SHARED_LIB= libcrypto$(SHLIB_EXT)
LIBSRC= cryptlib.c mem.c mem_clr.c mem_dbg.c cversion.c ex_data.c cpt_err.c \
ebcdic.c uid.c o_time.c o_str.c o_dir.c thr_id.c lock.c fips_ers.c \
- o_init.c o_fips.c sec_mem.c
+ o_init.c o_fips.c mem_sec.c
LIBOBJ= cryptlib.o mem.o mem_dbg.o cversion.o ex_data.o cpt_err.o \
ebcdic.o uid.o o_time.o o_str.o o_dir.o thr_id.o lock.o fips_ers.o \
- o_init.o o_fips.o sec_mem.o $(CPUID_OBJ)
+ o_init.o o_fips.o mem_sec.o $(CPUID_OBJ)
SRC= $(LIBSRC)
mem_dbg.o: ../include/openssl/ossl_typ.h ../include/openssl/safestack.h
mem_dbg.o: ../include/openssl/stack.h ../include/openssl/symhacks.h
mem_dbg.o: include/internal/cryptlib.h mem_dbg.c
+mem_sec.o: ../e_os.h ../include/openssl/crypto.h ../include/openssl/e_os2.h
+mem_sec.o: ../include/openssl/opensslconf.h ../include/openssl/opensslv.h
+mem_sec.o: ../include/openssl/ossl_typ.h ../include/openssl/safestack.h
+mem_sec.o: ../include/openssl/stack.h ../include/openssl/symhacks.h mem_sec.c
o_dir.o: ../e_os.h ../include/internal/o_dir.h ../include/openssl/e_os2.h
o_dir.o: ../include/openssl/opensslconf.h LPdir_unix.c o_dir.c
o_fips.o: ../e_os.h ../include/openssl/bio.h ../include/openssl/buffer.h
o_time.o: ../include/openssl/opensslconf.h ../include/openssl/opensslv.h
o_time.o: ../include/openssl/ossl_typ.h ../include/openssl/safestack.h
o_time.o: ../include/openssl/stack.h ../include/openssl/symhacks.h o_time.c
-sec_mem.o: ../e_os.h ../include/openssl/crypto.h ../include/openssl/e_os2.h
-sec_mem.o: ../include/openssl/opensslconf.h ../include/openssl/opensslv.h
-sec_mem.o: ../include/openssl/ossl_typ.h ../include/openssl/safestack.h
-sec_mem.o: ../include/openssl/stack.h ../include/openssl/symhacks.h sec_mem.c
thr_id.o: ../e_os.h ../include/openssl/bio.h ../include/openssl/buffer.h
thr_id.o: ../include/openssl/crypto.h ../include/openssl/e_os2.h
thr_id.o: ../include/openssl/err.h ../include/openssl/lhash.h
--- /dev/null
+/*
+ * Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
+ * This file is distributed under the terms of the OpenSSL license.
+ */
+
+/*
+ * This file is in two halves. The first half implements the public API
+ * to be used by external consumers, and to be used by OpenSSL to store
+ * data in a "secure arena." The second half implements the secure arena.
+ * For details on that implementation, see below (look for uppercase
+ * "SECURE HEAP IMPLEMENTATION").
+ */
+#include <openssl/crypto.h>
+#include <e_os.h>
+
+#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
+# define IMPLEMENTED
+# include <stdlib.h>
+# include <string.h>
+# include <assert.h>
+# include <unistd.h>
+# include <sys/types.h>
+# include <sys/mman.h>
+# include <sys/param.h>
+# include <sys/stat.h>
+# include <fcntl.h>
+#endif
+
+#define LOCK() CRYPTO_w_lock(CRYPTO_LOCK_MALLOC)
+#define UNLOCK() CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC)
+#define CLEAR(p, s) OPENSSL_cleanse(p, s)
+#ifndef PAGE_SIZE
+# define PAGE_SIZE 4096
+#endif
+
+#ifdef IMPLEMENTED
+static size_t secure_mem_used;
+
+static int secure_mem_initialized;
+static int too_late;
+
+/*
+ * These are the functions that must be implemented by a secure heap (sh).
+ */
+static int sh_init(size_t size, int minsize);
+static char *sh_malloc(size_t size);
+static void sh_free(char *ptr);
+static void sh_done(void);
+static int sh_actual_size(char *ptr);
+static int sh_allocated(const char *ptr);
+#endif
+
+int CRYPTO_secure_malloc_init(size_t size, int minsize)
+{
+#ifdef IMPLEMENTED
+ int ret = 0;
+
+ if (too_late)
+ return ret;
+ LOCK();
+ OPENSSL_assert(!secure_mem_initialized);
+ if (!secure_mem_initialized) {
+ ret = sh_init(size, minsize);
+ secure_mem_initialized = 1;
+ }
+ UNLOCK();
+ return ret;
+#else
+ return 0;
+#endif /* IMPLEMENTED */
+}
+
+void CRYPTO_secure_malloc_done()
+{
+#ifdef IMPLEMENTED
+ LOCK();
+ sh_done();
+ secure_mem_initialized = 0;
+ UNLOCK();
+#endif /* IMPLEMENTED */
+}
+
+int CRYPTO_secure_malloc_initialized()
+{
+#ifdef IMPLEMENTED
+ return secure_mem_initialized;
+#else
+ return 0;
+#endif /* IMPLEMENTED */
+}
+
+void *CRYPTO_secure_malloc(int num, const char *file, int line)
+{
+#ifdef IMPLEMENTED
+ void *ret;
+ size_t actual_size;
+
+ if (!secure_mem_initialized) {
+ too_late = 1;
+ return CRYPTO_malloc(num, file, line);
+ }
+ LOCK();
+ ret = sh_malloc(num);
+ actual_size = ret ? sh_actual_size(ret) : 0;
+ secure_mem_used += actual_size;
+ UNLOCK();
+ return ret;
+#else
+ return CRYPTO_malloc(num, file, line);
+#endif /* IMPLEMENTED */
+}
+
+void CRYPTO_secure_free(void *ptr)
+{
+#ifdef IMPLEMENTED
+ size_t actual_size;
+
+ if (ptr == NULL)
+ return;
+ if (!secure_mem_initialized) {
+ CRYPTO_free(ptr);
+ return;
+ }
+ LOCK();
+ actual_size = sh_actual_size(ptr);
+ CLEAR(ptr, actual_size);
+ secure_mem_used -= actual_size;
+ sh_free(ptr);
+ UNLOCK();
+#else
+ CRYPTO_free(ptr);
+#endif /* IMPLEMENTED */
+}
+
+int CRYPTO_secure_allocated(const void *ptr)
+{
+#ifdef IMPLEMENTED
+ int ret;
+
+ if (!secure_mem_initialized)
+ return 0;
+ LOCK();
+ ret = sh_allocated(ptr);
+ UNLOCK();
+ return ret;
+#else
+ return 0;
+#endif /* IMPLEMENTED */
+}
+
+/* END OF PAGE ...
+
+ ... START OF PAGE */
+
+/*
+ * SECURE HEAP IMPLEMENTATION
+ */
+#ifdef IMPLEMENTED
+
+
+/*
+ * The implementation provided here uses a fixed-sized mmap() heap,
+ * which is locked into memory, not written to core files, and protected
+ * on either side by an unmapped page, which will catch pointer overruns
+ * (or underruns) and an attempt to read data out of the secure heap.
+ * Free'd memory is zero'd or otherwise cleansed.
+ *
+ * This is a pretty standard buddy allocator. We keep areas in a multiple
+ * of "sh.minsize" units. The freelist and bitmaps are kept separately,
+ * so all (and only) data is kept in the mmap'd heap.
+ *
+ * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the
+ * place.
+ */
+
+# define TESTBIT(t, b) (t[(b) >> 3] & (1 << ((b) & 7)))
+# define SETBIT(t, b) (t[(b) >> 3] |= (1 << ((b) & 7)))
+# define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(1 << ((b) & 7))))
+
+#define WITHIN_ARENA(p) \
+ ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
+#define WITHIN_FREELIST(p) \
+ ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])
+
+
+typedef struct sh_list_st
+{
+ struct sh_list_st *next;
+ struct sh_list_st **p_next;
+} SH_LIST;
+
+typedef struct sh_st
+{
+ char* map_result;
+ size_t map_size;
+ char *arena;
+ int arena_size;
+ char **freelist;
+ int freelist_size;
+ int minsize;
+ unsigned char *bittable;
+ unsigned char *bitmalloc;
+ int bittable_size; /* size in bits */
+} SH;
+
+static SH sh;
+
+static int sh_getlist(char *ptr)
+{
+ int list = sh.freelist_size - 1;
+ int bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;
+
+ for (; bit; bit >>= 1, list--) {
+ if (TESTBIT(sh.bittable, bit))
+ break;
+ OPENSSL_assert((bit & 1) == 0);
+ }
+
+ return list;
+}
+
+
+static int sh_testbit(char *ptr, int list, unsigned char *table)
+{
+ int bit;
+
+ OPENSSL_assert(list >= 0 && list < sh.freelist_size);
+ OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
+ bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
+ OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
+ return TESTBIT(table, bit);
+}
+
+static void sh_clearbit(char *ptr, int list, unsigned char *table)
+{
+ int bit;
+
+ OPENSSL_assert(list >= 0 && list < sh.freelist_size);
+ OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
+ bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
+ OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
+ OPENSSL_assert(TESTBIT(table, bit));
+ CLEARBIT(table, bit);
+}
+
+static void sh_setbit(char *ptr, int list, unsigned char *table)
+{
+ int bit;
+
+ OPENSSL_assert(list >= 0 && list < sh.freelist_size);
+ OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
+ bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
+ OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
+ OPENSSL_assert(!TESTBIT(table, bit));
+ SETBIT(table, bit);
+}
+
+static void sh_add_to_list(char **list, char *ptr)
+{
+ SH_LIST *temp;
+
+ OPENSSL_assert(WITHIN_FREELIST(list));
+ OPENSSL_assert(WITHIN_ARENA(ptr));
+
+ temp = (SH_LIST *)ptr;
+ temp->next = *(SH_LIST **)list;
+ OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
+ temp->p_next = (SH_LIST **)list;
+
+ if (temp->next != NULL) {
+ OPENSSL_assert((char **)temp->next->p_next == list);
+ temp->next->p_next = &(temp->next);
+ }
+
+ *list = ptr;
+}
+
+static void sh_remove_from_list(char *ptr, char *list)
+{
+ SH_LIST *temp, *temp2;
+
+ temp = (SH_LIST *)ptr;
+ if (temp->next != NULL)
+ temp->next->p_next = temp->p_next;
+ *temp->p_next = temp->next;
+ if (temp->next == NULL)
+ return;
+
+ temp2 = temp->next;
+ OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
+}
+
+
+static int sh_init(size_t size, int minsize)
+{
+ int i, ret;
+ size_t pgsize;
+ size_t aligned;
+
+ memset(&sh, 0, sizeof sh);
+
+ /* make sure size and minsize are powers of 2 */
+ OPENSSL_assert(size > 0);
+ OPENSSL_assert((size & (size - 1)) == 0);
+ OPENSSL_assert(minsize > 0);
+ OPENSSL_assert((minsize & (minsize - 1)) == 0);
+ if (size <= 0 || (size & (size - 1)) != 0)
+ goto err;
+ if (minsize <= 0 || (minsize & (minsize - 1)) != 0)
+ goto err;
+
+ sh.arena_size = size;
+ sh.minsize = minsize;
+ sh.bittable_size = (sh.arena_size / sh.minsize) * 2;
+
+ sh.freelist_size = -1;
+ for (i = sh.bittable_size; i; i >>= 1)
+ sh.freelist_size++;
+
+ sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof (char *));
+ OPENSSL_assert(sh.freelist != NULL);
+ if (sh.freelist == NULL)
+ goto err;
+
+ sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3);
+ OPENSSL_assert(sh.bittable != NULL);
+ if (sh.bittable == NULL)
+ goto err;
+
+ sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3);
+ OPENSSL_assert(sh.bitmalloc != NULL);
+ if (sh.bitmalloc == NULL)
+ goto err;
+
+ /* Allocate space for heap, and two extra pages as guards */
+#if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE)
+ {
+# if defined(_SC_PAGE_SIZE)
+ long tmppgsize = sysconf(_SC_PAGE_SIZE);
+# else
+ long tmppgsize = sysconf(_SC_PAGESIZE);
+# endif
+ if (tmppgsize < 1)
+ pgsize = PAGE_SIZE;
+ else
+ pgsize = (size_t)tmppgsize;
+ }
+#else
+ pgsize = PAGE_SIZE;
+#endif
+ sh.map_size = pgsize + sh.arena_size + pgsize;
+ if (1) {
+#ifdef MAP_ANON
+ sh.map_result = mmap(NULL, sh.map_size,
+ PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
+ } else {
+#endif
+ int fd;
+
+ sh.map_result = MAP_FAILED;
+ if ((fd = open("/dev/zero", O_RDWR)) >= 0) {
+ sh.map_result = mmap(NULL, sh.map_size,
+ PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
+ close(fd);
+ }
+ }
+ OPENSSL_assert(sh.map_result != MAP_FAILED);
+ if (sh.map_result == MAP_FAILED)
+ goto err;
+ sh.arena = (char *)(sh.map_result + pgsize);
+ sh_setbit(sh.arena, 0, sh.bittable);
+ sh_add_to_list(&sh.freelist[0], sh.arena);
+
+ /* Now try to add guard pages and lock into memory. */
+ ret = 1;
+
+ /* Starting guard is already aligned from mmap. */
+ if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
+ ret = 2;
+
+ /* Ending guard page - need to round up to page boundary */
+ aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
+ if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
+ ret = 2;
+
+ if (mlock(sh.arena, sh.arena_size) < 0)
+ ret = 2;
+#ifdef MADV_DONTDUMP
+ if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
+ ret = 2;
+#endif
+
+ return ret;
+
+ err:
+ sh_done();
+ return 0;
+}
+
+static void sh_done()
+{
+ OPENSSL_free(sh.freelist);
+ OPENSSL_free(sh.bittable);
+ OPENSSL_free(sh.bitmalloc);
+ if (sh.map_result != NULL && sh.map_size)
+ munmap(sh.map_result, sh.map_size);
+ memset(&sh, 0, sizeof sh);
+}
+
+static int sh_allocated(const char *ptr)
+{
+ return WITHIN_ARENA(ptr) ? 1 : 0;
+}
+
+static char *sh_find_my_buddy(char *ptr, int list)
+{
+ int bit;
+ char *chunk = NULL;
+
+ bit = (1 << list) + (ptr - sh.arena) / (sh.arena_size >> list);
+ bit ^= 1;
+
+ if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
+ chunk = sh.arena + ((bit & ((1 << list) - 1)) * (sh.arena_size >> list));
+
+ return chunk;
+}
+
+static char *sh_malloc(size_t size)
+{
+ int list, slist;
+ size_t i;
+ char *chunk;
+
+ list = sh.freelist_size - 1;
+ for (i = sh.minsize; i < size; i <<= 1)
+ list--;
+ if (list < 0)
+ return NULL;
+
+ /* try to find a larger entry to split */
+ for (slist = list; slist >= 0; slist--)
+ if (sh.freelist[slist] != NULL)
+ break;
+ if (slist < 0)
+ return NULL;
+
+ /* split larger entry */
+ while (slist != list) {
+ char *temp = sh.freelist[slist];
+
+ /* remove from bigger list */
+ OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
+ sh_clearbit(temp, slist, sh.bittable);
+ sh_remove_from_list(temp, sh.freelist[slist]);
+ OPENSSL_assert(temp != sh.freelist[slist]);
+
+ /* done with bigger list */
+ slist++;
+
+ /* add to smaller list */
+ OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
+ sh_setbit(temp, slist, sh.bittable);
+ sh_add_to_list(&sh.freelist[slist], temp);
+ OPENSSL_assert(sh.freelist[slist] == temp);
+
+ /* split in 2 */
+ temp += sh.arena_size >> slist;
+ OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
+ sh_setbit(temp, slist, sh.bittable);
+ sh_add_to_list(&sh.freelist[slist], temp);
+ OPENSSL_assert(sh.freelist[slist] == temp);
+
+ OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
+ }
+
+ /* peel off memory to hand back */
+ chunk = sh.freelist[list];
+ OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
+ sh_setbit(chunk, list, sh.bitmalloc);
+ sh_remove_from_list(chunk, sh.freelist[list]);
+
+ OPENSSL_assert(WITHIN_ARENA(chunk));
+
+ return chunk;
+}
+
+static void sh_free(char *ptr)
+{
+ int list;
+ char *buddy;
+
+ if (ptr == NULL)
+ return;
+ OPENSSL_assert(WITHIN_ARENA(ptr));
+ if (!WITHIN_ARENA(ptr))
+ return;
+
+ list = sh_getlist(ptr);
+ OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
+ sh_clearbit(ptr, list, sh.bitmalloc);
+ sh_add_to_list(&sh.freelist[list], ptr);
+
+ /* Try to coalesce two adjacent free areas. */
+ while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
+ OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
+ OPENSSL_assert(ptr != NULL);
+ OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
+ sh_clearbit(ptr, list, sh.bittable);
+ sh_remove_from_list(ptr, sh.freelist[list]);
+ OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
+ sh_clearbit(buddy, list, sh.bittable);
+ sh_remove_from_list(buddy, sh.freelist[list]);
+
+ list--;
+
+ if (ptr > buddy)
+ ptr = buddy;
+
+ OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
+ sh_setbit(ptr, list, sh.bittable);
+ sh_add_to_list(&sh.freelist[list], ptr);
+ OPENSSL_assert(sh.freelist[list] == ptr);
+ }
+}
+
+static int sh_actual_size(char *ptr)
+{
+ int list;
+
+ OPENSSL_assert(WITHIN_ARENA(ptr));
+ if (!WITHIN_ARENA(ptr))
+ return 0;
+ list = sh_getlist(ptr);
+ OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
+ return sh.arena_size / (1 << list);
+}
+#endif /* IMPLEMENTED */
+++ /dev/null
-/*
- * Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
- * This file is distributed under the terms of the OpenSSL license.
- */
-
-/*
- * This file is in two halves. The first half implements the public API
- * to be used by external consumers, and to be used by OpenSSL to store
- * data in a "secure arena." The second half implements the secure arena.
- * For details on that implementation, see below (look for uppercase
- * "SECURE HEAP IMPLEMENTATION").
- */
-#include <openssl/crypto.h>
-#include <e_os.h>
-
-#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
-# define IMPLEMENTED
-# include <stdlib.h>
-# include <string.h>
-# include <assert.h>
-# include <unistd.h>
-# include <sys/types.h>
-# include <sys/mman.h>
-# include <sys/param.h>
-# include <sys/stat.h>
-# include <fcntl.h>
-#endif
-
-#define LOCK() CRYPTO_w_lock(CRYPTO_LOCK_MALLOC)
-#define UNLOCK() CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC)
-#define CLEAR(p, s) OPENSSL_cleanse(p, s)
-#ifndef PAGE_SIZE
-# define PAGE_SIZE 4096
-#endif
-
-#ifdef IMPLEMENTED
-static size_t secure_mem_used;
-
-static int secure_mem_initialized;
-static int too_late;
-
-/*
- * These are the functions that must be implemented by a secure heap (sh).
- */
-static int sh_init(size_t size, int minsize);
-static char *sh_malloc(size_t size);
-static void sh_free(char *ptr);
-static void sh_done(void);
-static int sh_actual_size(char *ptr);
-static int sh_allocated(const char *ptr);
-#endif
-
-int CRYPTO_secure_malloc_init(size_t size, int minsize)
-{
-#ifdef IMPLEMENTED
- int ret = 0;
-
- if (too_late)
- return ret;
- LOCK();
- OPENSSL_assert(!secure_mem_initialized);
- if (!secure_mem_initialized) {
- ret = sh_init(size, minsize);
- secure_mem_initialized = 1;
- }
- UNLOCK();
- return ret;
-#else
- return 0;
-#endif /* IMPLEMENTED */
-}
-
-void CRYPTO_secure_malloc_done()
-{
-#ifdef IMPLEMENTED
- LOCK();
- sh_done();
- secure_mem_initialized = 0;
- UNLOCK();
-#endif /* IMPLEMENTED */
-}
-
-int CRYPTO_secure_malloc_initialized()
-{
-#ifdef IMPLEMENTED
- return secure_mem_initialized;
-#else
- return 0;
-#endif /* IMPLEMENTED */
-}
-
-void *CRYPTO_secure_malloc(int num, const char *file, int line)
-{
-#ifdef IMPLEMENTED
- void *ret;
- size_t actual_size;
-
- if (!secure_mem_initialized) {
- too_late = 1;
- return CRYPTO_malloc(num, file, line);
- }
- LOCK();
- ret = sh_malloc(num);
- actual_size = ret ? sh_actual_size(ret) : 0;
- secure_mem_used += actual_size;
- UNLOCK();
- return ret;
-#else
- return CRYPTO_malloc(num, file, line);
-#endif /* IMPLEMENTED */
-}
-
-void CRYPTO_secure_free(void *ptr)
-{
-#ifdef IMPLEMENTED
- size_t actual_size;
-
- if (ptr == NULL)
- return;
- if (!secure_mem_initialized) {
- CRYPTO_free(ptr);
- return;
- }
- LOCK();
- actual_size = sh_actual_size(ptr);
- CLEAR(ptr, actual_size);
- secure_mem_used -= actual_size;
- sh_free(ptr);
- UNLOCK();
-#else
- CRYPTO_free(ptr);
-#endif /* IMPLEMENTED */
-}
-
-int CRYPTO_secure_allocated(const void *ptr)
-{
-#ifdef IMPLEMENTED
- int ret;
-
- if (!secure_mem_initialized)
- return 0;
- LOCK();
- ret = sh_allocated(ptr);
- UNLOCK();
- return ret;
-#else
- return 0;
-#endif /* IMPLEMENTED */
-}
-
-/* END OF PAGE ...
-
- ... START OF PAGE */
-
-/*
- * SECURE HEAP IMPLEMENTATION
- */
-#ifdef IMPLEMENTED
-
-
-/*
- * The implementation provided here uses a fixed-sized mmap() heap,
- * which is locked into memory, not written to core files, and protected
- * on either side by an unmapped page, which will catch pointer overruns
- * (or underruns) and an attempt to read data out of the secure heap.
- * Free'd memory is zero'd or otherwise cleansed.
- *
- * This is a pretty standard buddy allocator. We keep areas in a multiple
- * of "sh.minsize" units. The freelist and bitmaps are kept separately,
- * so all (and only) data is kept in the mmap'd heap.
- *
- * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the
- * place.
- */
-
-# define TESTBIT(t, b) (t[(b) >> 3] & (1 << ((b) & 7)))
-# define SETBIT(t, b) (t[(b) >> 3] |= (1 << ((b) & 7)))
-# define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(1 << ((b) & 7))))
-
-#define WITHIN_ARENA(p) \
- ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
-#define WITHIN_FREELIST(p) \
- ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])
-
-
-typedef struct sh_list_st
-{
- struct sh_list_st *next;
- struct sh_list_st **p_next;
-} SH_LIST;
-
-typedef struct sh_st
-{
- char* map_result;
- size_t map_size;
- char *arena;
- int arena_size;
- char **freelist;
- int freelist_size;
- int minsize;
- unsigned char *bittable;
- unsigned char *bitmalloc;
- int bittable_size; /* size in bits */
-} SH;
-
-static SH sh;
-
-static int sh_getlist(char *ptr)
-{
- int list = sh.freelist_size - 1;
- int bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;
-
- for (; bit; bit >>= 1, list--) {
- if (TESTBIT(sh.bittable, bit))
- break;
- OPENSSL_assert((bit & 1) == 0);
- }
-
- return list;
-}
-
-
-static int sh_testbit(char *ptr, int list, unsigned char *table)
-{
- int bit;
-
- OPENSSL_assert(list >= 0 && list < sh.freelist_size);
- OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
- bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
- OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
- return TESTBIT(table, bit);
-}
-
-static void sh_clearbit(char *ptr, int list, unsigned char *table)
-{
- int bit;
-
- OPENSSL_assert(list >= 0 && list < sh.freelist_size);
- OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
- bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
- OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
- OPENSSL_assert(TESTBIT(table, bit));
- CLEARBIT(table, bit);
-}
-
-static void sh_setbit(char *ptr, int list, unsigned char *table)
-{
- int bit;
-
- OPENSSL_assert(list >= 0 && list < sh.freelist_size);
- OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
- bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
- OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
- OPENSSL_assert(!TESTBIT(table, bit));
- SETBIT(table, bit);
-}
-
-static void sh_add_to_list(char **list, char *ptr)
-{
- SH_LIST *temp;
-
- OPENSSL_assert(WITHIN_FREELIST(list));
- OPENSSL_assert(WITHIN_ARENA(ptr));
-
- temp = (SH_LIST *)ptr;
- temp->next = *(SH_LIST **)list;
- OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
- temp->p_next = (SH_LIST **)list;
-
- if (temp->next != NULL) {
- OPENSSL_assert((char **)temp->next->p_next == list);
- temp->next->p_next = &(temp->next);
- }
-
- *list = ptr;
-}
-
-static void sh_remove_from_list(char *ptr, char *list)
-{
- SH_LIST *temp, *temp2;
-
- temp = (SH_LIST *)ptr;
- if (temp->next != NULL)
- temp->next->p_next = temp->p_next;
- *temp->p_next = temp->next;
- if (temp->next == NULL)
- return;
-
- temp2 = temp->next;
- OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
-}
-
-
-static int sh_init(size_t size, int minsize)
-{
- int i, ret;
- size_t pgsize;
- size_t aligned;
-
- memset(&sh, 0, sizeof sh);
-
- /* make sure size and minsize are powers of 2 */
- OPENSSL_assert(size > 0);
- OPENSSL_assert((size & (size - 1)) == 0);
- OPENSSL_assert(minsize > 0);
- OPENSSL_assert((minsize & (minsize - 1)) == 0);
- if (size <= 0 || (size & (size - 1)) != 0)
- goto err;
- if (minsize <= 0 || (minsize & (minsize - 1)) != 0)
- goto err;
-
- sh.arena_size = size;
- sh.minsize = minsize;
- sh.bittable_size = (sh.arena_size / sh.minsize) * 2;
-
- sh.freelist_size = -1;
- for (i = sh.bittable_size; i; i >>= 1)
- sh.freelist_size++;
-
- sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof (char *));
- OPENSSL_assert(sh.freelist != NULL);
- if (sh.freelist == NULL)
- goto err;
-
- sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3);
- OPENSSL_assert(sh.bittable != NULL);
- if (sh.bittable == NULL)
- goto err;
-
- sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3);
- OPENSSL_assert(sh.bitmalloc != NULL);
- if (sh.bitmalloc == NULL)
- goto err;
-
- /* Allocate space for heap, and two extra pages as guards */
-#if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE)
- {
-# if defined(_SC_PAGE_SIZE)
- long tmppgsize = sysconf(_SC_PAGE_SIZE);
-# else
- long tmppgsize = sysconf(_SC_PAGESIZE);
-# endif
- if (tmppgsize < 1)
- pgsize = PAGE_SIZE;
- else
- pgsize = (size_t)tmppgsize;
- }
-#else
- pgsize = PAGE_SIZE;
-#endif
- sh.map_size = pgsize + sh.arena_size + pgsize;
- if (1) {
-#ifdef MAP_ANON
- sh.map_result = mmap(NULL, sh.map_size,
- PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
- } else {
-#endif
- int fd;
-
- sh.map_result = MAP_FAILED;
- if ((fd = open("/dev/zero", O_RDWR)) >= 0) {
- sh.map_result = mmap(NULL, sh.map_size,
- PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
- close(fd);
- }
- }
- OPENSSL_assert(sh.map_result != MAP_FAILED);
- if (sh.map_result == MAP_FAILED)
- goto err;
- sh.arena = (char *)(sh.map_result + pgsize);
- sh_setbit(sh.arena, 0, sh.bittable);
- sh_add_to_list(&sh.freelist[0], sh.arena);
-
- /* Now try to add guard pages and lock into memory. */
- ret = 1;
-
- /* Starting guard is already aligned from mmap. */
- if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
- ret = 2;
-
- /* Ending guard page - need to round up to page boundary */
- aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
- if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
- ret = 2;
-
- if (mlock(sh.arena, sh.arena_size) < 0)
- ret = 2;
-#ifdef MADV_DONTDUMP
- if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
- ret = 2;
-#endif
-
- return ret;
-
- err:
- sh_done();
- return 0;
-}
-
-static void sh_done()
-{
- OPENSSL_free(sh.freelist);
- OPENSSL_free(sh.bittable);
- OPENSSL_free(sh.bitmalloc);
- if (sh.map_result != NULL && sh.map_size)
- munmap(sh.map_result, sh.map_size);
- memset(&sh, 0, sizeof sh);
-}
-
-static int sh_allocated(const char *ptr)
-{
- return WITHIN_ARENA(ptr) ? 1 : 0;
-}
-
-static char *sh_find_my_buddy(char *ptr, int list)
-{
- int bit;
- char *chunk = NULL;
-
- bit = (1 << list) + (ptr - sh.arena) / (sh.arena_size >> list);
- bit ^= 1;
-
- if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
- chunk = sh.arena + ((bit & ((1 << list) - 1)) * (sh.arena_size >> list));
-
- return chunk;
-}
-
-static char *sh_malloc(size_t size)
-{
- int list, slist;
- size_t i;
- char *chunk;
-
- list = sh.freelist_size - 1;
- for (i = sh.minsize; i < size; i <<= 1)
- list--;
- if (list < 0)
- return NULL;
-
- /* try to find a larger entry to split */
- for (slist = list; slist >= 0; slist--)
- if (sh.freelist[slist] != NULL)
- break;
- if (slist < 0)
- return NULL;
-
- /* split larger entry */
- while (slist != list) {
- char *temp = sh.freelist[slist];
-
- /* remove from bigger list */
- OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
- sh_clearbit(temp, slist, sh.bittable);
- sh_remove_from_list(temp, sh.freelist[slist]);
- OPENSSL_assert(temp != sh.freelist[slist]);
-
- /* done with bigger list */
- slist++;
-
- /* add to smaller list */
- OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
- sh_setbit(temp, slist, sh.bittable);
- sh_add_to_list(&sh.freelist[slist], temp);
- OPENSSL_assert(sh.freelist[slist] == temp);
-
- /* split in 2 */
- temp += sh.arena_size >> slist;
- OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
- sh_setbit(temp, slist, sh.bittable);
- sh_add_to_list(&sh.freelist[slist], temp);
- OPENSSL_assert(sh.freelist[slist] == temp);
-
- OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
- }
-
- /* peel off memory to hand back */
- chunk = sh.freelist[list];
- OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
- sh_setbit(chunk, list, sh.bitmalloc);
- sh_remove_from_list(chunk, sh.freelist[list]);
-
- OPENSSL_assert(WITHIN_ARENA(chunk));
-
- return chunk;
-}
-
-static void sh_free(char *ptr)
-{
- int list;
- char *buddy;
-
- if (ptr == NULL)
- return;
- OPENSSL_assert(WITHIN_ARENA(ptr));
- if (!WITHIN_ARENA(ptr))
- return;
-
- list = sh_getlist(ptr);
- OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
- sh_clearbit(ptr, list, sh.bitmalloc);
- sh_add_to_list(&sh.freelist[list], ptr);
-
- /* Try to coalesce two adjacent free areas. */
- while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
- OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
- OPENSSL_assert(ptr != NULL);
- OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
- sh_clearbit(ptr, list, sh.bittable);
- sh_remove_from_list(ptr, sh.freelist[list]);
- OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
- sh_clearbit(buddy, list, sh.bittable);
- sh_remove_from_list(buddy, sh.freelist[list]);
-
- list--;
-
- if (ptr > buddy)
- ptr = buddy;
-
- OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
- sh_setbit(ptr, list, sh.bittable);
- sh_add_to_list(&sh.freelist[list], ptr);
- OPENSSL_assert(sh.freelist[list] == ptr);
- }
-}
-
-static int sh_actual_size(char *ptr)
-{
- int list;
-
- OPENSSL_assert(WITHIN_ARENA(ptr));
- if (!WITHIN_ARENA(ptr))
- return 0;
- list = sh_getlist(ptr);
- OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
- return sh.arena_size / (1 << list);
-}
-#endif /* IMPLEMENTED */
+++ /dev/null
-=pod
-
-=head1 NAME
-
-CRYPTO_secure_malloc_init, CRYPTO_secure_malloc_done, OPENSSL_secure_malloc, OPENSSL_secure_free, OPENSSL_secure_allocated - use secure heap storage
-
-=head1 SYNOPSIS
-
- #include <openssl/crypto.h>
-
- int CRYPTO_secure_malloc_init(size_t size, int minsize);
-
- int CRYPTO_secure_malloc_initialized();
-
- void CRYPTO_secure_malloc_done();
-
- void *OPENSSL_secure_malloc(int num);
-
- void OPENSSL_secure_free(void* ptr);
-
- int OPENSSL_secure_allocated(const void* ptr);
-
-=head1 DESCRIPTION
-
-In order to help protect applications (particularly long-running servers)
-from pointer overruns or underruns that could return arbitrary data from
-the program's dynamic memory area, where keys and other sensitive
-information might be stored, OpenSSL supports the concept of a "secure heap."
-The level and type of security guarantees depend on the operating system.
-It is a good idea to review the code and see if it addresses your
-threat model and concerns.
-
-If a secure heap is used, then private key B<BIGNUM> values are stored there.
-This protects long-term storage of private keys, but will not necessarily
-put all intermediate values and computations there.
-
-B<CRYPTO_secure_malloc_init> creates the secure heap, with the specified
-C<size> in bytes. The C<minsize> parameter is the minimum size to
-allocate from the heap. Both C<size> and C<minsize> must be a power
-of two. It is an error to call this after any B<OPENSSL_secure_malloc>
-calls have been made.
-
-B<CRYPTO_secure_malloc_initialized> indicates whether or not the secure
-heap as been initialized and is available.
-
-B<CRYPTO_secure_malloc_done> releases the heap and makes the memory unavailable
-to the process. It can take noticeably long to complete.
-
-B<OPENSSL_secure_malloc> allocates C<num> bytes from the heap.
-If B<CRYPTO_secure_malloc_init> is not called, this is equivalent to
-calling B<OPENSSL_malloc>.
-
-B<OPENSSL_secure_free> releases the memory at C<ptr> back to the heap.
-It must be called with a value previously obtained from
-B<OPENSSL_secure_malloc>.
-If B<CRYPTO_secure_malloc_init> is not called, this is equivalent to
-calling B<OPENSSL_free>.
-
-B<OPENSSL_secure_allocated> tells whether or not a pointer is within
-the secure heap.
-
-=head1 RETURN VALUES
-
-B<CRYPTO_secure_malloc_init> returns 0 on failure, 1 if successful,
-and 2 if successful but the heap could not be protected by memory
-mapping.
-
-B<CRYPTO_secure_malloc_initialized> returns 1 if the secure heap is
-available (that is, if B<CRYPTO_secure_malloc_init> has been called,
-but B<CRYPTO_secure_malloc_done> has not) or 0 if not.
-
-B<OPENSSL_secure_malloc> returns a pointer into the secure heap of
-the requested size, or C<NULL> if memory could not be allocated.
-
-B<CRYPTO_secure_allocated> returns 1 if the pointer is in the
-the secure heap, or 0 if not.
-
-B<CRYPTO_secure_malloc_done> and B<OPENSSL_secure_free>
-return no values.
-
-=head1 SEE ALSO
-
-L<BN_new(3)>,
-L<bn_internal(3)>
-
-=head1 HISTORY
-
-These functions were contributed to the OpenSSL project by
-Akamai Technologies in April, 2014.
-
-=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+CRYPTO_secure_malloc_init, CRYPTO_secure_malloc_done, OPENSSL_secure_malloc, OPENSSL_secure_free, OPENSSL_secure_allocated - use secure heap storage
+
+=head1 SYNOPSIS
+
+ #include <openssl/crypto.h>
+
+ int CRYPTO_secure_malloc_init(size_t size, int minsize);
+
+ int CRYPTO_secure_malloc_initialized();
+
+ void CRYPTO_secure_malloc_done();
+
+ void *OPENSSL_secure_malloc(int num);
+
+ void OPENSSL_secure_free(void* ptr);
+
+ int OPENSSL_secure_allocated(const void* ptr);
+
+=head1 DESCRIPTION
+
+In order to help protect applications (particularly long-running servers)
+from pointer overruns or underruns that could return arbitrary data from
+the program's dynamic memory area, where keys and other sensitive
+information might be stored, OpenSSL supports the concept of a "secure heap."
+The level and type of security guarantees depend on the operating system.
+It is a good idea to review the code and see if it addresses your
+threat model and concerns.
+
+If a secure heap is used, then private key B<BIGNUM> values are stored there.
+This protects long-term storage of private keys, but will not necessarily
+put all intermediate values and computations there.
+
+B<CRYPTO_secure_malloc_init> creates the secure heap, with the specified
+C<size> in bytes. The C<minsize> parameter is the minimum size to
+allocate from the heap. Both C<size> and C<minsize> must be a power
+of two. It is an error to call this after any B<OPENSSL_secure_malloc>
+calls have been made.
+
+B<CRYPTO_secure_malloc_initialized> indicates whether or not the secure
+heap as been initialized and is available.
+
+B<CRYPTO_secure_malloc_done> releases the heap and makes the memory unavailable
+to the process. It can take noticeably long to complete.
+
+B<OPENSSL_secure_malloc> allocates C<num> bytes from the heap.
+If B<CRYPTO_secure_malloc_init> is not called, this is equivalent to
+calling B<OPENSSL_malloc>.
+
+B<OPENSSL_secure_free> releases the memory at C<ptr> back to the heap.
+It must be called with a value previously obtained from
+B<OPENSSL_secure_malloc>.
+If B<CRYPTO_secure_malloc_init> is not called, this is equivalent to
+calling B<OPENSSL_free>.
+
+B<OPENSSL_secure_allocated> tells whether or not a pointer is within
+the secure heap.
+
+=head1 RETURN VALUES
+
+B<CRYPTO_secure_malloc_init> returns 0 on failure, 1 if successful,
+and 2 if successful but the heap could not be protected by memory
+mapping.
+
+B<CRYPTO_secure_malloc_initialized> returns 1 if the secure heap is
+available (that is, if B<CRYPTO_secure_malloc_init> has been called,
+but B<CRYPTO_secure_malloc_done> has not) or 0 if not.
+
+B<OPENSSL_secure_malloc> returns a pointer into the secure heap of
+the requested size, or C<NULL> if memory could not be allocated.
+
+B<CRYPTO_secure_allocated> returns 1 if the pointer is in the
+the secure heap, or 0 if not.
+
+B<CRYPTO_secure_malloc_done> and B<OPENSSL_secure_free>
+return no values.
+
+=head1 SEE ALSO
+
+L<BN_new(3)>,
+L<bn_internal(3)>
+
+=cut