*/
/* Prefix for optional rounds specification. */
-static const char str_rounds[] = "rounds=%u$";
+static const char str_rounds[] ALIGN1 = "rounds=%u$";
/* Maximum salt string length. */
#define SALT_LEN_MAX 16
sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
{
void (*sha_begin)(void *ctx) FAST_FUNC;
- void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC;
- void (*sha_end)(void *resbuf, void *ctx) FAST_FUNC;
+ void (*sha_hash)(void *ctx, const void *buffer, size_t len) FAST_FUNC;
+ void (*sha_end)(void *ctx, void *resbuf) FAST_FUNC;
int _32or64;
char *result, *resptr;
/* Add KEY, SALT. */
sha_begin(&ctx);
- sha_hash(key_data, key_len, &ctx);
- sha_hash(salt_data, salt_len, &ctx);
+ sha_hash(&ctx, key_data, key_len);
+ sha_hash(&ctx, salt_data, salt_len);
/* Compute alternate SHA sum with input KEY, SALT, and KEY.
The final result will be added to the first context. */
sha_begin(&alt_ctx);
- sha_hash(key_data, key_len, &alt_ctx);
- sha_hash(salt_data, salt_len, &alt_ctx);
- sha_hash(key_data, key_len, &alt_ctx);
- sha_end(alt_result, &alt_ctx);
+ sha_hash(&alt_ctx, key_data, key_len);
+ sha_hash(&alt_ctx, salt_data, salt_len);
+ sha_hash(&alt_ctx, key_data, key_len);
+ sha_end(&alt_ctx, alt_result);
/* Add result of this to the other context. */
/* Add for any character in the key one byte of the alternate sum. */
for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
- sha_hash(alt_result, _32or64, &ctx);
- sha_hash(alt_result, cnt, &ctx);
+ sha_hash(&ctx, alt_result, _32or64);
+ sha_hash(&ctx, alt_result, cnt);
/* Take the binary representation of the length of the key and for every
1 add the alternate sum, for every 0 the key. */
for (cnt = key_len; cnt != 0; cnt >>= 1)
if ((cnt & 1) != 0)
- sha_hash(alt_result, _32or64, &ctx);
+ sha_hash(&ctx, alt_result, _32or64);
else
- sha_hash(key_data, key_len, &ctx);
+ sha_hash(&ctx, key_data, key_len);
/* Create intermediate result. */
- sha_end(alt_result, &ctx);
+ sha_end(&ctx, alt_result);
/* Start computation of P byte sequence. */
/* For every character in the password add the entire password. */
sha_begin(&alt_ctx);
for (cnt = 0; cnt < key_len; ++cnt)
- sha_hash(key_data, key_len, &alt_ctx);
- sha_end(temp_result, &alt_ctx);
+ sha_hash(&alt_ctx, key_data, key_len);
+ sha_end(&alt_ctx, temp_result);
/* NB: past this point, raw key_data is not used anymore */
/* For every character in the password add the entire password. */
sha_begin(&alt_ctx);
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
- sha_hash(salt_data, salt_len, &alt_ctx);
- sha_end(temp_result, &alt_ctx);
+ sha_hash(&alt_ctx, salt_data, salt_len);
+ sha_end(&alt_ctx, temp_result);
/* NB: past this point, raw salt_data is not used anymore */
/* Add key or last result. */
if ((cnt & 1) != 0)
- sha_hash(p_bytes, key_len, &ctx);
+ sha_hash(&ctx, p_bytes, key_len);
else
- sha_hash(alt_result, _32or64, &ctx);
+ sha_hash(&ctx, alt_result, _32or64);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
- sha_hash(s_bytes, salt_len, &ctx);
+ sha_hash(&ctx, s_bytes, salt_len);
/* Add key for numbers not divisible by 7. */
if (cnt % 7 != 0)
- sha_hash(p_bytes, key_len, &ctx);
+ sha_hash(&ctx, p_bytes, key_len);
/* Add key or last result. */
if ((cnt & 1) != 0)
- sha_hash(alt_result, _32or64, &ctx);
+ sha_hash(&ctx, alt_result, _32or64);
else
- sha_hash(p_bytes, key_len, &ctx);
+ sha_hash(&ctx, p_bytes, key_len);
- sha_end(alt_result, &ctx);
+ sha_end(&ctx, alt_result);
}
/* Append encrypted password to result buffer */
#if ENABLE_HUSH_LOOPS
/* Check syntax for "for" */
- for (struct pipe *cpipe = pi; cpipe; cpipe = cpipe->next) {
- if (cpipe->res_word != RES_FOR && cpipe->res_word != RES_IN)
- continue;
- /* current word is FOR or IN (BOLD in comments below) */
- if (cpipe->next == NULL) {
- syntax_error("malformed for");
- debug_leave();
- debug_printf_exec("run_list lvl %d return 1\n", G.run_list_level);
- return 1;
- }
- /* "FOR v; do ..." and "for v IN a b; do..." are ok */
- if (cpipe->next->res_word == RES_DO)
- continue;
- /* next word is not "do". It must be "in" then ("FOR v in ...") */
- if (cpipe->res_word == RES_IN /* "for v IN a b; not_do..."? */
- || cpipe->next->res_word != RES_IN /* FOR v not_do_and_not_in..."? */
- ) {
- syntax_error("malformed for");
- debug_leave();
- debug_printf_exec("run_list lvl %d return 1\n", G.run_list_level);
- return 1;
+ {
+ struct pipe *cpipe;
+ for (cpipe = pi; cpipe; cpipe = cpipe->next) {
+ if (cpipe->res_word != RES_FOR && cpipe->res_word != RES_IN)
+ continue;
+ /* current word is FOR or IN (BOLD in comments below) */
+ if (cpipe->next == NULL) {
+ syntax_error("malformed for");
+ debug_leave();
+ debug_printf_exec("run_list lvl %d return 1\n", G.run_list_level);
+ return 1;
+ }
+ /* "FOR v; do ..." and "for v IN a b; do..." are ok */
+ if (cpipe->next->res_word == RES_DO)
+ continue;
+ /* next word is not "do". It must be "in" then ("FOR v in ...") */
+ if (cpipe->res_word == RES_IN /* "for v IN a b; not_do..."? */
+ || cpipe->next->res_word != RES_IN /* FOR v not_do_and_not_in..."? */
+ ) {
+ syntax_error("malformed for");
+ debug_leave();
+ debug_printf_exec("run_list lvl %d return 1\n", G.run_list_level);
+ return 1;
+ }
}
}
#endif