /* correctly */
+ gbl->curr_read_lat--;
+ } while (gbl->curr_read_lat > 0);
+
+ /* reset the fifos to get pointers to known state */
+
+ addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ if (found_one) {
+ /* add a fudge factor to the read latency that was determined */
+ gbl->curr_read_lat += 2;
+ addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
+ writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
+ debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
+ read_lat=%u\n", __func__, __LINE__,
+ gbl->curr_read_lat);
+ return 1;
+ } else {
+ set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
+ CAL_SUBSTAGE_READ_LATENCY);
+
+ debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
+ read_lat=%u\n", __func__, __LINE__,
+ gbl->curr_read_lat);
+ return 0;
+ }
+}
+
+/*
+ * issue write test command.
+ * two variants are provided. one that just tests a write pattern and
+ * another that tests datamask functionality.
+ */
+static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
+ uint32_t test_dm)
+{
+ uint32_t mcc_instruction;
+ uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
+ ENABLE_SUPER_QUICK_CALIBRATION);
+ uint32_t rw_wl_nop_cycles;
+ uint32_t addr;
+
+ /*
+ * Set counter and jump addresses for the right
+ * number of NOP cycles.
+ * The number of supported NOP cycles can range from -1 to infinity
+ * Three different cases are handled:
+ *
+ * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
+ * mechanism will be used to insert the right number of NOPs
+ *
+ * 2. For a number of NOP cycles equals to 0, the micro-instruction
+ * issuing the write command will jump straight to the
+ * micro-instruction that turns on DQS (for DDRx), or outputs write
+ * data (for RLD), skipping
+ * the NOP micro-instruction all together
+ *
+ * 3. A number of NOP cycles equal to -1 indicates that DQS must be
+ * turned on in the same micro-instruction that issues the write
+ * command. Then we need
+ * to directly jump to the micro-instruction that sends out the data
+ *
+ * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
+ * (2 and 3). One jump-counter (0) is used to perform multiple
+ * write-read operations.
+ * one counter left to issue this command in "multiple-group" mode
+ */
+
+ rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
+
+ if (rw_wl_nop_cycles == -1) {
+ /*
+ * CNTR 2 - We want to execute the special write operation that
+ * turns on DQS right away and then skip directly to the
+ * instruction that sends out the data. We set the counter to a
+ * large number so that the jump is always taken.
+ */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
+ writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* CNTR 3 - Not used */
+ if (test_dm) {
+ mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
+ SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
+ writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
+ SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
+ writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ } else if (rw_wl_nop_cycles == 0) {
+ /*
+ * CNTR 2 - We want to skip the NOP operation and go straight
+ * to the DQS enable instruction. We set the counter to a large
+ * number so that the jump is always taken.
+ */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
+ writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* CNTR 3 - Not used */
+ if (test_dm) {
+ mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
+ SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ } else {
+ /*
+ * CNTR 2 - In this case we want to execute the next instruction
+ * and NOT take the jump. So we set the counter to 0. The jump
+ * address doesn't count.
+ */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
+ writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
+ writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * CNTR 3 - Set the nop counter to the number of cycles we
+ * need to loop for, minus 1.
+ */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
+ writel(rw_wl_nop_cycles - 1, SOCFPGA_SDR_ADDRESS + addr);
+ if (test_dm) {
+ mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
+ writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
+ writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ }
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ if (quick_write_mode)
+ writel(0x08, SOCFPGA_SDR_ADDRESS + addr);
+ else
+ writel(0x40, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * CNTR 1 - This is used to ensure enough time elapses
+ * for read data to come back.
+ */
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(0x30, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ if (test_dm) {
+ writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
+ }
+
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
+}
+
+/* Test writes, can check for a single bit pass or multiple bit pass */
+static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
+ uint32_t *bit_chk, uint32_t all_ranks)
+{
+ uint32_t addr;
+ uint32_t r;
+ uint32_t correct_mask_vg;
+ uint32_t tmp_bit_chk;
+ uint32_t vg;
+ uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
+ (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+ uint32_t addr_rw_mgr;
+ uint32_t base_rw_mgr;
+
+ *bit_chk = param->write_correct_mask;
+ correct_mask_vg = param->write_correct_mask_vg;
+
+ for (r = rank_bgn; r < rank_end; r++) {
+ if (param->skip_ranks[r]) {
+ /* request to skip the rank */
+ continue;
+ }
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
+
+ tmp_bit_chk = 0;
+ addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
+ addr_rw_mgr = sdr_get_addr((u32 *)BASE_RW_MGR);
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
+ /* reset the fifos to get pointers to known state */
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ tmp_bit_chk = tmp_bit_chk <<
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
+ rw_mgr_mem_calibrate_write_test_issue(write_group *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
+ use_dm);
+
+ base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr_rw_mgr);
+ tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
+ if (vg == 0)
+ break;
+ }
+ *bit_chk &= tmp_bit_chk;
+ }
+
+ if (all_correct) {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
+ %u => %lu", write_group, use_dm,
+ *bit_chk, param->write_correct_mask,
+ (long unsigned int)(*bit_chk ==
+ param->write_correct_mask));
+ return *bit_chk == param->write_correct_mask;
+ } else {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
+ write_group, use_dm, *bit_chk);
+ debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
+ (long unsigned int)(*bit_chk != 0));
+ return *bit_chk != 0x00;
+ }
+}
+
+/*
+ * center all windows. do per-bit-deskew to possibly increase size of
+ * certain windows.
+ */
+static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
+ uint32_t write_group, uint32_t test_bgn)
+{
+ uint32_t i, p, min_index;
+ int32_t d;
+ /*
+ * Store these as signed since there are comparisons with
+ * signed numbers.
+ */
+ uint32_t bit_chk;
+ uint32_t sticky_bit_chk;
+ int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
+ int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
+ int32_t mid;
+ int32_t mid_min, orig_mid_min;
+ int32_t new_dqs, start_dqs, shift_dq;
+ int32_t dq_margin, dqs_margin, dm_margin;
+ uint32_t stop;
+ uint32_t temp_dq_out1_delay;
+ uint32_t addr;
+
+ debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
+
+ dm_margin = 0;
+
+ addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
+ start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr +
+ (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
+
+ /* per-bit deskew */
+
+ /*
+ * set the left and right edge of each bit to an illegal value
+ * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
+ */
+ sticky_bit_chk = 0;
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ }
+
+ /* Search for the left edge of the window for each bit */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
+
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT, &bit_chk, 0);
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->write_correct_mask);
+ debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
+ == %u && %u [bit_chk= %u ]\n",
+ d, sticky_bit_chk, param->write_correct_mask,
+ stop, bit_chk);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ if (bit_chk & 1) {
+ /*
+ * Remember a passing test as the
+ * left_edge.
+ */
+ left_edge[i] = d;
+ } else {
+ /*
+ * If a left edge has not been seen
+ * yet, then a future passing test will
+ * mark this edge as the right edge.
+ */
+ if (left_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[i] = -(d + 1);
+ }
+ }
+ debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
+ debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
+ (int)(bit_chk & 1), i, left_edge[i]);
+ debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
+ right_edge[i]);
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Reset DQ delay chains to 0 */
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
+ sticky_bit_chk = 0;
+ for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
+ debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
+ %d right_edge[%u]: %d\n", __func__, __LINE__,
+ i, left_edge[i], i, right_edge[i]);
+
+ /*
+ * Check for cases where we haven't found the left edge,
+ * which makes our assignment of the the right edge invalid.
+ * Reset it to the illegal value.
+ */
+ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
+ (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
+ right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
+ right_edge[%u]: %d\n", __func__, __LINE__,
+ i, right_edge[i]);
+ }
+
+ /*
+ * Reset sticky bit (except for bits where we have
+ * seen the left edge).
+ */
+ sticky_bit_chk = sticky_bit_chk << 1;
+ if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
+ sticky_bit_chk = sticky_bit_chk | 1;
+
+ if (i == 0)
+ break;
+ }
+
+ /* Search for the right edge of the window for each bit */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+ d + start_dqs);
+
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * Stop searching when the read test doesn't pass AND when
+ * we've seen a passing read on every bit.
+ */
+ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
+ 0, PASS_ONE_BIT, &bit_chk, 0);
+
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->write_correct_mask);
+
+ debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
+ %u && %u\n", d, sticky_bit_chk,
+ param->write_correct_mask, stop);
+
+ if (stop == 1) {
+ if (d == 0) {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
+ i++) {
+ /* d = 0 failed, but it passed when
+ testing the left edge, so it must be
+ marginal, set it to -1 */
+ if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1 &&
+ left_edge[i] !=
+ IO_IO_OUT1_DELAY_MAX + 1) {
+ right_edge[i] = -1;
+ }
+ }
+ }
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ if (bit_chk & 1) {
+ /*
+ * Remember a passing test as
+ * the right_edge.
+ */
+ right_edge[i] = d;
+ } else {
+ if (d != 0) {
+ /*
+ * If a right edge has not
+ * been seen yet, then a future
+ * passing test will mark this
+ * edge as the left edge.
+ */
+ if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1)
+ left_edge[i] = -(d + 1);
+ } else {
+ /*
+ * d = 0 failed, but it passed
+ * when testing the left edge,
+ * so it must be marginal, set
+ * it to -1.
+ */
+ if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX + 1 &&
+ left_edge[i] !=
+ IO_IO_OUT1_DELAY_MAX + 1)
+ right_edge[i] = -1;
+ /*
+ * If a right edge has not been
+ * seen yet, then a future
+ * passing test will mark this
+ * edge as the left edge.
+ */
+ else if (right_edge[i] ==
+ IO_IO_OUT1_DELAY_MAX +
+ 1)
+ left_edge[i] = -(d + 1);
+ }
+ }
+ debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
+ debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
+ (int)(bit_chk & 1), i, left_edge[i]);
+ debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
+ right_edge[i]);
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ /* Check that all bits have a window */
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
+ %d right_edge[%u]: %d", __func__, __LINE__,
+ i, left_edge[i], i, right_edge[i]);
+ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
+ (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
+ set_failing_group_stage(test_bgn + i,
+ CAL_STAGE_WRITES,
+ CAL_SUBSTAGE_WRITES_CENTER);
+ return 0;
+ }
+ }
+
+ /* Find middle of window for each DQ bit */
+ mid_min = left_edge[0] - right_edge[0];
+ min_index = 0;
+ for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ mid = left_edge[i] - right_edge[i];
+ if (mid < mid_min) {
+ mid_min = mid;
+ min_index = i;
+ }
+ }
+
+ /*
+ * -mid_min/2 represents the amount that we need to move DQS.
+ * If mid_min is odd and positive we'll need to add one to
+ * make sure the rounding in further calculations is correct
+ * (always bias to the right), so just add 1 for all positive values.
+ */
+ if (mid_min > 0)
+ mid_min++;
+ mid_min = mid_min / 2;
+ debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
+ __LINE__, mid_min);
+
+ /* Determine the amount we can change DQS (which is -mid_min) */
+ orig_mid_min = mid_min;
+ new_dqs = start_dqs;
+ mid_min = 0;
+ debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
+ mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
+ /* Initialize data for export structures */
+ dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
+ dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
+
+ /* add delay to bring centre of all DQ windows to the same "level" */
+ addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ /* Use values before divide by 2 to reduce round off error */
+ shift_dq = (left_edge[i] - right_edge[i] -
+ (left_edge[min_index] - right_edge[min_index]))/2 +
+ (orig_mid_min - mid_min);
+
+ debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
+ [%u]=%d\n", __func__, __LINE__, i, shift_dq);
+
+ temp_dq_out1_delay = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
+ if (shift_dq + (int32_t)temp_dq_out1_delay >
+ (int32_t)IO_IO_OUT1_DELAY_MAX) {
+ shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
+ } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
+ shift_dq = -(int32_t)temp_dq_out1_delay;
+ }
+ debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
+ i, shift_dq);
+ scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
+ shift_dq);
+ scc_mgr_load_dq(i);
+
+ debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
+ left_edge[i] - shift_dq + (-mid_min),
+ right_edge[i] + shift_dq - (-mid_min));
+ /* To determine values for export structures */
+ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
+ dq_margin = left_edge[i] - shift_dq + (-mid_min);
+
+ if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
+ dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+ }
+
+ /* Move DQS */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Centre DM */
+ debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
+
+ /*
+ * set the left and right edge of each bit to an illegal value,
+ * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
+ */
+ left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+ right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t win_best = 0;
+
+ /* Search for the/part of the window with DM shift */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
+ scc_mgr_apply_group_dm_out1_delay(write_group, d);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
+ PASS_ALL_BITS, &bit_chk,
+ 0)) {
+ /* USE Set current end of the window */
+ end_curr = -d;
+ /*
+ * If a starting edge of our window has not been seen
+ * this is our current start of the DM window.
+ */
+ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+ bgn_curr = -d;
+
+ /*
+ * If current window is bigger than best seen.
+ * Set best seen to be current window.
+ */
+ if ((end_curr-bgn_curr+1) > win_best) {
+ win_best = end_curr-bgn_curr+1;
+ bgn_best = bgn_curr;
+ end_best = end_curr;
+ }
+ } else {
+ /* We just saw a failing test. Reset temp edge */
+ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ }
+ }
+
+
+ /* Reset DM delay chains to 0 */
+ scc_mgr_apply_group_dm_out1_delay(write_group, 0);
+
+ /*
+ * Check to see if the current window nudges up aganist 0 delay.
+ * If so we need to continue the search by shifting DQS otherwise DQS
+ * search begins as a new search. */
+ if (end_curr != 0) {
+ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ }
+
+ /* Search for the/part of the window with DQS shifts */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
+ /*
+ * Note: This only shifts DQS, so are we limiting ourselve to
+ * width of DQ unnecessarily.
+ */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
+ d + new_dqs);
+
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
+ PASS_ALL_BITS, &bit_chk,
+ 0)) {
+ /* USE Set current end of the window */
+ end_curr = d;
+ /*
+ * If a beginning edge of our window has not been seen
+ * this is our current begin of the DM window.
+ */
+ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+ bgn_curr = d;
+
+ /*
+ * If current window is bigger than best seen. Set best
+ * seen to be current window.
+ */
+ if ((end_curr-bgn_curr+1) > win_best) {
+ win_best = end_curr-bgn_curr+1;
+ bgn_best = bgn_curr;
+ end_best = end_curr;
+ }
+ } else {
+ /* We just saw a failing test. Reset temp edge */
+ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+
+ /* Early exit optimization: if ther remaining delay
+ chain space is less than already seen largest window
+ we can exit */
+ if ((win_best-1) >
+ (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
+ break;
+ }
+ }
+ }
+
+ /* assign left and right edge for cal and reporting; */
+ left_edge[0] = -1*bgn_best;
+ right_edge[0] = end_best;
+
+ debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
+ __LINE__, left_edge[0], right_edge[0]);
+
+ /* Move DQS (back to orig) */
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+
+ /* Move DM */
+
+ /* Find middle of window for the DM bit */
+ mid = (left_edge[0] - right_edge[0]) / 2;
+
+ /* only move right, since we are not moving DQS/DQ */
+ if (mid < 0)
+ mid = 0;
+
+ /* dm_marign should fail if we never find a window */
+ if (win_best == 0)
+ dm_margin = -1;
+ else
+ dm_margin = left_edge[0] - mid;
+
+ scc_mgr_apply_group_dm_out1_delay(write_group, mid);
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
+ dm_margin=%d\n", __func__, __LINE__, left_edge[0],
+ right_edge[0], mid, dm_margin);
+ /* Export values */
+ gbl->fom_out += dq_margin + dqs_margin;
+
+ debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
+ dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
+ dq_margin, dqs_margin, dm_margin);
+
+ /*
+ * Do not remove this line as it makes sure all of our
+ * decisions have been applied.
+ */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
+}
+
+/* calibrate the write operations */
+static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
+ uint32_t test_bgn)
+{
+ /* update info for sims */
+ debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
+
+ reg_file_set_stage(CAL_STAGE_WRITES);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
+
+ reg_file_set_group(g);
+
+ if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
+ set_failing_group_stage(g, CAL_STAGE_WRITES,
+ CAL_SUBSTAGE_WRITES_CENTER);
+ return 0;
+ }
+
+ return 1;
+}
+
+/* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
+static void mem_precharge_and_activate(void)
+{
+ uint32_t r;
+ uint32_t addr;
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
+ if (param->skip_ranks[r]) {
+ /* request to skip the rank */
+ continue;
+ }
+
+ /* set rank */
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+
+ /* precharge all banks ... */
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
+ writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
+ writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
+ writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
+ writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* activate rows */
+ addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
+ writel(RW_MGR_ACTIVATE_0_AND_1, SOCFPGA_SDR_ADDRESS + addr);
+ }
+}
+
+/* Configure various memory related parameters. */
+static void mem_config(void)
+{
+ uint32_t rlat, wlat;
+ uint32_t rw_wl_nop_cycles;
+ uint32_t max_latency;
+ uint32_t addr;
+
+ debug("%s:%d\n", __func__, __LINE__);
+ /* read in write and read latency */
+ addr = sdr_get_addr(&data_mgr->t_wl_add);
+ wlat = readl(SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&data_mgr->mem_t_add);
+ wlat += readl(SOCFPGA_SDR_ADDRESS + addr);
+ /* WL for hard phy does not include additive latency */
+
+ /*
+ * add addtional write latency to offset the address/command extra
+ * clock cycle. We change the AC mux setting causing AC to be delayed
+ * by one mem clock cycle. Only do this for DDR3
+ */
+ wlat = wlat + 1;
+
+ addr = sdr_get_addr(&data_mgr->t_rl_add);
+ rlat = readl(SOCFPGA_SDR_ADDRESS + addr);
+
+ rw_wl_nop_cycles = wlat - 2;
+ gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
+
+ /*
+ * For AV/CV, lfifo is hardened and always runs at full rate so
+ * max latency in AFI clocks, used here, is correspondingly smaller.
+ */
+ max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
+ /* configure for a burst length of 8 */
+
+ /* write latency */
+ /* Adjust Write Latency for Hard PHY */
+ wlat = wlat + 1;
+
+ /* set a pretty high read latency initially */
+ gbl->curr_read_lat = rlat + 16;
+
+ if (gbl->curr_read_lat > max_latency)
+ gbl->curr_read_lat = max_latency;
+
+ addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
+ writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* advertise write latency */
+ gbl->curr_write_lat = wlat;
+ addr = sdr_get_addr(&phy_mgr_cfg->afi_wlat);
+ writel(wlat - 2, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* initialize bit slips */
+ mem_precharge_and_activate();
+}
+
+/* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
+static void mem_skip_calibrate(void)
+{
+ uint32_t vfifo_offset;
+ uint32_t i, j, r;
+ uint32_t addr;
+
+ debug("%s:%d\n", __func__, __LINE__);
+ /* Need to update every shadow register set used by the interface */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
+ r += NUM_RANKS_PER_SHADOW_REG) {
+ /*
+ * Set output phase alignment settings appropriate for
+ * skip calibration.
+ */
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ scc_mgr_set_dqs_en_phase(i, 0);
+#if IO_DLL_CHAIN_LENGTH == 6
+ scc_mgr_set_dqdqs_output_phase(i, 6);
+#else
+ scc_mgr_set_dqdqs_output_phase(i, 7);
+#endif
+ /*
+ * Case:33398
+ *
+ * Write data arrives to the I/O two cycles before write
+ * latency is reached (720 deg).
+ * -> due to bit-slip in a/c bus
+ * -> to allow board skew where dqs is longer than ck
+ * -> how often can this happen!?
+ * -> can claim back some ptaps for high freq
+ * support if we can relax this, but i digress...
+ *
+ * The write_clk leads mem_ck by 90 deg
+ * The minimum ptap of the OPA is 180 deg
+ * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
+ * The write_clk is always delayed by 2 ptaps
+ *
+ * Hence, to make DQS aligned to CK, we need to delay
+ * DQS by:
+ * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
+ *
+ * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
+ * gives us the number of ptaps, which simplies to:
+ *
+ * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
+ */
+ scc_mgr_set_dqdqs_output_phase(i, (1.25 *
+ IO_DLL_CHAIN_LENGTH - 2));
+ }
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ writel(i, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ }
+
+ /* Compensate for simulation model behaviour */
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ scc_mgr_set_dqs_bus_in_delay(i, 10);
+ scc_mgr_load_dqs(i);
+ }
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * ArriaV has hard FIFOs that can only be initialized by incrementing
+ * in sequencer.
+ */
+ vfifo_offset = CALIB_VFIFO_OFFSET;
+ addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
+ for (j = 0; j < vfifo_offset; j++) {
+ writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
+ }
+ addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * For ACV with hard lfifo, we get the skip-cal setting from
+ * generation-time constant.
+ */
+ gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
+ addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
+ writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+/* Memory calibration entry point */
+static uint32_t mem_calibrate(void)
+{
+ uint32_t i;
+ uint32_t rank_bgn, sr;
+ uint32_t write_group, write_test_bgn;
+ uint32_t read_group, read_test_bgn;
+ uint32_t run_groups, current_run;
+ uint32_t failing_groups = 0;
+ uint32_t group_failed = 0;
+ uint32_t sr_failed = 0;
+ uint32_t addr;
+
+ debug("%s:%d\n", __func__, __LINE__);
+ /* Initialize the data settings */
+
+ gbl->error_substage = CAL_SUBSTAGE_NIL;
+ gbl->error_stage = CAL_STAGE_NIL;
+ gbl->error_group = 0xff;
+ gbl->fom_in = 0;
+ gbl->fom_out = 0;
+
+ mem_config();
+
+ uint32_t bypass_mode = 0x1;
+ addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ writel(i, SOCFPGA_SDR_ADDRESS + addr);
+ scc_set_bypass_mode(i, bypass_mode);
+ }
+
+ if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
+ /*
+ * Set VFIFO and LFIFO to instant-on settings in skip
+ * calibration mode.
+ */
+ mem_skip_calibrate();
+ } else {
+ for (i = 0; i < NUM_CALIB_REPEAT; i++) {
+ /*
+ * Zero all delay chain/phase settings for all
+ * groups and all shadow register sets.
+ */
+ scc_mgr_zero_all();
+
+ run_groups = ~param->skip_groups;
+
+ for (write_group = 0, write_test_bgn = 0; write_group
+ < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
+ write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+ /* Initialized the group failure */
+ group_failed = 0;
+
+ current_run = run_groups & ((1 <<
+ RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
+ run_groups = run_groups >>
+ RW_MGR_NUM_DQS_PER_WRITE_GROUP;
+
+ if (current_run == 0)
+ continue;
+
+ addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
+ writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
+ scc_mgr_zero_group(write_group, write_test_bgn,
+ 0);
+
+ for (read_group = write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+ read_test_bgn = 0;
+ read_group < (write_group + 1) *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
+ group_failed == 0;
+ read_group++, read_test_bgn +=
+ RW_MGR_MEM_DQ_PER_READ_DQS) {
+ /* Calibrate the VFIFO */
+ if (!((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_VFIFO)) {
+ if (!rw_mgr_mem_calibrate_vfifo
+ (read_group,
+ read_test_bgn)) {
+ group_failed = 1;
+
+ if (!(gbl->
+ phy_debug_mode_flags &
+ PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+
+ /* Calibrate the output side */
+ if (group_failed == 0) {
+ for (rank_bgn = 0, sr = 0; rank_bgn
+ < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn +=
+ NUM_RANKS_PER_SHADOW_REG,
+ ++sr) {
+ sr_failed = 0;
+ if (!((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_WRITES)) {
+ if ((STATIC_CALIB_STEPS)
+ & CALIB_SKIP_DELAY_SWEEPS) {
+ /* not needed in quick mode! */
+ } else {
+ /*
+ * Determine if this set of
+ * ranks should be skipped
+ * entirely.
+ */
+ if (!param->skip_shadow_regs[sr]) {
+ if (!rw_mgr_mem_calibrate_writes
+ (rank_bgn, write_group,
+ write_test_bgn)) {
+ sr_failed = 1;
+ if (!(gbl->
+ phy_debug_mode_flags &
+ PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+ if (sr_failed != 0)
+ group_failed = 1;
+ }
+ }
+
+ if (group_failed == 0) {
+ for (read_group = write_group *
+ RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+ read_test_bgn = 0;
+ read_group < (write_group + 1)
+ * RW_MGR_MEM_IF_READ_DQS_WIDTH
+ / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
+ group_failed == 0;
+ read_group++, read_test_bgn +=
+ RW_MGR_MEM_DQ_PER_READ_DQS) {
+ if (!((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_WRITES)) {
+ if (!rw_mgr_mem_calibrate_vfifo_end
+ (read_group, read_test_bgn)) {
+ group_failed = 1;
+
+ if (!(gbl->phy_debug_mode_flags
+ & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+
+ if (group_failed != 0)
+ failing_groups++;
+ }
+
+ /*
+ * USER If there are any failing groups then report
+ * the failure.
+ */
+ if (failing_groups != 0)
+ return 0;
+
+ /* Calibrate the LFIFO */
+ if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
+ /*
+ * If we're skipping groups as part of debug,
+ * don't calibrate LFIFO.
+ */
+ if (param->skip_groups == 0) {
+ if (!rw_mgr_mem_calibrate_lfifo())
+ return 0;
+ }
+ }
+ }
+ }
+
+ /*
+ * Do not remove this line as it makes sure all of our decisions
+ * have been applied.
+ */
+ addr = sdr_get_addr(&sdr_scc_mgr->update);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+ return 1;
+}
+
+static uint32_t run_mem_calibrate(void)
+{
+ uint32_t pass;
+ uint32_t debug_info;
+ uint32_t addr;
+
+ debug("%s:%d\n", __func__, __LINE__);
+
+ /* Reset pass/fail status shown on afi_cal_success/fail */
+ addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
+ writel(PHY_MGR_CAL_RESET, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr((u32 *)BASE_MMR);
+ /* stop tracking manger */
+ uint32_t ctrlcfg = readl(SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr((u32 *)BASE_MMR);
+ writel(ctrlcfg & 0xFFBFFFFF, SOCFPGA_SDR_ADDRESS + addr);
+
+ initialize();
+ rw_mgr_mem_initialize();
+
+ pass = mem_calibrate();
+
+ mem_precharge_and_activate();
+ addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ /*
+ * Handoff:
+ * Don't return control of the PHY back to AFI when in debug mode.
+ */
+ if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
+ rw_mgr_mem_handoff();
+ /*
+ * In Hard PHY this is a 2-bit control:
+ * 0: AFI Mux Select
+ * 1: DDIO Mux Select
+ */
+ addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
+ writel(0x2, SOCFPGA_SDR_ADDRESS + addr);
+ }
+
+ addr = sdr_get_addr((u32 *)BASE_MMR);
+ writel(ctrlcfg, SOCFPGA_SDR_ADDRESS + addr);
+
+ if (pass) {
+ printf("%s: CALIBRATION PASSED\n", __FILE__);
+
+ gbl->fom_in /= 2;
+ gbl->fom_out /= 2;
+
+ if (gbl->fom_in > 0xff)
+ gbl->fom_in = 0xff;
+
+ if (gbl->fom_out > 0xff)
+ gbl->fom_out = 0xff;
+
+ /* Update the FOM in the register file */
+ debug_info = gbl->fom_in;
+ debug_info |= gbl->fom_out << 8;
+ addr = sdr_get_addr(&sdr_reg_file->fom);
+ writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
+ writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
+ writel(PHY_MGR_CAL_SUCCESS, SOCFPGA_SDR_ADDRESS + addr);
+ } else {
+ printf("%s: CALIBRATION FAILED\n", __FILE__);
+
+ debug_info = gbl->error_stage;
+ debug_info |= gbl->error_substage << 8;
+ debug_info |= gbl->error_group << 16;
+
+ addr = sdr_get_addr(&sdr_reg_file->failing_stage);
+ writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
+ writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
+ addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
+ writel(PHY_MGR_CAL_FAIL, SOCFPGA_SDR_ADDRESS + addr);
+
+ /* Update the failing group/stage in the register file */
+ debug_info = gbl->error_stage;
+ debug_info |= gbl->error_substage << 8;
+ debug_info |= gbl->error_group << 16;
+ addr = sdr_get_addr(&sdr_reg_file->failing_stage);
+ writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
+ }
+
+ return pass;
+}
+
+static void hc_initialize_rom_data(void)
+{
+ uint32_t i;
+ uint32_t addr;
+
+ addr = sdr_get_addr((u32 *)(RW_MGR_INST_ROM_WRITE));
+ for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) {
+ uint32_t data = inst_rom_init[i];
+ writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
+ }
+
+ addr = sdr_get_addr((u32 *)(RW_MGR_AC_ROM_WRITE));
+ for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) {
+ uint32_t data = ac_rom_init[i];
+ writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
+ }
+}
+
+static void initialize_reg_file(void)
+{
+ uint32_t addr;
+
+ /* Initialize the register file with the correct data */
+ addr = sdr_get_addr(&sdr_reg_file->signature);
+ writel(REG_FILE_INIT_SEQ_SIGNATURE, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->debug_data_addr);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->cur_stage);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->fom);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->failing_stage);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->debug1);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->debug2);
+ writel(0, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+static void initialize_hps_phy(void)
+{
+ uint32_t reg;
+ uint32_t addr;
+ /*
+ * Tracking also gets configured here because it's in the
+ * same register.
+ */
+ uint32_t trk_sample_count = 7500;
+ uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
+ /*
+ * Format is number of outer loops in the 16 MSB, sample
+ * count in 16 LSB.
+ */
+
+ reg = 0;
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
+ /*
+ * This field selects the intrinsic latency to RDATA_EN/FULL path.
+ * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
+ */
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
+ trk_sample_count);
+ addr = sdr_get_addr((u32 *)BASE_MMR);
+ writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET);
+
+ reg = 0;
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
+ trk_sample_count >>
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
+ trk_long_idle_sample_count);
+ writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET);
+
+ reg = 0;
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
+ trk_long_idle_sample_count >>
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
+ writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET);
+}
+
+static void initialize_tracking(void)
+{
+ uint32_t concatenated_longidle = 0x0;
+ uint32_t concatenated_delays = 0x0;
+ uint32_t concatenated_rw_addr = 0x0;
+ uint32_t concatenated_refresh = 0x0;
+ uint32_t trk_sample_count = 7500;
+ uint32_t dtaps_per_ptap;
+ uint32_t tmp_delay;
+ uint32_t addr;
+
+ /*
+ * compute usable version of value in case we skip full
+ * computation later
+ */
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+
+ concatenated_longidle = concatenated_longidle ^ 10;
+ /*longidle outer loop */
+ concatenated_longidle = concatenated_longidle << 16;
+ concatenated_longidle = concatenated_longidle ^ 100;
+ /*longidle sample count */
+ concatenated_delays = concatenated_delays ^ 243;
+ /* trfc, worst case of 933Mhz 4Gb */
+ concatenated_delays = concatenated_delays << 8;
+ concatenated_delays = concatenated_delays ^ 14;
+ /* trcd, worst case */
+ concatenated_delays = concatenated_delays << 8;
+ concatenated_delays = concatenated_delays ^ 10;
+ /* vfifo wait */
+ concatenated_delays = concatenated_delays << 8;
+ concatenated_delays = concatenated_delays ^ 4;
+ /* mux delay */
+
+ concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
+ concatenated_rw_addr = concatenated_rw_addr << 8;
+ concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
+
+ concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
+ concatenated_refresh = concatenated_refresh << 24;
+ concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
+
+ /* Initialize the register file with the correct data */
+ addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap);
+ writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->trk_sample_count);
+ writel(trk_sample_count, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->trk_longidle);
+ writel(concatenated_longidle, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->delays);
+ writel(concatenated_delays, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->trk_rw_mgr_addr);
+ writel(concatenated_rw_addr, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->trk_read_dqs_width);
+ writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, SOCFPGA_SDR_ADDRESS + addr);
+
+ addr = sdr_get_addr(&sdr_reg_file->trk_rfsh);
+ writel(concatenated_refresh, SOCFPGA_SDR_ADDRESS + addr);
+}
+
+int sdram_calibration_full(void)
+{
+ struct param_type my_param;
+ struct gbl_type my_gbl;
+ uint32_t pass;
+ uint32_t i;
+
+ param = &my_param;
+ gbl = &my_gbl;
+
+ /* Initialize the debug mode flags */
+ gbl->phy_debug_mode_flags = 0;
+ /* Set the calibration enabled by default */
+ gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
+ /*
+ * Only sweep all groups (regardless of fail state) by default
+ * Set enabled read test by default.
+ */
+#if DISABLE_GUARANTEED_READ
+ gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
+#endif
+ /* Initialize the register file */
+ initialize_reg_file();
+
+ /* Initialize any PHY CSR */
+ initialize_hps_phy();
+
+ scc_mgr_initialize();
+
+ initialize_tracking();
+
+ /* USER Enable all ranks, groups */
+ for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
+ param->skip_ranks[i] = 0;
+ for (i = 0; i < NUM_SHADOW_REGS; ++i)
+ param->skip_shadow_regs[i] = 0;
+ param->skip_groups = 0;
+
+ printf("%s: Preparing to start memory calibration\n", __FILE__);
+
+ debug("%s:%d\n", __func__, __LINE__);
+ debug_cond(DLEVEL == 1, "DDR3 FULL_RATE ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu",
+ (long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS,
+ (long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
+ (long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS,
+ (long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS,
+ (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
+ (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
+ debug_cond(DLEVEL == 1, "dqs=%lu,%lu dq=%lu dm=%lu ptap_delay=%lu dtap_delay=%lu",
+ (long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH,
+ (long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+ (long unsigned int)RW_MGR_MEM_DATA_WIDTH,
+ (long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH,
+ (long unsigned int)IO_DELAY_PER_OPA_TAP,
+ (long unsigned int)IO_DELAY_PER_DCHAIN_TAP);
+ debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%lu, dll=%lu",
+ (long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
+ (long unsigned int)IO_DLL_CHAIN_LENGTH);
+ debug_cond(DLEVEL == 1, "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu",
+ (long unsigned int)IO_DQS_EN_PHASE_MAX,
+ (long unsigned int)IO_DQDQS_OUT_PHASE_MAX,
+ (long unsigned int)IO_DQS_EN_DELAY_MAX,
+ (long unsigned int)IO_DQS_IN_DELAY_MAX);
+ debug_cond(DLEVEL == 1, "io_in_d=%lu io_out1_d=%lu io_out2_d=%lu",
+ (long unsigned int)IO_IO_IN_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT1_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
+ debug_cond(DLEVEL == 1, "dqs_in_reserve=%lu dqs_out_reserve=%lu",
+ (long unsigned int)IO_DQS_IN_RESERVE,
+ (long unsigned int)IO_DQS_OUT_RESERVE);
+
+ hc_initialize_rom_data();
+
+ /* update info for sims */
+ reg_file_set_stage(CAL_STAGE_NIL);
+ reg_file_set_group(0);
+
+ /*
+ * Load global needed for those actions that require
+ * some dynamic calibration support.
+ */
+ dyn_calib_steps = STATIC_CALIB_STEPS;
+ /*
+ * Load global to allow dynamic selection of delay loop settings
+ * based on calibration mode.
+ */
+ if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
+ skip_delay_mask = 0xff;
+ else
+ skip_delay_mask = 0x0;
+
+ pass = run_mem_calibrate();
+
+ printf("%s: Calibration complete\n", __FILE__);
+ return pass;
+}