static int mr = 0;
static int usertime = 1;
-typedef void *(*kdf_fn) (
- const void *in, size_t inlen, void *out, size_t *xoutlen);
+typedef void *(*kdf_fn) (const void *in, size_t inlen, void *out,
+ size_t *xoutlen);
typedef struct loopargs_st {
ASYNC_JOB *inprogress_job;
EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
unsigned char *secret_a;
unsigned char *secret_b;
- size_t outlen[EC_NUM];
- kdf_fn kdf;
+ size_t outlen[EC_NUM];
+ kdf_fn kdf;
#endif
EVP_CIPHER_CTX *ctx;
HMAC_CTX *hctx;
static int ECDSA_sign_loop(void *args);
static int ECDSA_verify_loop(void *args);
#endif
-static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs);
+static int run_benchmark(int async_jobs, int (*loop_function) (void *),
+ loopargs_t * loopargs);
static double Time_F(int s);
static void print_message(const char *s, long num, int length);
#else
# define COND(unused_cond) (run && count<0x7fffffff)
# define COUNT(d) (count)
-#endif /* SIGALRM */
+#endif /* SIGALRM */
static int testnum;
#ifndef OPENSSL_NO_MD2
static int EVP_Digest_MD2_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md2[MD2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD2][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
- NULL))
+ NULL))
return -1;
}
return count;
#ifndef OPENSSL_NO_MDC2
static int EVP_Digest_MDC2_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char mdc2[MDC2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MDC2][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
- NULL))
+ NULL))
return -1;
}
return count;
#ifndef OPENSSL_NO_MD4
static int EVP_Digest_MD4_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md4[MD4_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD4][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
- NULL))
+ NULL))
return -1;
}
return count;
#ifndef OPENSSL_NO_MD5
static int MD5_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md5[MD5_DIGEST_LENGTH];
int count;
static int HMAC_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
HMAC_CTX *hctx = tempargs->hctx;
unsigned char hmac[MD5_DIGEST_LENGTH];
static int SHA1_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha[SHA_DIGEST_LENGTH];
int count;
static int SHA256_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha256[SHA256_DIGEST_LENGTH];
int count;
static int SHA512_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha512[SHA512_DIGEST_LENGTH];
int count;
#ifndef OPENSSL_NO_WHIRLPOOL
static int WHIRLPOOL_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
int count;
#ifndef OPENSSL_NO_RMD160
static int EVP_Digest_RMD160_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_RMD160][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
- NULL, EVP_ripemd160(), NULL))
+ NULL, EVP_ripemd160(), NULL))
return -1;
}
return count;
static RC4_KEY rc4_ks;
static int RC4_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_RC4][testnum]); count++)
static DES_key_schedule sch3;
static int DES_ncbc_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
- &DES_iv, DES_ENCRYPT);
+ &DES_iv, DES_ENCRYPT);
return count;
}
static int DES_ede3_cbc_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
- &sch, &sch2, &sch3,
- &DES_iv, DES_ENCRYPT);
+ &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT);
return count;
}
#endif
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
static int AES_cbc_128_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
- (size_t)lengths[testnum], &aes_ks1,
- iv, AES_ENCRYPT);
+ (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_192_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
- (size_t)lengths[testnum], &aes_ks2,
- iv, AES_ENCRYPT);
+ (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_256_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
- (size_t)lengths[testnum], &aes_ks3,
- iv, AES_ENCRYPT);
+ (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_128_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
- (size_t)lengths[testnum], &aes_ks1,
- iv, AES_ENCRYPT);
+ (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_192_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
- (size_t)lengths[testnum], &aes_ks2,
- iv, AES_ENCRYPT);
+ (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_256_encrypt_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
- (size_t)lengths[testnum], &aes_ks3,
- iv, AES_ENCRYPT);
+ (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
return count;
}
static int CRYPTO_gcm128_aad_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
int count;
static int decrypt = 0;
static int EVP_Update_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count;
static const EVP_MD *evp_md = NULL;
static int EVP_Digest_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md[EVP_MAX_MD_SIZE];
int count;
static int RSA_sign_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int *rsa_num = &tempargs->siglen;
static int RSA_verify_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int rsa_num = tempargs->siglen;
RSA **rsa_key = tempargs->rsa_key;
int ret, count;
for (count = 0; COND(rsa_c[testnum][1]); count++) {
- ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
+ ret =
+ RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
if (ret <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
ERR_print_errors(bio_err);
static long dsa_c[DSA_NUM][2];
static int DSA_sign_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
static int DSA_verify_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
static long ecdsa_c[EC_NUM][2];
static int ECDSA_sign_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int *ecdsasiglen = &tempargs->siglen;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
- ret = ECDSA_sign(0, buf, 20,
- ecdsasig, ecdsasiglen, ecdsa[testnum]);
+ ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
static int ECDSA_verify_loop(void *args)
{
- loopargs_t *tempargs = *(loopargs_t **)args;
+ loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int ecdsasiglen = tempargs->siglen;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
- ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
- ecdsa[testnum]);
+ ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
if (ret != 1) {
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
static long ecdh_c[EC_NUM][1];
static int ECDH_EVP_derive_key(unsigned char *derived_secret,
- size_t *outlen,
- EVP_PKEY_CTX *ctx)
+ size_t *outlen, EVP_PKEY_CTX *ctx)
{
- int rt=1;
- if ( (rt=EVP_PKEY_derive(ctx, derived_secret, outlen)) <= 0 ) {
+ int rt = 1;
+ if ((rt = EVP_PKEY_derive(ctx, derived_secret, outlen)) <= 0) {
BIO_printf(bio_err, "ECDH EVP_PKEY_derive failure: returned %d\n", rt);
ERR_print_errors(bio_err);
return rt;
size_t *outlen = &(tempargs->outlen[testnum]);
for (count = 0; COND(ecdh_c[testnum][0]); count++) {
- if ( !ECDH_EVP_derive_key(derived_secret, outlen, ctx) )
+ if (!ECDH_EVP_derive_key(derived_secret, outlen, ctx))
break;
}
return count;
#endif /* OPENSSL_NO_EC */
static int run_benchmark(int async_jobs,
- int (*loop_function)(void *), loopargs_t *loopargs)
+ int (*loop_function) (void *), loopargs_t * loopargs)
{
int job_op_count = 0;
int total_op_count = 0;
if (loopargs[i].inprogress_job == NULL)
continue;
- if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
- || num_job_fds > 1) {
+ if (!ASYNC_WAIT_CTX_get_all_fds
+ (loopargs[i].wait_ctx, NULL, &num_job_fds)
+ || num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
- ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
+ ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
+ &num_job_fds);
FD_SET(job_fd, &waitfdset);
if (job_fd > max_fd)
max_fd = job_fd;
if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
BIO_printf(bio_err,
- "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
- "Decrease the value of async_jobs\n",
- max_fd, FD_SETSIZE);
+ "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
+ "Decrease the value of async_jobs\n",
+ max_fd, FD_SETSIZE);
ERR_print_errors(bio_err);
error = 1;
break;
if (loopargs[i].inprogress_job == NULL)
continue;
- if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
- || num_job_fds > 1) {
+ if (!ASYNC_WAIT_CTX_get_all_fds
+ (loopargs[i].wait_ctx, NULL, &num_job_fds)
+ || num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
- ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
+ ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
+ &num_job_fds);
#if defined(OPENSSL_SYS_UNIX)
if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
#endif
ret = ASYNC_start_job(&loopargs[i].inprogress_job,
- loopargs[i].wait_ctx, &job_op_count, loop_function,
- (void *)(loopargs + i), sizeof(loopargs_t));
+ loopargs[i].wait_ctx, &job_op_count,
+ loop_function, (void *)(loopargs + i),
+ sizeof(loopargs_t));
switch (ret) {
case ASYNC_PAUSE:
break;
163, 233, 283,
409, 571, 163,
233, 283, 409,
- 571, 253 /* X25519 */
+ 571, 253 /* X25519 */
};
int ecdsa_doit[EC_NUM] = { 0 };
argv = opt_rest();
/* Remaining arguments are algorithms. */
- for ( ; *argv; argv++) {
+ for (; *argv; argv++) {
if (found(*argv, doit_choices, &i)) {
doit[i] = 1;
continue;
}
#endif
if (strcmp(*argv, "aes") == 0) {
- doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
- doit[D_CBC_256_AES] = 1;
+ doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
continue;
}
#ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv, "camellia") == 0) {
- doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
- doit[D_CBC_256_CML] = 1;
+ doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
continue;
}
#endif
}
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
- loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
+ loopargs =
+ app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
for (i = 0; i < loopargs_len; i++) {
}
}
- loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
- loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
+ loopargs[i].buf_malloc =
+ app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
+ loopargs[i].buf2_malloc =
+ app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
/* Align the start of buffers on a 64 byte boundary */
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
const unsigned char *p;
p = rsa_data[k];
- loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
+ loopargs[i].rsa_key[k] =
+ d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
if (loopargs[i].rsa_key[k] == NULL) {
- BIO_printf(bio_err, "internal error loading RSA key number %d\n",
- k);
+ BIO_printf(bio_err,
+ "internal error loading RSA key number %d\n", k);
goto end;
}
}
rsa_doit[i] = 0;
else {
if (rsa_c[i][0] == 0) {
- rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
+ rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
rsa_c[i][1] = 20;
}
}
dsa_doit[i] = 0;
else {
if (dsa_c[i][0] == 0) {
- dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
+ dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
dsa_c[i][1] = 1;
}
}
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
-# endif /* OPENSSL_NO_DES */
+# endif /* OPENSSL_NO_DES */
#else
# ifndef _WIN32
signal(SIGALRM, sig_done);
# endif
-#endif /* SIGALRM */
+#endif /* SIGALRM */
#ifndef OPENSSL_NO_MD2
if (doit[D_MD2]) {
}
if (doit[D_SHA256]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
- print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]);
+ print_message(names[D_SHA256], c[D_SHA256][testnum],
+ lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
d = Time_F(STOP);
}
if (doit[D_SHA512]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
- print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]);
+ print_message(names[D_SHA512], c[D_SHA512][testnum],
+ lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA512, testnum, count, d);
}
}
-
#ifndef OPENSSL_NO_WHIRLPOOL
if (doit[D_WHIRLPOOL]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
- print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]);
+ print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
+ lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
d = Time_F(STOP);
#ifndef OPENSSL_NO_RMD160
if (doit[D_RMD160]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
- print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]);
+ print_message(names[D_RMD160], c[D_RMD160][testnum],
+ lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
d = Time_F(STOP);
#ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
- print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]);
+ print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
+ lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
d = Time_F(STOP);
if (doit[D_EDE3_DES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
- print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]);
+ print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
+ lengths[testnum]);
Time_F(START);
- count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_EDE3_DES, testnum, count, d);
}
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
lengths[testnum]);
Time_F(START);
- count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_128_AES, testnum, count, d);
}
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
lengths[testnum]);
Time_F(START);
- count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_192_AES, testnum, count, d);
}
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
lengths[testnum]);
Time_F(START);
- count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_256_AES, testnum, count, d);
}
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
lengths[testnum]);
Time_F(START);
- count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_128_AES, testnum, count, d);
}
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
lengths[testnum]);
Time_F(START);
- count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_192_AES, testnum, count, d);
}
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
lengths[testnum]);
Time_F(START);
- count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_256_AES, testnum, count, d);
}
}
if (doit[D_GHASH]) {
for (i = 0; i < loopargs_len; i++) {
- loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
- CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12);
+ loopargs[i].gcm_ctx =
+ CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
+ CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
+ (unsigned char *)"0123456789ab", 12);
}
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
- print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]);
+ print_message(names[D_GHASH], c[D_GHASH][testnum],
+ lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
d = Time_F(STOP);
for (i = 0; i < loopargs_len; i++)
CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
}
-
#ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML]) {
if (async_jobs > 0) {
doit[D_CBC_IDEA] = 0;
}
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
- print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]);
+ print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
+ lengths[testnum]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
doit[D_CBC_SEED] = 0;
}
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
- print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]);
+ print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
+ lengths[testnum]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
doit[D_CBC_RC2] = 0;
}
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
- print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]);
+ print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
+ lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
doit[D_CBC_RC5] = 0;
}
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
- print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]);
+ print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
+ lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
doit[D_CBC_BF] = 0;
}
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
- print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]);
+ print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
+ lengths[testnum]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
doit[D_CBC_CAST] = 0;
}
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
- print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]);
+ print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
+ lengths[testnum]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
for (k = 0; k < loopargs_len; k++) {
loopargs[k].ctx = EVP_CIPHER_CTX_new();
if (decrypt)
- EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
+ EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL,
+ key16, iv);
else
- EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
+ EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL,
+ key16, iv);
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
}
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
- rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS);
+ rsa_c[testnum][0], rsa_bits[testnum],
+ RSA_SECONDS);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
rsa_doit[testnum] = 0;
} else {
pkey_print_message("public", "rsa",
- rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS);
+ rsa_c[testnum][1], rsa_bits[testnum],
+ RSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
d = Time_F(STOP);
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
- dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS);
+ dsa_c[testnum][0], dsa_bits[testnum],
+ DSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
d = Time_F(STOP);
dsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "dsa",
- dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS);
+ dsa_c[testnum][1], dsa_bits[testnum],
+ DSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
d = Time_F(STOP);
if (!ecdsa_doit[testnum])
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
- loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+ loopargs[i].ecdsa[testnum] =
+ EC_KEY_new_by_curve_name(test_curves[testnum]);
if (loopargs[i].ecdsa[testnum] == NULL) {
st = 0;
break;
/* Perform ECDSA signature test */
EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
- &loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
+ &loopargs[i].siglen,
+ loopargs[i].ecdsa[testnum]);
if (st == 0)
break;
}
/* Perform ECDSA verification test */
for (i = 0; i < loopargs_len; i++) {
st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
- loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
+ loopargs[i].siglen,
+ loopargs[i].ecdsa[testnum]);
if (st != 1)
break;
}
EVP_PKEY_CTX *pctx = NULL;
EVP_PKEY *params = NULL;
- if ( /* Create the context for parameter generation */
- !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
- /* Initialise the parameter generation */
- !EVP_PKEY_paramgen_init(pctx) ||
- /* Set the curve by NID */
- !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, test_curves[testnum]) ||
- /* Create the parameter object params */
- !EVP_PKEY_paramgen(pctx, ¶ms) ||
- 0) {
+ if ( /* Create the context for parameter generation */
+ !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
+ /* Initialise the parameter generation */
+ !EVP_PKEY_paramgen_init(pctx) ||
+ /* Set the curve by NID */
+ !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
+ test_curves
+ [testnum]) ||
+ /* Create the parameter object params */
+ !EVP_PKEY_paramgen(pctx, ¶ms) || 0) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH init failure.\n");
ERR_print_errors(bio_err);
/* Create the context for the key generation */
kctx = EVP_PKEY_CTX_new(params, NULL);
- EVP_PKEY_free(params); params = NULL;
- EVP_PKEY_CTX_free(pctx); pctx = NULL;
+ EVP_PKEY_free(params);
+ params = NULL;
+ EVP_PKEY_CTX_free(pctx);
+ pctx = NULL;
}
- if ( !kctx || /* keygen ctx is not null */
- !EVP_PKEY_keygen_init(kctx) || /* init keygen ctx */
- 0) {
+ if (!kctx || /* keygen ctx is not null */
+ !EVP_PKEY_keygen_init(kctx) || /* init keygen ctx */
+ 0) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH keygen failure.\n");
ERR_print_errors(bio_err);
break;
}
- if ( !EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
- !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
- !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
- !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
- !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
- !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
- outlen > MAX_ECDH_SIZE || /* avoid buffer overflow */
- 0) {
+ if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
+ !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
+ !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
+ !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
+ !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
+ !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
+ outlen > MAX_ECDH_SIZE || /* avoid buffer overflow */
+ 0) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
loopargs[i].ecdh_ctx[testnum] = ctx;
loopargs[i].outlen[testnum] = outlen;
- EVP_PKEY_CTX_free(kctx); kctx = NULL;
+ EVP_PKEY_CTX_free(kctx);
+ kctx = NULL;
}
if (ecdh_checks != 0) {
pkey_print_message("", "ecdh",
- ecdh_c[testnum][0],
- test_curves_bits[testnum], ECDH_SECONDS);
+ ecdh_c[testnum][0],
+ test_curves_bits[testnum], ECDH_SECONDS);
Time_F(START);
- count = run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
+ count =
+ run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
- mr ? "+R7:%ld:%d:%.2f\n" :
- "%ld %d-bit ECDH ops in %.2fs\n", count,
- test_curves_bits[testnum], d);
+ mr ? "+R7:%ld:%d:%.2f\n" :
+ "%ld %d-bit ECDH ops in %.2fs\n", count,
+ test_curves_bits[testnum], d);
ecdh_results[testnum][0] = d / (double)count;
rsa_count = count;
}
if (p)
*p = '\0';
if (buf[0] != '+') {
- BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
- buf, n);
+ BIO_printf(bio_err,
+ "Don't understand line '%s' from child %d\n", buf,
+ n);
continue;
}
printf("Got: %s from %d\n", buf, n);
d = atof(sstrsep(&p, sep));
if (n)
- ecdsa_results[k][0] =
- 1 / (1 / ecdsa_results[k][0] + 1 / d);
+ ecdsa_results[k][0] = 1 / (1 / ecdsa_results[k][0] + 1 / d);
else
ecdsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
- ecdsa_results[k][1] =
- 1 / (1 / ecdsa_results[k][1] + 1 / d);
+ ecdsa_results[k][1] = 1 / (1 / ecdsa_results[k][1] + 1 / d);
else
ecdsa_results[k][1] = d;
} else if (strncmp(buf, "+F5:", 4) == 0) {
else if (strncmp(buf, "+H:", 3) == 0) {
;
} else
- BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
+ BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
+ n);
}
fclose(f);
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv);
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
- no_key);
+ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
for (j = 0; j < num; j++) {