--- /dev/null
+#!/usr/bin/env perl
+# Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# Keccak-1600 for AVX2.
+#
+# July 2017.
+#
+# To paraphrase Gilles Van Assche, if you contemplate Fig. 2.3 on page
+# 20 of The Keccak reference [or Fig. 5 of FIPS PUB 202], and load data
+# other than A[0][0] in magic order into 6 [256-bit] registers, *each
+# dedicated to one axis*, Pi permutation is reduced to intra-register
+# shuffles...
+#
+# It makes other steps more intricate, but overall, is it a win? To be
+# more specific index permutations organized by quadruples are:
+#
+# [4][4] [3][3] [2][2] [1][1]<-+
+# [0][4] [0][3] [0][2] [0][1]<-+
+# [3][0] [1][0] [4][0] [2][0] |
+# [4][3] [3][1] [2][4] [1][2] |
+# [3][4] [1][3] [4][2] [2][1] |
+# [2][3] [4][1] [1][4] [3][2] |
+# [2][2] [4][4] [1][1] [3][3] -+
+#
+# This however is highly impractical for Theta and Chi. What would help
+# Theta is if x indices were aligned column-wise, or in other words:
+#
+# [0][4] [0][3] [0][2] [0][1]
+# [3][0] [1][0] [4][0] [2][0]
+#vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
+# [2][4] [4][3] [1][2] [3][1]
+#vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
+# [3][4] [1][3] [4][2] [2][1]
+#vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
+# [1][4] [2][3] [3][2] [4][1]
+#vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
+# [4][4] [3][3] [2][2] [1][1]
+#
+# So here we have it, lines not marked with vpermq() represent the magic
+# order in which data is to be loaded and maintained. [And lines marked
+# with vpermq() represent Pi circular permutation in chosen layout. Note
+# that first step is permutation-free.] A[0][0] is loaded to register of
+# its own, to all lanes. [A[0][0] is not part of Pi permutation or Rho.]
+# Digits in variables' names denote right-most coordinates:
+
+my ($A00, # [0][0] [0][0] [0][0] [0][0] # %ymm0
+ $A01, # [0][4] [0][3] [0][2] [0][1] # %ymm1
+ $A20, # [3][0] [1][0] [4][0] [2][0] # %ymm2
+ $A31, # [2][4] [4][3] [1][2] [3][1] # %ymm3
+ $A21, # [3][4] [1][3] [4][2] [2][1] # %ymm4
+ $A41, # [1][4] [2][3] [3][2] [4][1] # %ymm5
+ $A11) = # [4][4] [3][3] [2][2] [1][1] # %ymm6
+ map("%ymm$_",(0..6));
+
+# We also need to map the magic order into offsets within structure:
+
+my @A_jagged = ([0,0], [1,0], [1,1], [1,2], [1,3], # [0][0..4]
+ [2,2], [6,0], [3,1], [4,2], [5,3], # [1][0..4]
+ [2,0], [4,0], [6,1], [5,2], [3,3], # [2][0..4]
+ [2,3], [3,0], [5,1], [6,2], [4,3], # [3][0..4]
+ [2,1], [5,0], [4,1], [3,2], [6,3]); # [4][0..4]
+ @A_jagged = map(8*($$_[0]*4+$$_[1]), @A_jagged); # ... and now linear
+
+# But on the other hand Chi is much better off if y indices were aligned
+# column-wise, not x. For this reason we have to shuffle data prior
+# Chi and revert it afterwards. Prior shuffle is naturally merged with
+# Pi itself:
+#
+# [0][4] [0][3] [0][2] [0][1]
+# [3][0] [1][0] [4][0] [2][0]
+#vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
+#vpermq([2][4] [4][3] [1][2] [3][1], 0b00011011) = 0b10001101
+# [3][1] [1][2] [4][3] [2][4]
+#vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
+#vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = 0b10001101
+# [3][4] [1][3] [4][2] [2][1]
+#vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
+#vpermq([1][4] [2][3] [3][2] [4][1], 0b01110010) = 0b00011011
+# [3][2] [1][4] [4][1] [2][3]
+#vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
+#vpermq([4][4] [3][3] [2][2] [1][1], 0b10001101) = 0b01110010
+# [3][3] [1][1] [4][4] [2][2]
+#
+# And reverse post-Chi permutation:
+#
+# [0][4] [0][3] [0][2] [0][1]
+# [3][0] [1][0] [4][0] [2][0]
+#vpermq([3][1] [1][2] [4][3] [2][4], 0b00011011)
+# [2][4] [4][3] [1][2] [3][1]
+#vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = nop :-)
+# [3][4] [1][3] [4][2] [2][1]
+#vpermq([3][2] [1][4] [4][1] [2][3], 0b10001101)
+# [1][4] [2][3] [3][2] [4][1]
+#vpermq([3][3] [1][1] [4][4] [2][2], 0b01110010)
+# [4][4] [3][3] [2][2] [1][1]
+#
+########################################################################
+# Numbers are cycles per processed byte out of large message.
+#
+# r=1088(*)
+#
+# Haswell 9.6
+# Skylake 8.8
+#
+# (*) Corresponds to SHA3-256.
+
+my @T = map("%ymm$_",(7..15));
+my ($C14,$C00,$D00,$D14) = @T[5..8];
+
+$code.=<<___;
+.text
+
+.type __KeccakF1600,\@function
+.align 32
+__KeccakF1600:
+ lea rhotates_left+96(%rip),%r8
+ lea rhotates_right+96(%rip),%r9
+ lea iotas(%rip),%r10
+ mov \$24,%eax
+ jmp .Loop_avx2
+
+.align 32
+.Loop_avx2:
+ ######################################### Theta
+ vpxor $A01,$A31,$C14
+ vpxor $A21,$C14,$C14
+ vpxor $A41,$C14,$C14
+ vpxor $A11,$C14,$C14 # C[1..4]
+ vpermq \$0b10110001,$A20,$C00
+ vpxor $A20,$C00,$C00
+ vpermq \$0b01001110,$C00,@T[0]
+ vpxor $A00,$C00,$C00
+ vpxor @T[0],$C00,$C00 # C[0..0]
+
+ vpsrlq \$63,$C14,@T[1]
+ vpaddq $C14,$C14,@T[3]
+ vpor @T[3],@T[1],@T[1] # ROL64(C[1..4],1)
+
+ vpsrlq \$63,$C00,@T[0]
+ vpaddq $C00,$C00,@T[2]
+ vpor @T[2],@T[0],@T[0] # ROL64(C[0..0],1)
+
+ vpermq \$0b00000000,@T[1],$D00
+ vpermq \$0b11111111,$C14,@T[3]
+ vpxor @T[3],$D00,$D00 # D[0..0] = ROL64(C[1],1) ^ C[4]
+
+ vpermq \$0b00111001,@T[1],$D14
+ vpblendd \$0b11000000,@T[0],$D14,$D14
+ vpermq \$0b10010011,$C14,@T[2]
+ vpblendd \$0b00000011,$C00,@T[2],@T[2]
+ vpxor @T[2],$D14,$D14 # D[1..4] = ROL64(C[2..4,0),1) ^ C[0..3]
+
+ vpxor $D00,$A00,$A00 # ^= D[0..0]
+ vpxor $D00,$A20,$A20 # ^= D[0..0]
+ vpxor $D14,$A01,$A01 # ^= D[1..4]
+ vpxor $D14,$A31,$A31 # ^= D[1..4]
+ vpxor $D14,$A21,$A21 # ^= D[1..4]
+ vpxor $D14,$A41,$A41 # ^= D[1..4]
+ vpxor $D14,$A11,$A11 # ^= D[1..4]
+
+ ######################################### Rho
+ vpsllvq 0*32-96(%r8),$A20,@T[0]
+ vpsrlvq 0*32-96(%r9),$A20,$A20
+ vpor @T[0],$A20,$A20
+
+ vpsllvq 1*32-96(%r8),$A01,@T[1]
+ vpsrlvq 1*32-96(%r9),$A01,$A01
+ vpor @T[1],$A01,$A01
+
+ vpsllvq 2*32-96(%r8),$A31,@T[2]
+ vpsrlvq 2*32-96(%r9),$A31,$A31
+ vpor @T[2],$A31,$A31
+
+ vpsllvq 3*32-96(%r8),$A21,@T[3]
+ vpsrlvq 3*32-96(%r9),$A21,$A21
+ vpor @T[3],$A21,$A21
+
+ vpsllvq 4*32-96(%r8),$A41,@T[4]
+ vpsrlvq 4*32-96(%r9),$A41,$A41
+ vpor @T[4],$A41,$A41
+
+ vpsllvq 5*32-96(%r8),$A11,@T[5]
+ vpsrlvq 5*32-96(%r9),$A11,$A11
+ vpor @T[5],$A11,$A11
+
+ ######################################### Pi + pre-Chi shuffle
+ vpermq \$0b01110010,$A41,@T[0] # vpermq \$0b00011011,$A41,@T[0]
+ vpermq \$0b00011011,$A21,$A41 # vpermq \$0b01110010,$A21,$A41
+ vpermq \$0b10001101,$A31,$A21
+ vpermq \$0b10001101,$A20,$A31 # vpermq \$0b01110010,$A20,$A31
+ vmovdqa $A01,$A20
+ vmovdqa $A11,$A01
+ vmovdqa @T[0],$A11
+
+ ######################################### Chi
+ vpermq \$0b00000000,$A01,@T[0] # [0][1] [0][1] [0][1] [0][1]
+ vpermq \$0b01010101,$A01,@T[2] # [0][2] [0][2] [0][2] [0][2]
+ vpandn @T[2],@T[0],@T[0] # tgting [0][0] [0][0] [0][0] [0][0]
+
+ vpermq \$0b00111001,$A01,@T[1] # [0][1] [0][4] [0][3] [0][2]
+ vpermq \$0b00011110,$A01,@T[3] # [0][1] [0][2] [0][4] [0][3]
+ vpblendd \$0b11000000,$A00,@T[1],@T[1] # [0][0] [0][4] [0][3] [0][2]
+ vpblendd \$0b00110000,$A00,@T[3],@T[3] # [0][1] [0][0] [0][4] [0][3]
+ vpandn @T[3],@T[1],@T[1] # tgting [0][4] [0][3] [0][2] [0][1]
+
+ vpblendd \$0b00001100,$A41,$A21, @T[2] # [4][1] [2][1]
+ vpblendd \$0b00110000,$A11,@T[2],@T[2] # [1][1] [4][1] [2][1]
+ vpblendd \$0b11000000,$A31,@T[2],@T[2] # [3][1] [1][1] [4][1] [2][1]
+ vpblendd \$0b00001100,$A21,$A11, @T[4] # [4][2] [2][2]
+ vpblendd \$0b00110000,$A31,@T[4],@T[4] # [1][2] [4][2] [2][2]
+ vpblendd \$0b11000000,$A41,@T[4],@T[4] # [3][2] [1][2] [4][2] [2][2]
+ vpandn @T[4],@T[2],@T[2] # tgting [3][0] [1][0] [4][0] [2][0]
+
+ vpblendd \$0b00001100,$A11,$A20, @T[3] # [4][4] [2][0]
+ vpblendd \$0b00110000,$A21,@T[3],@T[3] # [1][3] [4][4] [2][0]
+ vpblendd \$0b11000000,$A41,@T[3],@T[3] # [3][2] [1][3] [4][4] [2][0]
+ vpblendd \$0b00001100,$A20,$A21, @T[5] # [4][0] [2][1]
+ vpblendd \$0b00110000,$A41,@T[5],@T[5] # [1][4] [4][0] [2][1]
+ vpblendd \$0b11000000,$A11,@T[5],@T[5] # [3][3] [1][4] [4][0] [2][1]
+ vpandn @T[5],@T[3],@T[3] # tgting [3][1] [1][2] [4][3] [2][4]
+
+ vpblendd \$0b00001100,$A31,$A11, @T[4] # [4][3] [2][2]
+ vpblendd \$0b00110000,$A41,@T[4],@T[4] # [1][4] [4][3] [2][2]
+ vpblendd \$0b11000000,$A20,@T[4],@T[4] # [3][0] [1][4] [4][3] [2][2]
+ vpblendd \$0b00001100,$A11,$A41, @T[6] # [4][4] [2][3]
+ vpblendd \$0b00110000,$A20,@T[6],@T[6] # [1][0] [4][4] [2][3]
+ vpblendd \$0b11000000,$A31,@T[6],@T[6] # [3][1] [1][0] [4][4] [2][3]
+ vpandn @T[6],@T[4],@T[4] # tgting [3][4] [1][3] [4][2] [2][1]
+
+ vpblendd \$0b00001100,$A21,$A31, @T[5] # [4][2] [2][4]
+ vpblendd \$0b00110000,$A20,@T[5],@T[5] # [1][0] [4][2] [2][4]
+ vpblendd \$0b11000000,$A11,@T[5],@T[5] # [3][3] [1][0] [4][2] [2][4]
+ vpblendd \$0b00001100,$A31,$A20, @T[7] # [4][3] [2][0]
+ vpblendd \$0b00110000,$A11,@T[7],@T[7] # [1][1] [4][3] [2][0]
+ vpblendd \$0b11000000,$A21,@T[7],@T[7] # [3][4] [1][1] [4][3] [2][0]
+ vpandn @T[7],@T[5],@T[5] # tgting [3][2] [1][4] [4][1] [2][3]
+
+ vpblendd \$0b00001100,$A20,$A41, @T[6] # [4][0] [2][3]
+ vpblendd \$0b00110000,$A31,@T[6],@T[6] # [1][2] [4][0] [2][3]
+ vpblendd \$0b11000000,$A21,@T[6],@T[6] # [3][4] [1][2] [4][0] [2][3]
+ vpblendd \$0b00001100,$A41,$A31, @T[8] # [4][1] [2][4]
+ vpblendd \$0b00110000,$A21,@T[8],@T[8] # [1][3] [4][1] [2][4]
+ vpblendd \$0b11000000,$A20,@T[8],@T[8] # [3][0] [1][3] [4][1] [2][4]
+ vpandn @T[8],@T[6],@T[6] # tgting [3][3] [1][1] [4][4] [2][2]
+
+ vpxor @T[0],$A00,$A00
+ vpxor @T[1],$A01,$A01
+ vpxor @T[2],$A20,$A20
+ vpxor @T[3],$A31,$A31
+ vpxor @T[4],$A21,$A21
+ vpxor @T[5],$A41,$A41
+ vpxor @T[6],$A11,$A11
+
+ vpermq \$0b00011011,$A31,$A31 # post-Chi shuffle
+ vpermq \$0b10001101,$A41,$A41
+ vpermq \$0b01110010,$A11,$A11
+
+ ######################################### Iota
+ vpxor (%r10),$A00,$A00
+ lea 32(%r10),%r10
+
+ dec %eax
+ jnz .Loop_avx2
+
+ ret
+.size __KeccakF1600,.-__KeccakF1600
+___
+my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx");
+my $out = $inp; # in squeeze
+
+$code.=<<___;
+.globl SHA3_absorb
+.type SHA3_absorb,\@function
+.align 32
+SHA3_absorb:
+ mov %rsp,%r11
+
+ lea -240(%rsp),%rsp
+ and \$-32,%rsp
+
+ lea 96($A_flat),$A_flat
+ lea 96($inp),$inp
+ lea 96(%rsp),%r10
+
+ vzeroupper
+
+ vpbroadcastq -96($A_flat),$A00 # load A[5][5]
+ vmovdqu 8+32*0-96($A_flat),$A01
+ vmovdqu 8+32*1-96($A_flat),$A20
+ vmovdqu 8+32*2-96($A_flat),$A31
+ vmovdqu 8+32*3-96($A_flat),$A21
+ vmovdqu 8+32*4-96($A_flat),$A41
+ vmovdqu 8+32*5-96($A_flat),$A11
+
+ vpxor @T[0],@T[0],@T[0]
+ vmovdqa @T[0],32*2-96(%r10) # zero transfer area on stack
+ vmovdqa @T[0],32*3-96(%r10)
+ vmovdqa @T[0],32*4-96(%r10)
+ vmovdqa @T[0],32*5-96(%r10)
+ vmovdqa @T[0],32*6-96(%r10)
+
+.Loop_absorb_avx2:
+ mov $bsz,%rax
+ sub $bsz,$len
+ jc .Ldone_absorb_avx2
+
+ shr \$3,%eax
+ vpbroadcastq 0-96($inp),@T[0]
+ vmovdqu 8-96($inp),@T[1]
+ sub \$4,%eax
+___
+for(my $i=5; $i<25; $i++) {
+$code.=<<___
+ dec %eax
+ jz .Labsorved_avx2
+ mov 8*$i-96($inp),%r8
+ mov %r8,$A_jagged[$i]-96(%r10)
+___
+}
+$code.=<<___;
+.Labsorved_avx2:
+ lea ($inp,$bsz),$inp
+
+ vpxor @T[0],$A00,$A00
+ vpxor @T[1],$A01,$A01
+ vpxor 32*2-96(%r10),$A20,$A20
+ vpxor 32*3-96(%r10),$A31,$A31
+ vpxor 32*4-96(%r10),$A21,$A21
+ vpxor 32*5-96(%r10),$A41,$A41
+ vpxor 32*6-96(%r10),$A11,$A11
+
+ call __KeccakF1600
+
+ lea 96(%rsp),%r10
+ jmp .Loop_absorb_avx2
+
+.Ldone_absorb_avx2:
+ vmovq %xmm0,-96($A_flat)
+ vmovdqu $A01,8+32*0-96($A_flat)
+ vmovdqu $A20,8+32*1-96($A_flat)
+ vmovdqu $A31,8+32*2-96($A_flat)
+ vmovdqu $A21,8+32*3-96($A_flat)
+ vmovdqu $A41,8+32*4-96($A_flat)
+ vmovdqu $A11,8+32*5-96($A_flat)
+
+ vzeroupper
+
+ lea (%r11),%rsp
+ lea ($len,$bsz),%rax # return value
+ ret
+.size SHA3_absorb,.-SHA3_absorb
+
+.globl SHA3_squeeze
+.type SHA3_squeeze,\@function
+.align 32
+SHA3_squeeze:
+ mov %rsp,%r11
+
+ lea 96($A_flat),$A_flat
+ shr \$3,$bsz
+
+ vzeroupper
+
+ vpbroadcastq -96($A_flat),$A00
+ vpxor @T[0],@T[0],@T[0]
+ vmovdqu 8+32*0-96($A_flat),$A01
+ vmovdqu 8+32*1-96($A_flat),$A20
+ vmovdqu 8+32*2-96($A_flat),$A31
+ vmovdqu 8+32*3-96($A_flat),$A21
+ vmovdqu 8+32*4-96($A_flat),$A41
+ vmovdqu 8+32*5-96($A_flat),$A11
+
+ mov $bsz,%rax
+
+.Loop_squeeze_avx2:
+ mov @A_jagged[$i]-96($A_flat),%r8
+___
+for (my $i=0; $i<25; $i++) {
+$code.=<<___;
+ sub \$8,$len
+ jc .Ltail_squeeze_avx2
+ mov %r8,($out)
+ lea 8($out),$out
+ je .Ldone_squeeze_avx2
+ dec %eax
+ je .Lextend_output_avx2
+ mov @A_jagged[$i+1]-120($A_flat),%r8
+___
+}
+$code.=<<___;
+.Lextend_output_avx2:
+ call __KeccakF1600
+
+ vmovq %xmm0,-96($A_flat)
+ vmovdqu $A01,8+32*0-96($A_flat)
+ vmovdqu $A20,8+32*1-96($A_flat)
+ vmovdqu $A31,8+32*2-96($A_flat)
+ vmovdqu $A21,8+32*3-96($A_flat)
+ vmovdqu $A41,8+32*4-96($A_flat)
+ vmovdqu $A11,8+32*5-96($A_flat)
+
+ mov $bsz,%rax
+ jmp .Loop_squeeze_avx2
+
+
+.Ltail_squeeze_avx2:
+ add \$8,$len
+.Loop_tail_avx2:
+ mov %r8b,($out)
+ lea 1($out),$out
+ shr \$8,%r8
+ dec $len
+ jnz .Loop_tail_avx2
+
+.Ldone_squeeze_avx2:
+ vzeroupper
+
+ lea (%r11),%rsp
+ ret
+.size SHA3_squeeze,.-SHA3_squeeze
+
+.align 64
+rhotates_left:
+ .quad 3, 18, 36, 41 # [2][0] [4][0] [1][0] [3][0]
+ .quad 1, 62, 28, 27 # [0][1] [0][2] [0][3] [0][4]
+ .quad 45, 6, 56, 39 # [3][1] [1][2] [4][3] [2][4]
+ .quad 10, 61, 55, 8 # [2][1] [4][2] [1][3] [3][4]
+ .quad 2, 15, 25, 20 # [4][1] [3][2] [2][3] [1][4]
+ .quad 44, 43, 21, 14 # [1][1] [2][2] [3][3] [4][4]
+rhotates_right:
+ .quad 64-3, 64-18, 64-36, 64-41
+ .quad 64-1, 64-62, 64-28, 64-27
+ .quad 64-45, 64-6, 64-56, 64-39
+ .quad 64-10, 64-61, 64-55, 64-8
+ .quad 64-2, 64-15, 64-25, 64-20
+ .quad 64-44, 64-43, 64-21, 64-14
+iotas:
+ .quad 0x0000000000000001, 0x0000000000000001, 0x0000000000000001, 0x0000000000000001
+ .quad 0x0000000000008082, 0x0000000000008082, 0x0000000000008082, 0x0000000000008082
+ .quad 0x800000000000808a, 0x800000000000808a, 0x800000000000808a, 0x800000000000808a
+ .quad 0x8000000080008000, 0x8000000080008000, 0x8000000080008000, 0x8000000080008000
+ .quad 0x000000000000808b, 0x000000000000808b, 0x000000000000808b, 0x000000000000808b
+ .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
+ .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
+ .quad 0x8000000000008009, 0x8000000000008009, 0x8000000000008009, 0x8000000000008009
+ .quad 0x000000000000008a, 0x000000000000008a, 0x000000000000008a, 0x000000000000008a
+ .quad 0x0000000000000088, 0x0000000000000088, 0x0000000000000088, 0x0000000000000088
+ .quad 0x0000000080008009, 0x0000000080008009, 0x0000000080008009, 0x0000000080008009
+ .quad 0x000000008000000a, 0x000000008000000a, 0x000000008000000a, 0x000000008000000a
+ .quad 0x000000008000808b, 0x000000008000808b, 0x000000008000808b, 0x000000008000808b
+ .quad 0x800000000000008b, 0x800000000000008b, 0x800000000000008b, 0x800000000000008b
+ .quad 0x8000000000008089, 0x8000000000008089, 0x8000000000008089, 0x8000000000008089
+ .quad 0x8000000000008003, 0x8000000000008003, 0x8000000000008003, 0x8000000000008003
+ .quad 0x8000000000008002, 0x8000000000008002, 0x8000000000008002, 0x8000000000008002
+ .quad 0x8000000000000080, 0x8000000000000080, 0x8000000000000080, 0x8000000000000080
+ .quad 0x000000000000800a, 0x000000000000800a, 0x000000000000800a, 0x000000000000800a
+ .quad 0x800000008000000a, 0x800000008000000a, 0x800000008000000a, 0x800000008000000a
+ .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
+ .quad 0x8000000000008080, 0x8000000000008080, 0x8000000000008080, 0x8000000000008080
+ .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
+ .quad 0x8000000080008008, 0x8000000080008008, 0x8000000080008008, 0x8000000080008008
+
+.asciz "Keccak-1600 absorb and squeeze for AVX2, CRYPTOGAMS by <appro\@openssl.org>"
+___
+
+print $code;
+close STDOUT;