{
EVP_PKEY_CTX *pctx = vpctx;
EVP_PKEY *pkey = EVP_PKEY_CTX_get0_pkey(pctx);
- EC_KEY *ec = EC_KEY_new_ex(pctx->libctx);
+ EC_KEY *ec = EC_KEY_new_with_libctx(pctx->libctx, pctx->propquery);
if (ec == NULL) {
ERR_raise(ERR_LIB_DH, ERR_R_MALLOC_FAILURE);
|| (curve_nid = ec_curve_name2nid(curve_name)) == NID_undef)
goto err;
- if ((ecg = EC_GROUP_new_by_curve_name_ex(ec_key_get_libctx(ec),
- curve_nid)) == NULL)
+ if ((ecg = EC_GROUP_new_by_curve_name_with_libctx(ec_key_get_libctx(ec),
+ ec_key_get0_propq(ec),
+ curve_nid)) == NULL)
goto err;
}
}
static EC_GROUP *ec_group_new_from_data(OPENSSL_CTX *libctx,
+ const char *propq,
const ec_list_element curve)
{
EC_GROUP *group = NULL;
/* If no curve data curve method must handle everything */
if (curve.data == NULL)
- return ec_group_new_ex(libctx,
- curve.meth != NULL ? curve.meth() : NULL);
+ return ec_group_new_with_libctx(libctx, propq,
+ curve.meth != NULL ? curve.meth() : NULL);
if ((ctx = BN_CTX_new_ex(libctx)) == NULL) {
ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_MALLOC_FAILURE);
if (curve.meth != 0) {
meth = curve.meth();
- if (((group = ec_group_new_ex(libctx, meth)) == NULL) ||
+ if (((group = ec_group_new_with_libctx(libctx, propq, meth)) == NULL) ||
(!(group->meth->group_set_curve(group, p, a, b, ctx)))) {
ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB);
goto err;
return group;
}
-EC_GROUP *EC_GROUP_new_by_curve_name_ex(OPENSSL_CTX *libctx, int nid)
+EC_GROUP *EC_GROUP_new_by_curve_name_with_libctx(OPENSSL_CTX *libctx,
+ const char *propq, int nid)
{
EC_GROUP *ret = NULL;
const ec_list_element *curve;
if ((curve = ec_curve_nid2curve(nid)) == NULL
- || (ret = ec_group_new_from_data(libctx, *curve)) == NULL) {
- ECerr(EC_F_EC_GROUP_NEW_BY_CURVE_NAME_EX, EC_R_UNKNOWN_GROUP);
+ || (ret = ec_group_new_from_data(libctx, propq, *curve)) == NULL) {
+ ECerr(0, EC_R_UNKNOWN_GROUP);
return NULL;
}
#ifndef FIPS_MODULE
EC_GROUP *EC_GROUP_new_by_curve_name(int nid)
{
- return EC_GROUP_new_by_curve_name_ex(NULL, nid);
+ return EC_GROUP_new_by_curve_name_with_libctx(NULL, NULL, nid);
}
#endif
meth = EC_GFp_mont_method();
#endif
- ret = ec_group_new_ex(bn_get_lib_ctx(ctx), meth);
+ ret = ec_group_new_with_libctx(bn_get_lib_ctx(ctx), NULL, meth);
if (ret == NULL)
return NULL;
meth = EC_GF2m_simple_method();
- ret = ec_group_new_ex(bn_get_lib_ctx(ctx), meth);
+ ret = ec_group_new_with_libctx(bn_get_lib_ctx(ctx), NULL, meth);
if (ret == NULL)
return NULL;
#ifndef FIPS_MODULE
EC_KEY *EC_KEY_new(void)
{
- return ec_key_new_method_int(NULL, NULL);
+ return ec_key_new_method_int(NULL, NULL, NULL);
}
#endif
-EC_KEY *EC_KEY_new_ex(OPENSSL_CTX *ctx)
+EC_KEY *EC_KEY_new_with_libctx(OPENSSL_CTX *ctx, const char *propq)
{
- return ec_key_new_method_int(ctx, NULL);
+ return ec_key_new_method_int(ctx, propq, NULL);
}
-EC_KEY *EC_KEY_new_by_curve_name_ex(OPENSSL_CTX *ctx, int nid)
+EC_KEY *EC_KEY_new_by_curve_name_with_libctx(OPENSSL_CTX *ctx,
+ const char *propq, int nid)
{
- EC_KEY *ret = EC_KEY_new_ex(ctx);
+ EC_KEY *ret = EC_KEY_new_with_libctx(ctx, propq);
if (ret == NULL)
return NULL;
- ret->group = EC_GROUP_new_by_curve_name_ex(ctx, nid);
+ ret->group = EC_GROUP_new_by_curve_name_with_libctx(ctx, propq, nid);
if (ret->group == NULL) {
EC_KEY_free(ret);
return NULL;
#ifndef FIPS_MODULE
EC_KEY *EC_KEY_new_by_curve_name(int nid)
{
- return EC_KEY_new_by_curve_name_ex(NULL, nid);
+ return EC_KEY_new_by_curve_name_with_libctx(NULL, NULL, nid);
}
#endif
EC_GROUP_free(r->group);
EC_POINT_free(r->pub_key);
BN_clear_free(r->priv_key);
+ OPENSSL_free(r->propq);
OPENSSL_clear_free((void *)r, sizeof(EC_KEY));
}
if (src->group != NULL) {
/* clear the old group */
EC_GROUP_free(dest->group);
- dest->group = ec_group_new_ex(src->libctx, src->group->meth);
+ dest->group = ec_group_new_with_libctx(src->libctx, src->propq,
+ src->group->meth);
if (dest->group == NULL)
return NULL;
if (!EC_GROUP_copy(dest->group, src->group))
EC_KEY *EC_KEY_dup(const EC_KEY *ec_key)
{
- EC_KEY *ret = ec_key_new_method_int(ec_key->libctx, ec_key->engine);
+ EC_KEY *ret = ec_key_new_method_int(ec_key->libctx, ec_key->propq,
+ ec_key->engine);
if (ret == NULL)
return NULL;
return key->libctx;
}
+const char *ec_key_get0_propq(const EC_KEY *key)
+{
+ return key->propq;
+}
+
const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key)
{
return key->group;
return 1;
}
-EC_KEY *ec_key_new_method_int(OPENSSL_CTX *libctx, ENGINE *engine)
+EC_KEY *ec_key_new_method_int(OPENSSL_CTX *libctx, const char *propq,
+ ENGINE *engine)
{
EC_KEY *ret = OPENSSL_zalloc(sizeof(*ret));
}
ret->libctx = libctx;
+ if (propq != NULL) {
+ ret->propq = OPENSSL_strdup(propq);
+ if (ret->propq == NULL) {
+ ECerr(EC_F_EC_KEY_NEW_METHOD_INT, ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+ }
ret->references = 1;
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
ECerr(EC_F_EC_KEY_NEW_METHOD_INT, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(ret);
- return NULL;
+ goto err;
}
ret->meth = EC_KEY_get_default_method();
#ifndef FIPS_MODULE
EC_KEY *EC_KEY_new_method(ENGINE *engine)
{
- return ec_key_new_method_int(NULL, engine);
+ return ec_key_new_method_int(NULL, NULL, engine);
}
#endif
/* functions for EC_GROUP objects */
-EC_GROUP *ec_group_new_ex(OPENSSL_CTX *libctx, const EC_METHOD *meth)
+EC_GROUP *ec_group_new_with_libctx(OPENSSL_CTX *libctx, const char *propq,
+ const EC_METHOD *meth)
{
EC_GROUP *ret;
if (meth == NULL) {
- ECerr(EC_F_EC_GROUP_NEW_EX, EC_R_SLOT_FULL);
+ ECerr(0, EC_R_SLOT_FULL);
return NULL;
}
if (meth->group_init == 0) {
- ECerr(EC_F_EC_GROUP_NEW_EX, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
+ ECerr(0, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return NULL;
}
ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL) {
- ECerr(EC_F_EC_GROUP_NEW_EX, ERR_R_MALLOC_FAILURE);
+ ECerr(0, ERR_R_MALLOC_FAILURE);
return NULL;
}
ret->libctx = libctx;
+ if (propq != NULL) {
+ ret->propq = OPENSSL_strdup(propq);
+ if (ret->propq == NULL) {
+ ECerr(0, ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+ }
ret->meth = meth;
if ((ret->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) {
ret->order = BN_new();
err:
BN_free(ret->order);
BN_free(ret->cofactor);
+ OPENSSL_free(ret->propq);
OPENSSL_free(ret);
return NULL;
}
# ifndef FIPS_MODULE
EC_GROUP *EC_GROUP_new(const EC_METHOD *meth)
{
- return ec_group_new_ex(NULL, meth);
+ return ec_group_new_with_libctx(NULL, NULL, meth);
}
# endif
#endif
BN_free(group->order);
BN_free(group->cofactor);
OPENSSL_free(group->seed);
+ OPENSSL_free(group->propq);
OPENSSL_free(group);
}
if (a == NULL)
return NULL;
- if ((t = ec_group_new_ex(a->libctx, a->meth)) == NULL)
+ if ((t = ec_group_new_with_libctx(a->libctx, a->propq, a->meth)) == NULL)
return NULL;
if (!EC_GROUP_copy(t, a))
goto err;
} pre_comp;
OPENSSL_CTX *libctx;
+ char *propq;
};
#define SETPRECOMP(g, type, pre) \
#endif
CRYPTO_RWLOCK *lock;
OPENSSL_CTX *libctx;
+ char *propq;
/* Provider data */
size_t dirty_cnt; /* If any key material changes, increment this */
* Creates a new EC_GROUP object
* \param libctx The associated library context or NULL for the default
* library context
+ * \param propq Any property query string
* \param meth EC_METHOD to use
* \return newly created EC_GROUP object or NULL in case of an error.
*/
-EC_GROUP *ec_group_new_ex(OPENSSL_CTX *libctx, const EC_METHOD *meth);
+EC_GROUP *ec_group_new_with_libctx(OPENSSL_CTX *libctx, const char *propq,
+ const EC_METHOD *meth);
#ifdef ECP_NISTZ256_ASM
/** Returns GFp methods using montgomery multiplication, with x86-64 optimized
#define EC_KEY_METHOD_DYNAMIC 1
-EC_KEY *ec_key_new_method_int(OPENSSL_CTX *libctx, ENGINE *engine);
+EC_KEY *ec_key_new_method_int(OPENSSL_CTX *libctx, const char *propq,
+ ENGINE *engine);
int ossl_ec_key_gen(EC_KEY *eckey);
int ossl_ecdh_compute_key(unsigned char **pout, size_t *poutlen,
EC_F_EC_GROUP_GET_TRINOMIAL_BASIS:194:EC_GROUP_get_trinomial_basis
EC_F_EC_GROUP_NEW:108:EC_GROUP_new
EC_F_EC_GROUP_NEW_BY_CURVE_NAME:174:EC_GROUP_new_by_curve_name
-EC_F_EC_GROUP_NEW_BY_CURVE_NAME_EX:301:EC_GROUP_new_by_curve_name_ex
EC_F_EC_GROUP_NEW_EX:302:EC_GROUP_new_ex
EC_F_EC_GROUP_NEW_FROM_DATA:175:ec_group_new_from_data
EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS:263:EC_GROUP_new_from_ecparameters
EC_GROUP_clear_free,
EC_GROUP_new_curve_GFp,
EC_GROUP_new_curve_GF2m,
-EC_GROUP_new_by_curve_name_ex,
+EC_GROUP_new_by_curve_name_with_libctx,
EC_GROUP_new_by_curve_name,
EC_GROUP_set_curve,
EC_GROUP_get_curve,
const BIGNUM *b, BN_CTX *ctx);
EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx);
- EC_GROUP *EC_GROUP_new_by_curve_name_ex(OPENSSL_CTX *libctx, int nid);
+ EC_GROUP *EC_GROUP_new_by_curve_name_with_libctx(OPENSSL_CTX *libctx,
+ const char *propq, int nid);
EC_GROUP *EC_GROUP_new_by_curve_name(int nid);
int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
Although deprecated since OpenSSL 3.0 and should no longer be used,
a new curve can be constructed by calling EC_GROUP_new(), using the
-implementation provided by B<meth> (see L<EC_GFp_simple_method(3)>) and
-associated with the library context B<ctx> (see L<OPENSSL_CTX(3)>).
-The B<ctx> parameter may be NULL in which case the default library context is
+implementation provided by I<meth> (see L<EC_GFp_simple_method(3)>) and
+associated with the library context I<ctx> (see L<OPENSSL_CTX(3)>).
+The I<ctx> parameter may be NULL in which case the default library context is
used.
It is then necessary to call EC_GROUP_set_curve() to set the curve parameters.
Applications should instead use one of the other EC_GROUP_new_* constructors.
EC_GROUP_new_from_ecparameters() will create a group from the
-specified B<params> and
+specified I<params> and
EC_GROUP_new_from_ecpkparameters() will create a group from the specific PK
-B<params>.
+I<params>.
-EC_GROUP_set_curve() sets the curve parameters B<p>, B<a> and B<b>. For a curve
-over Fp B<p> is the prime for the field. For a curve over F2^m B<p> represents
+EC_GROUP_set_curve() sets the curve parameters I<p>, I<a> and I<b>. For a curve
+over Fp I<p> is the prime for the field. For a curve over F2^m I<p> represents
the irreducible polynomial - each bit represents a term in the polynomial.
Therefore there will either be three or five bits set dependent on whether the
polynomial is a trinomial or a pentanomial.
-In either case, B<a> and B<b> represents the coefficients a and b from the
+In either case, I<a> and I<b> represents the coefficients a and b from the
relevant equation introduced above.
EC_group_get_curve() obtains the previously set curve parameters.
Whilst the library can be used to create any curve using the functions described
above, there are also a number of predefined curves that are available. In order
to obtain a list of all of the predefined curves, call the function
-EC_get_builtin_curves(). The parameter B<r> should be an array of
-EC_builtin_curve structures of size B<nitems>. The function will populate the
-B<r> array with information about the built-in curves. If B<nitems> is less than
-the total number of curves available, then the first B<nitems> curves will be
+EC_get_builtin_curves(). The parameter I<r> should be an array of
+EC_builtin_curve structures of size I<nitems>. The function will populate the
+I<r> array with information about the built-in curves. If I<nitems> is less than
+the total number of curves available, then the first I<nitems> curves will be
returned. Otherwise the total number of curves will be provided. The return
value is the total number of curves available (whether that number has been
-populated in B<r> or not). Passing a NULL B<r>, or setting B<nitems> to 0 will
+populated in I<r> or not). Passing a NULL I<r>, or setting I<nitems> to 0 will
do nothing other than return the total number of curves available.
The EC_builtin_curve structure is defined as follows:
const char *comment;
} EC_builtin_curve;
-Each EC_builtin_curve item has a unique integer id (B<nid>), and a human
+Each EC_builtin_curve item has a unique integer id (I<nid>), and a human
readable comment string describing the curve.
In order to construct a built-in curve use the function
-EC_GROUP_new_by_curve_name_ex() and provide the B<nid> of the curve to be
-constructed and the associated library context to be used in B<ctx> (see
-L<OPENSSL_CTX(3)>). The B<ctx> value may be NULL in which case the default
-library context is used.
+EC_GROUP_new_by_curve_name_with_libctx() and provide the I<nid> of the curve to
+be constructed, the associated library context to be used in I<ctx> (see
+L<OPENSSL_CTX(3)>) and any property query string in I<propq>. The I<ctx> value
+may be NULL in which case the default library context is used. The I<propq>
+value may also be NULL.
-EC_GROUP_new_by_curve_name() is the same as EC_GROUP_new_by_curve_name_ex()
-except that the default library context is always used.
+EC_GROUP_new_by_curve_name() is the same as
+EC_GROUP_new_by_curve_name_with_libctx() except that the default library context
+is always used along with a NULL property query string.
EC_GROUP_free() frees the memory associated with the EC_GROUP.
-If B<group> is NULL nothing is done.
+If I<group> is NULL nothing is done.
EC_GROUP_clear_free() is deprecated: it was meant to destroy any sensitive data
held within the EC_GROUP and then free its memory, but since all the data stored
in the EC_GROUP is public anyway, this function is unnecessary.
Its use can be safely replaced with EC_GROUP_free().
-If B<group> is NULL nothing is done.
+If I<group> is NULL nothing is done.
=head1 RETURN VALUES
EC_GROUP_new() was deprecated in OpenSSL 3.0.
-EC_GROUP_new_by_curve_name_ex() was added in OpenSSL 3.0.
+EC_GROUP_new_by_curve_name_with_libctx() was added in OpenSSL 3.0.
=item *
=head1 NAME
-EC_KEY_get_method, EC_KEY_set_method, EC_KEY_new_ex,
+EC_KEY_get_method, EC_KEY_set_method, EC_KEY_new_with_libctx,
EC_KEY_new, EC_KEY_get_flags, EC_KEY_set_flags, EC_KEY_clear_flags,
-EC_KEY_new_by_curve_name_ex, EC_KEY_new_by_curve_name, EC_KEY_free, EC_KEY_copy,
-EC_KEY_dup, EC_KEY_up_ref, EC_KEY_get0_engine,
+EC_KEY_new_by_curve_name_with_libctx, EC_KEY_new_by_curve_name, EC_KEY_free,
+EC_KEY_copy, EC_KEY_dup, EC_KEY_up_ref, EC_KEY_get0_engine,
EC_KEY_get0_group, EC_KEY_set_group, EC_KEY_get0_private_key,
EC_KEY_set_private_key, EC_KEY_get0_public_key, EC_KEY_set_public_key,
EC_KEY_get_conv_form,
#include <openssl/ec.h>
- EC_KEY *EC_KEY_new_ex(OPENSSL_CTX *ctx);
+ EC_KEY *EC_KEY_new_with_libctx(OPENSSL_CTX *ctx, const char *propq);
EC_KEY *EC_KEY_new(void);
int EC_KEY_get_flags(const EC_KEY *key);
void EC_KEY_set_flags(EC_KEY *key, int flags);
void EC_KEY_clear_flags(EC_KEY *key, int flags);
- EC_KEY *EC_KEY_new_by_curve_name_ex(OPENSSL_CTX *ctx, int nid);
+ EC_KEY *EC_KEY_new_by_curve_name_with_libctx(OPENSSL_CTX *ctx,
+ const char *propq, int nid);
EC_KEY *EC_KEY_new_by_curve_name(int nid);
void EC_KEY_free(EC_KEY *key);
EC_KEY *EC_KEY_copy(EC_KEY *dst, const EC_KEY *src);
An EC_KEY represents a public key and, optionally, the associated private
key.
A new EC_KEY with no associated curve can be constructed by calling
-EC_KEY_new_ex() and specifying the associated library context in B<ctx>
-(see L<OPENSSL_CTX(3)>).
-The B<ctx> parameter may be NULL in which case the default library context is
+EC_KEY_new_ex() and specifying the associated library context in I<ctx>
+(see L<OPENSSL_CTX(3)>) and property query string I<propq>.
+The I<ctx> parameter may be NULL in which case the default library context is
used.
The reference count for the newly created EC_KEY is initially
set to 1.
context is always used.
Alternatively a new EC_KEY can be constructed by calling
-EC_KEY_new_by_curve_name_ex() and supplying the nid of the associated curve and
-the library context to be used B<ctx> (see L<OPENSSL_CTX(3)>).
-The B<ctx> parameter may be NULL in which case the default library context is
-used.
+EC_KEY_new_by_curve_name_with_libctx() and supplying the nid of the associated
+curve, the library context to be used I<ctx> (see L<OPENSSL_CTX(3)>) and any
+property query string I<propq>.
+The I<ctx> parameter may be NULL in which case the default library context is
+used. The I<propq> value may also be NULL.
See L<EC_GROUP_new(3)> for a description of curve names.
This function simply wraps calls to EC_KEY_new_ex() and
-EC_GROUP_new_by_curve_name_ex().
+EC_GROUP_new_by_curve_name_with_libctx().
-EC_KEY_new_by_curve_name() is the same as EC_KEY_new_by_curve_name_ex() except
-that the default library context is always used.
+EC_KEY_new_by_curve_name() is the same as EC_KEY_new_by_curve_name_with_libctx()
+except that the default library context is always used and a NULL property query
+string.
Calling EC_KEY_free() decrements the reference count for the EC_KEY object,
and if it has dropped to zero then frees the memory associated with it. If
-B<key> is NULL nothing is done.
+I<key> is NULL nothing is done.
-EC_KEY_copy() copies the contents of the EC_KEY in B<src> into B<dest>.
+EC_KEY_copy() copies the contents of the EC_KEY in I<src> into I<dest>.
-EC_KEY_dup() creates a new EC_KEY object and copies B<ec_key> into it.
+EC_KEY_dup() creates a new EC_KEY object and copies I<ec_key> into it.
EC_KEY_up_ref() increments the reference count associated with the EC_KEY
object.
this EC_KEY object.
EC_KEY_generate_key() generates a new public and private key for the supplied
-B<eckey> object. B<eckey> must have an EC_GROUP object associated with it
+I<eckey> object. I<eckey> must have an EC_GROUP object associated with it
before calling this function. The private key is a random integer (0 < priv_key
< order, where I<order> is the order of the EC_GROUP object). The public key is
an EC_POINT on the curve calculated by multiplying the generator for the
EC_KEY_check_key() performs various sanity checks on the EC_KEY object to
confirm that it is valid.
-EC_KEY_set_public_key_affine_coordinates() sets the public key for B<key> based
+EC_KEY_set_public_key_affine_coordinates() sets the public key for I<key> based
on its affine co-ordinates; i.e., it constructs an EC_POINT object based on
-the supplied B<x> and B<y> values and sets the public key to be this
+the supplied I<x> and I<y> values and sets the public key to be this
EC_POINT. It also performs certain sanity checks on the key to confirm
that it is valid.
The functions EC_KEY_get0_group(), EC_KEY_set_group(),
EC_KEY_get0_private_key(), EC_KEY_set_private_key(), EC_KEY_get0_public_key(),
and EC_KEY_set_public_key() get and set the EC_GROUP object, the private key,
-and the EC_POINT public key for the B<key> respectively.
+and the EC_POINT public key for the I<key> respectively.
The functions EC_KEY_get_conv_form() and EC_KEY_set_conv_form() get and set the
-point_conversion_form for the B<key>. For a description of
+point_conversion_form for the I<key>. For a description of
point_conversion_forms please see L<EC_POINT_new(3)>.
-EC_KEY_set_flags() sets the flags in the B<flags> parameter on the EC_KEY
+EC_KEY_set_flags() sets the flags in the I<flags> parameter on the EC_KEY
object. Any flags that are already set are left set. The flags currently
defined are EC_FLAG_NON_FIPS_ALLOW and EC_FLAG_FIPS_CHECKED. In
addition there is the flag EC_FLAG_COFACTOR_ECDH which is specific to ECDH.
EC_KEY_get_flags() returns the current flags that are set for this EC_KEY.
-EC_KEY_clear_flags() clears the flags indicated by the B<flags> parameter; all
+EC_KEY_clear_flags() clears the flags indicated by the I<flags> parameter; all
other flags are left in their existing state.
EC_KEY_set_asn1_flag() sets the asn1_flag on the underlying EC_GROUP object
EC_KEY_oct2key() and EC_KEY_key2buf() are identical to the functions
EC_POINT_oct2point() and EC_POINT_point2buf() except they use the public key
-EC_POINT in B<eckey>.
+EC_POINT in I<eckey>.
EC_KEY_oct2priv() and EC_KEY_priv2oct() convert between the private key
-component of B<eckey> and octet form. The octet form consists of the content
-octets of the B<privateKey> OCTET STRING in an B<ECPrivateKey> ASN.1 structure.
+component of I<eckey> and octet form. The octet form consists of the content
+octets of the I<privateKey> OCTET STRING in an I<ECPrivateKey> ASN.1 structure.
The function EC_KEY_priv2oct() must be supplied with a buffer long enough to
store the octet form. The return value provides the number of octets stored.
will just return the required buffer length.
The function EC_KEY_priv2buf() allocates a buffer of suitable length and writes
-an EC_KEY to it in octet format. The allocated buffer is written to B<*pbuf>
+an EC_KEY to it in octet format. The allocated buffer is written to I<*pbuf>
and its length is returned. The caller must free up the allocated buffer with a
-call to OPENSSL_free(). Since the allocated buffer value is written to B<*pbuf>
-the B<pbuf> parameter B<MUST NOT> be B<NULL>.
+call to OPENSSL_free(). Since the allocated buffer value is written to I<*pbuf>
+the I<pbuf> parameter B<MUST NOT> be B<NULL>.
EC_KEY_priv2buf() converts an EC_KEY private key into an allocated buffer.
=head1 RETURN VALUES
-EC_KEY_new_ex(), EC_KEY_new(), EC_KEY_new_by_curve_name() and EC_KEY_dup()
-return a pointer to the newly created EC_KEY object, or NULL on error.
+EC_KEY_new_with_libctx(), EC_KEY_new(), EC_KEY_new_by_curve_name_with_libctx(),
+EC_KEY_new_by_curve_name() and EC_KEY_dup() return a pointer to the newly
+created EC_KEY object, or NULL on error.
EC_KEY_get_flags() returns the flags associated with the EC_KEY object as an
integer.
int ec_key_private_check(const EC_KEY *eckey);
int ec_key_pairwise_check(const EC_KEY *eckey, BN_CTX *ctx);
OPENSSL_CTX *ec_key_get_libctx(const EC_KEY *eckey);
+const char *ec_key_get0_propq(const EC_KEY *eckey);
const char *ec_curve_nid2name(int nid);
int ec_curve_name2nid(const char *name);
const unsigned char *ecdsa_algorithmidentifier_encoding(int md_nid, size_t *len);
* Creates a EC_GROUP object with a curve specified by a NID
* \param libctx The associated library context or NULL for the default
* context
+ * \param propq A property query string
* \param nid NID of the OID of the curve name
* \return newly created EC_GROUP object with specified curve or NULL
* if an error occurred
*/
-EC_GROUP *EC_GROUP_new_by_curve_name_ex(OPENSSL_CTX *libctx, int nid);
+EC_GROUP *EC_GROUP_new_by_curve_name_with_libctx(OPENSSL_CTX *libctx,
+ const char *propq, int nid);
/**
* Creates a EC_GROUP object with a curve specified by a NID. Same as
- * EC_GROUP_new_by_curve_name_ex but the libctx is always NULL.
+ * EC_GROUP_new_by_curve_name_with_libctx but the libctx and propq are always
+ * NULL.
* \param nid NID of the OID of the curve name
* \return newly created EC_GROUP object with specified curve or NULL
* if an error occurred
* which case the default library context is used.
* \return EC_KEY object or NULL if an error occurred.
*/
-EC_KEY *EC_KEY_new_ex(OPENSSL_CTX *ctx);
+EC_KEY *EC_KEY_new_with_libctx(OPENSSL_CTX *ctx, const char *propq);
/**
- * Creates a new EC_KEY object. Same as calling EC_KEY_new_ex with a NULL
- * library context
+ * Creates a new EC_KEY object. Same as calling EC_KEY_new_with_libctx with a
+ * NULL library context
* \return EC_KEY object or NULL if an error occurred.
*/
EC_KEY *EC_KEY_new(void);
/**
* Creates a new EC_KEY object using a named curve as underlying
* EC_GROUP object.
- * \param ctx The library context for to use for this EC_KEY. May be NULL in
- * which case the default library context is used.
- * \param nid NID of the named curve.
+ * \param ctx The library context for to use for this EC_KEY. May be NULL in
+ * which case the default library context is used.
+ * \param propq Any property query string
+ * \param nid NID of the named curve.
* \return EC_KEY object or NULL if an error occurred.
*/
-EC_KEY *EC_KEY_new_by_curve_name_ex(OPENSSL_CTX *ctx, int nid);
+EC_KEY *EC_KEY_new_by_curve_name_with_libctx(OPENSSL_CTX *ctx, const char *propq,
+ int nid);
/**
* Creates a new EC_KEY object using a named curve as underlying
* EC_GROUP object. Same as calling EC_KEY_new_by_curve_name_ex with a NULL
- * library context.
+ * library context and property query string.
* \param nid NID of the named curve.
* \return EC_KEY object or NULL if an error occurred.
*/
# define EC_F_EC_GROUP_GET_TRINOMIAL_BASIS 0
# define EC_F_EC_GROUP_NEW 0
# define EC_F_EC_GROUP_NEW_BY_CURVE_NAME 0
-# define EC_F_EC_GROUP_NEW_BY_CURVE_NAME_EX 0
# define EC_F_EC_GROUP_NEW_EX 0
# define EC_F_EC_GROUP_NEW_FROM_DATA 0
# define EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS 0
#ifndef OPENSSL_NO_EC
/* Do some dummy EC calls */
- key = EC_KEY_new_by_curve_name_ex(libctx, NID_X9_62_prime256v1);
+ key = EC_KEY_new_by_curve_name_with_libctx(libctx, NULL, NID_X9_62_prime256v1);
if (key == NULL)
goto err;
static
void *ec_newdata(void *provctx)
{
- return EC_KEY_new_ex(PROV_LIBRARY_CONTEXT_OF(provctx));
+ return EC_KEY_new_with_libctx(PROV_LIBRARY_CONTEXT_OF(provctx), NULL);
}
static
struct ec_gen_ctx *gctx = genctx;
EC_GROUP *group;
- group = EC_GROUP_new_by_curve_name_ex(gctx->libctx, nid);
+ group = EC_GROUP_new_by_curve_name_with_libctx(gctx->libctx, NULL, nid);
if (group == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_CURVE);
return 0;
int ret = 1; /* Start optimistically */
if (gctx == NULL
- || (ec = EC_KEY_new_ex(gctx->libctx)) == NULL)
+ || (ec = EC_KEY_new_with_libctx(gctx->libctx, NULL)) == NULL)
return NULL;
/* We must always assign a group, no matter what */
ERR_vset_error ? 3_0_0 EXIST::FUNCTION:
X509_get0_authority_issuer ? 3_0_0 EXIST::FUNCTION:
X509_get0_authority_serial ? 3_0_0 EXIST::FUNCTION:
-EC_GROUP_new_by_curve_name_ex ? 3_0_0 EXIST::FUNCTION:EC
-EC_KEY_new_ex ? 3_0_0 EXIST::FUNCTION:EC
-EC_KEY_new_by_curve_name_ex ? 3_0_0 EXIST::FUNCTION:EC
+EC_GROUP_new_by_curve_name_ex ? 3_0_0 NOEXIST::FUNCTION:EC
+EC_KEY_new_ex ? 3_0_0 NOEXIST::FUNCTION:EC
+EC_KEY_new_by_curve_name_ex ? 3_0_0 NOEXIST::FUNCTION:EC
OPENSSL_hexstr2buf_ex ? 3_0_0 EXIST::FUNCTION:
OPENSSL_buf2hexstr_ex ? 3_0_0 EXIST::FUNCTION:
OSSL_PARAM_allocate_from_text ? 3_0_0 EXIST::FUNCTION:
OSSL_PROVIDER_query_operation ? 3_0_0 EXIST::FUNCTION:
OSSL_PROVIDER_get0_provider_ctx ? 3_0_0 EXIST::FUNCTION:
OSSL_PROVIDER_get_capabilities ? 3_0_0 EXIST::FUNCTION:
+EC_GROUP_new_by_curve_name_with_libctx ? 3_0_0 EXIST::FUNCTION:EC
+EC_KEY_new_with_libctx ? 3_0_0 EXIST::FUNCTION:EC
+EC_KEY_new_by_curve_name_with_libctx ? 3_0_0 EXIST::FUNCTION:EC