=head1 NAME
-CRYPTO_secure_malloc_init, CRYPTO_secure_malloc_done, OPENSSL_secure_malloc,
-OPENSSL_secure_free, OPENSSL_secure_allocated - secure heap storage
+CRYPTO_secure_malloc_init, CRYPTO_secure_malloc_initialized,
+CRYPTO_secure_malloc_done, OPENSSL_secure_malloc, CRYPTO_secure_malloc,
+OPENSSL_secure_zalloc, CRYPTO_secure_zalloc, OPENSSL_secure_free,
+CRYPTO_secure_free, OPENSSL_secure_actual_size, OPENSSL_secure_allocated,
+CYRPTO_secure_malloc_used - secure heap storage
=head1 SYNOPSIS
void *OPENSSL_secure_malloc(int num);
void *CRYPTO_secure_malloc(int num, const char *file, int line);
+ void *OPENSSL_secure_zalloc(int num);
+ void *CRYPTO_secure_zalloc(int num, const char *file, int line);
+
void OPENSSL_secure_free(void* ptr);
void CRYPTO_secure_free(void *ptr);
This protects long-term storage of private keys, but will not necessarily
put all intermediate values and computations there.
-B<CRYPTO_secure_malloc_init> creates the secure heap, with the specified
+CRYPTO_secure_malloc_init() creates the secure heap, with the specified
C<size> in bytes. The C<minsize> parameter is the minimum size to
allocate from the heap. Both C<size> and C<minsize> must be a power
-of two. It is an error to call this after any B<OPENSSL_secure_malloc>
+of two. It is an error to call this after any OPENSSL_secure_malloc()
calls have been made.
-B<CRYPTO_secure_malloc_initialized> indicates whether or not the secure
+CRYPTO_secure_malloc_initialized() indicates whether or not the secure
heap as been initialized and is available.
-B<CRYPTO_secure_malloc_done> releases the heap and makes the memory unavailable
+CRYPTO_secure_malloc_done() releases the heap and makes the memory unavailable
to the process. It can take noticeably long to complete.
-B<OPENSSL_secure_malloc> allocates C<num> bytes from the heap.
-If B<CRYPTO_secure_malloc_init> is not called, this is equivalent to
-calling B<OPENSSL_malloc>.
+OPENSSL_secure_malloc() allocates C<num> bytes from the heap.
+If CRYPTO_secure_malloc_init() is not called, this is equivalent to
+calling OPENSSL_malloc().
It is a macro that expands to
-B<CRYPTO_secure_malloc> and adds the B<__FILE__> and B<__LINE__> parameters.
+CRYPTO_secure_malloc() and adds the C<__FILE__> and C<__LINE__> parameters.
+
+OPENSSL_secure_zalloc() and CRYPTO_secure_zalloc() are like
+OPENSSL_secure_malloc() and CRYPTO_secure_malloc(), respectively,
+except that they call memset() to zero the memory before returning.
-B<OPENSSL_secure_free> releases the memory at C<ptr> back to the heap.
+OPENSSL_secure_free() releases the memory at C<ptr> back to the heap.
It must be called with a value previously obtained from
-B<OPENSSL_secure_malloc>.
-If B<CRYPTO_secure_malloc_init> is not called, this is equivalent to
-calling B<OPENSSL_free>.
-It exists for consistency with B<OPENSSL_secure_malloc> , and
-is a macro that expands to B<CRYPTO_secure_free>.
+OPENSSL_secure_malloc().
+If CRYPTO_secure_malloc_init() is not called, this is equivalent to
+calling OPENSSL_free().
+It exists for consistency with OPENSSL_secure_malloc() , and
+is a macro that expands to CRYPTO_secure_free().
-B<OPENSSL_secure_allocated> tells whether or not a pointer is within
+OPENSSL_secure_allocated() tells whether or not a pointer is within
the secure heap.
-B<OPENSSL_secure_actual_size> tells the actual size allocated to the
+OPENSSL_secure_actual_size() tells the actual size allocated to the
pointer; implementations may allocate more space than initially
requested, in order to "round up" and reduce secure heap fragmentation.
-B<CRYPTO_secure_malloc_used> returns the number of bytes allocated in the
+CRYPTO_secure_malloc_used() returns the number of bytes allocated in the
secure heap.
=head1 RETURN VALUES
-B<CRYPTO_secure_malloc_init> returns 0 on failure, 1 if successful,
+CRYPTO_secure_malloc_init() returns 0 on failure, 1 if successful,
and 2 if successful but the heap could not be protected by memory
mapping.
-B<CRYPTO_secure_malloc_initialized> returns 1 if the secure heap is
-available (that is, if B<CRYPTO_secure_malloc_init> has been called,
-but B<CRYPTO_secure_malloc_done> has not) or 0 if not.
+CRYPTO_secure_malloc_initialized() returns 1 if the secure heap is
+available (that is, if CRYPTO_secure_malloc_init() has been called,
+but CRYPTO_secure_malloc_done() has not) or 0 if not.
-B<OPENSSL_secure_malloc> returns a pointer into the secure heap of
-the requested size, or C<NULL> if memory could not be allocated.
+OPENSSL_secure_malloc() and OPENSSL_secure_zalloc() return a pointer into
+the secure heap of the requested size, or C<NULL> if memory could not be
+allocated.
-B<CRYPTO_secure_allocated> returns 1 if the pointer is in the
+CRYPTO_secure_allocated() returns 1 if the pointer is in the
the secure heap, or 0 if not.
-B<CRYPTO_secure_malloc_done> and B<OPENSSL_secure_free>
+CRYPTO_secure_malloc_done() and OPENSSL_secure_free()
return no values.
=head1 BUGS
CRYPTO_strndup(str, n, __FILE__, __LINE__)
# define OPENSSL_secure_malloc(num) \
CRYPTO_secure_malloc(num, __FILE__, __LINE__)
+# define OPENSSL_secure_zalloc(num) \
+ CRYPTO_secure_zalloc(num, __FILE__, __LINE__)
# define OPENSSL_secure_free(addr) \
CRYPTO_secure_free(addr)
# define OPENSSL_secure_actual_size(ptr) \
CRYPTO_strndup(str, s, NULL, 0)
# define OPENSSL_secure_malloc(num) \
CRYPTO_secure_malloc(num, NULL, 0)
+# define OPENSSL_secure_zalloc(num) \
+ CRYPTO_secure_zalloc(num, NULL, 0)
# define OPENSSL_secure_free(addr) \
CRYPTO_secure_free(addr)
# define OPENSSL_secure_actual_size(ptr) \
int CRYPTO_secure_malloc_init(size_t sz, int minsize);
void CRYPTO_secure_malloc_done(void);
void *CRYPTO_secure_malloc(size_t num, const char *file, int line);
+void *CRYPTO_secure_zalloc(size_t num, const char *file, int line);
void CRYPTO_secure_free(void *ptr);
int CRYPTO_secure_allocated(const void *ptr);
int CRYPTO_secure_malloc_initialized(void);