--- /dev/null
+#!/usr/bin/env perl
+
+######################################################################
+## Constant-time SSSE3 AES core implementation.
+## version 0.1
+##
+## By Mike Hamburg (Stanford University), 2009
+## Public domain.
+##
+## For details see http://shiftleft.org/papers/vector_aes/ and
+## http://crypto.stanford.edu/vpaes/.
+
+######################################################################
+# September 2011.
+#
+# Port vpaes-x86_64.pl as 32-bit "almost" drop-in replacement for
+# aes-586.pl. "Almost" refers to the fact that AES_cbc_encrypt
+# doesn't handle partial vectors (doesn't have to if called from
+# EVP only). "Drop-in" implies that this module doesn't share key
+# schedule structure with the original nor does it make assumption
+# about its alignment...
+#
+# Performance summary. aes-586.pl column lists large-block CBC
+# encrypt/decrypt/with-hyper-threading-off(*) results in cycles per
+# byte processed with 128-bit key, and vpaes-x86.pl column - [also
+# large-block CBC] encrypt/decrypt.
+#
+# aes-586.pl vpaes-x86.pl
+#
+# Core 2(**) 29.1/42.3/18.3 22.0/25.6(***)
+# Nehalem 27.9/40.4/18.1 10.3/12.0
+# Atom 102./119./60.1 64.5/85.3(***)
+#
+# (*) "Hyper-threading" in the context refers rather to cache shared
+# among multiple cores, than to specifically Intel HTT. As vast
+# majority of contemporary cores share cache, slower code path
+# is common place. In other words "with-hyper-threading-off"
+# results are presented mostly for reference purposes.
+#
+# (**) "Core 2" refers to initial 65nm design, a.k.a. Conroe.
+#
+# (***) Less impressive improvement on Core 2 and Atom is due to slow
+# pshufb, yet it's respectable +32%/65% improvement on Core 2
+# and +58%/40% on Atom (as implied, over "hyper-threading-safe"
+# code path).
+#
+# <appro@openssl.org>
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+push(@INC,"${dir}","${dir}../../perlasm");
+require "x86asm.pl";
+
+&asm_init($ARGV[0],"vpaes-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
+
+$PREFIX="vpaes";
+
+my ($round, $base, $magic, $key, $const, $inp, $out)=
+ ("eax", "ebx", "ecx", "edx","ebp", "esi","edi");
+
+&static_label("_vpaes_consts");
+&static_label("_vpaes_schedule_low_round");
+
+&set_label("_vpaes_consts",64);
+$k_inv=-0x30; # inv, inva
+ &data_word(0x0D080180,0x0E05060F,0x0A0B0C02,0x04070309);
+ &data_word(0x0F0B0780,0x01040A06,0x02050809,0x030D0E0C);
+
+$k_s0F=-0x10; # s0F
+ &data_word(0x0F0F0F0F,0x0F0F0F0F,0x0F0F0F0F,0x0F0F0F0F);
+
+$k_ipt=0x00; # input transform (lo, hi)
+ &data_word(0x5A2A7000,0xC2B2E898,0x52227808,0xCABAE090);
+ &data_word(0x317C4D00,0x4C01307D,0xB0FDCC81,0xCD80B1FC);
+
+$k_sb1=0x20; # sb1u, sb1t
+ &data_word(0xCB503E00,0xB19BE18F,0x142AF544,0xA5DF7A6E);
+ &data_word(0xFAE22300,0x3618D415,0x0D2ED9EF,0x3BF7CCC1);
+$k_sb2=0x40; # sb2u, sb2t
+ &data_word(0x0B712400,0xE27A93C6,0xBC982FCD,0x5EB7E955);
+ &data_word(0x0AE12900,0x69EB8840,0xAB82234A,0xC2A163C8);
+$k_sbo=0x60; # sbou, sbot
+ &data_word(0x6FBDC700,0xD0D26D17,0xC502A878,0x15AABF7A);
+ &data_word(0x5FBB6A00,0xCFE474A5,0x412B35FA,0x8E1E90D1);
+
+$k_mc_forward=0x80; # mc_forward
+ &data_word(0x00030201,0x04070605,0x080B0A09,0x0C0F0E0D);
+ &data_word(0x04070605,0x080B0A09,0x0C0F0E0D,0x00030201);
+ &data_word(0x080B0A09,0x0C0F0E0D,0x00030201,0x04070605);
+ &data_word(0x0C0F0E0D,0x00030201,0x04070605,0x080B0A09);
+
+$k_mc_backward=0xc0; # mc_backward
+ &data_word(0x02010003,0x06050407,0x0A09080B,0x0E0D0C0F);
+ &data_word(0x0E0D0C0F,0x02010003,0x06050407,0x0A09080B);
+ &data_word(0x0A09080B,0x0E0D0C0F,0x02010003,0x06050407);
+ &data_word(0x06050407,0x0A09080B,0x0E0D0C0F,0x02010003);
+
+$k_sr=0x100; # sr
+ &data_word(0x03020100,0x07060504,0x0B0A0908,0x0F0E0D0C);
+ &data_word(0x0F0A0500,0x030E0904,0x07020D08,0x0B06010C);
+ &data_word(0x0B020900,0x0F060D04,0x030A0108,0x070E050C);
+ &data_word(0x070A0D00,0x0B0E0104,0x0F020508,0x0306090C);
+
+$k_rcon=0x140; # rcon
+ &data_word(0xAF9DEEB6,0x1F8391B9,0x4D7C7D81,0x702A9808);
+
+$k_s63=0x150; # s63: all equal to 0x63 transformed
+ &data_word(0x5B5B5B5B,0x5B5B5B5B,0x5B5B5B5B,0x5B5B5B5B);
+
+$k_opt=0x160; # output transform
+ &data_word(0xD6B66000,0xFF9F4929,0xDEBE6808,0xF7974121);
+ &data_word(0x50BCEC00,0x01EDBD51,0xB05C0CE0,0xE10D5DB1);
+
+$k_deskew=0x180; # deskew tables: inverts the sbox's "skew"
+ &data_word(0x47A4E300,0x07E4A340,0x5DBEF91A,0x1DFEB95A);
+ &data_word(0x83EA6900,0x5F36B5DC,0xF49D1E77,0x2841C2AB);
+##
+## Decryption stuff
+## Key schedule constants
+##
+$k_dksd=0x1a0; # decryption key schedule: invskew x*D
+ &data_word(0xA3E44700,0xFEB91A5D,0x5A1DBEF9,0x0740E3A4);
+ &data_word(0xB5368300,0x41C277F4,0xAB289D1E,0x5FDC69EA);
+$k_dksb=0x1c0; # decryption key schedule: invskew x*B
+ &data_word(0x8550D500,0x9A4FCA1F,0x1CC94C99,0x03D65386);
+ &data_word(0xB6FC4A00,0x115BEDA7,0x7E3482C8,0xD993256F);
+$k_dkse=0x1e0; # decryption key schedule: invskew x*E + 0x63
+ &data_word(0x1FC9D600,0xD5031CCA,0x994F5086,0x53859A4C);
+ &data_word(0x4FDC7BE8,0xA2319605,0x20B31487,0xCD5EF96A);
+$k_dks9=0x200; # decryption key schedule: invskew x*9
+ &data_word(0x7ED9A700,0xB6116FC8,0x82255BFC,0x4AED9334);
+ &data_word(0x27143300,0x45765162,0xE9DAFDCE,0x8BB89FAC);
+
+##
+## Decryption stuff
+## Round function constants
+##
+$k_dipt=0x220; # decryption input transform
+ &data_word(0x0B545F00,0x0F505B04,0x114E451A,0x154A411E);
+ &data_word(0x60056500,0x86E383E6,0xF491F194,0x12771772);
+
+$k_dsb9=0x240; # decryption sbox output *9*u, *9*t
+ &data_word(0x9A86D600,0x851C0353,0x4F994CC9,0xCAD51F50);
+ &data_word(0xECD74900,0xC03B1789,0xB2FBA565,0x725E2C9E);
+$k_dsbd=0x260; # decryption sbox output *D*u, *D*t
+ &data_word(0xE6B1A200,0x7D57CCDF,0x882A4439,0xF56E9B13);
+ &data_word(0x24C6CB00,0x3CE2FAF7,0x15DEEFD3,0x2931180D);
+$k_dsbb=0x280; # decryption sbox output *B*u, *B*t
+ &data_word(0x96B44200,0xD0226492,0xB0F2D404,0x602646F6);
+ &data_word(0xCD596700,0xC19498A6,0x3255AA6B,0xF3FF0C3E);
+$k_dsbe=0x2a0; # decryption sbox output *E*u, *E*t
+ &data_word(0x26D4D000,0x46F29296,0x64B4F6B0,0x22426004);
+ &data_word(0xFFAAC100,0x0C55A6CD,0x98593E32,0x9467F36B);
+$k_dsbo=0x2c0; # decryption sbox final output
+ &data_word(0x7EF94000,0x1387EA53,0xD4943E2D,0xC7AA6DB9);
+ &data_word(0x93441D00,0x12D7560F,0xD8C58E9C,0xCA4B8159);
+&asciz ("Vector Permutation AES for x86/SSSE3, Mike Hamburg (Stanford University)");
+&align (64);
+
+&function_begin_B("_vpaes_preheat");
+ &add ($const,&DWP(0,"esp"));
+ &movdqa ("xmm7",&QWP($k_inv,$const));
+ &movdqa ("xmm6",&QWP($k_s0F,$const));
+ &ret ();
+&function_end_B("_vpaes_preheat");
+
+##
+## _aes_encrypt_core
+##
+## AES-encrypt %xmm0.
+##
+## Inputs:
+## %xmm0 = input
+## %xmm6-%xmm7 as in _vpaes_preheat
+## (%edx) = scheduled keys
+##
+## Output in %xmm0
+## Clobbers %xmm1-%xmm5, %eax, %ebx, %ecx, %edx
+##
+##
+&function_begin_B("_vpaes_encrypt_core");
+ &mov ($magic,16);
+ &mov ($round,&DWP(240,$key));
+ &movdqa ("xmm1","xmm6")
+ &movdqa ("xmm2",&QWP($k_ipt,$const));
+ &pandn ("xmm1","xmm0");
+ &movdqu ("xmm5",&QWP(0,$key));
+ &psrld ("xmm1",4);
+ &pand ("xmm0","xmm6");
+ &pshufb ("xmm2","xmm0");
+ &movdqa ("xmm0",&QWP($k_ipt+16,$const));
+ &pshufb ("xmm0","xmm1");
+ &pxor ("xmm2","xmm5");
+ &pxor ("xmm0","xmm2");
+ &add ($key,16);
+ &lea ($base,&DWP($k_mc_backward,$const));
+ &jmp (&label("enc_entry"));
+
+
+&set_label("enc_loop",16);
+ # middle of middle round
+ &movdqa ("xmm4",&QWP($k_sb1,$const)); # 4 : sb1u
+ &pshufb ("xmm4","xmm2"); # 4 = sb1u
+ &pxor ("xmm4","xmm5"); # 4 = sb1u + k
+ &movdqa ("xmm0",&QWP($k_sb1+16,$const));# 0 : sb1t
+ &pshufb ("xmm0","xmm3"); # 0 = sb1t
+ &pxor ("xmm0","xmm4"); # 0 = A
+ &movdqa ("xmm5",&QWP($k_sb2,$const)); # 4 : sb2u
+ &pshufb ("xmm5","xmm2"); # 4 = sb2u
+ &movdqa ("xmm1",&QWP(-0x40,$base,$magic));# .Lk_mc_forward[]
+ &movdqa ("xmm2",&QWP($k_sb2+16,$const));# 2 : sb2t
+ &pshufb ("xmm2","xmm3"); # 2 = sb2t
+ &pxor ("xmm2","xmm5"); # 2 = 2A
+ &movdqa ("xmm4",&QWP(0,$base,$magic)); # .Lk_mc_backward[]
+ &movdqa ("xmm3","xmm0"); # 3 = A
+ &pshufb ("xmm0","xmm1"); # 0 = B
+ &add ($key,16); # next key
+ &pxor ("xmm0","xmm2"); # 0 = 2A+B
+ &pshufb ("xmm3","xmm4"); # 3 = D
+ &add ($magic,16); # next mc
+ &pxor ("xmm3","xmm0"); # 3 = 2A+B+D
+ &pshufb ("xmm0","xmm1"); # 0 = 2B+C
+ &and ($magic,0x30); # ... mod 4
+ &pxor ("xmm0","xmm3"); # 0 = 2A+3B+C+D
+ &sub ($round,1); # nr--
+
+&set_label("enc_entry");
+ # top of round
+ &movdqa ("xmm1","xmm6"); # 1 : i
+ &pandn ("xmm1","xmm0"); # 1 = i<<4
+ &psrld ("xmm1",4); # 1 = i
+ &pand ("xmm0","xmm6"); # 0 = k
+ &movdqa ("xmm5",&QWP($k_inv+16,$const));# 2 : a/k
+ &pshufb ("xmm5","xmm0"); # 2 = a/k
+ &pxor ("xmm0","xmm1"); # 0 = j
+ &movdqa ("xmm3","xmm7"); # 3 : 1/i
+ &pshufb ("xmm3","xmm1"); # 3 = 1/i
+ &pxor ("xmm3","xmm5"); # 3 = iak = 1/i + a/k
+ &movdqa ("xmm4","xmm7"); # 4 : 1/j
+ &pshufb ("xmm4","xmm0"); # 4 = 1/j
+ &pxor ("xmm4","xmm5"); # 4 = jak = 1/j + a/k
+ &movdqa ("xmm2","xmm7"); # 2 : 1/iak
+ &pshufb ("xmm2","xmm3"); # 2 = 1/iak
+ &pxor ("xmm2","xmm0"); # 2 = io
+ &movdqa ("xmm3","xmm7"); # 3 : 1/jak
+ &movdqu ("xmm5",&QWP(0,$key));
+ &pshufb ("xmm3","xmm4"); # 3 = 1/jak
+ &pxor ("xmm3","xmm1"); # 3 = jo
+ &jnz (&label("enc_loop"));
+
+ # middle of last round
+ &movdqa ("xmm4",&QWP($k_sbo,$const)); # 3 : sbou .Lk_sbo
+ &movdqa ("xmm0",&QWP($k_sbo+16,$const));# 3 : sbot .Lk_sbo+16
+ &pshufb ("xmm4","xmm2"); # 4 = sbou
+ &pxor ("xmm4","xmm5"); # 4 = sb1u + k
+ &pshufb ("xmm0","xmm3"); # 0 = sb1t
+ &movdqa ("xmm1",&QWP(0x40,$base,$magic));# .Lk_sr[]
+ &pxor ("xmm0","xmm4"); # 0 = A
+ &pshufb ("xmm0","xmm1");
+ &ret ();
+&function_end_B("_vpaes_encrypt_core");
+
+##
+## Decryption core
+##
+## Same API as encryption core.
+##
+&function_begin_B("_vpaes_decrypt_core");
+ &mov ($round,&DWP(240,$key));
+ &lea ($base,&DWP($k_dsbd,$const));
+ &movdqa ("xmm1","xmm6");
+ &movdqa ("xmm2",&QWP($k_dipt-$k_dsbd,$base));
+ &pandn ("xmm1","xmm0");
+ &mov ($magic,$round);
+ &psrld ("xmm1",4)
+ &movdqu ("xmm5",&QWP(0,$key));
+ &shl ($magic,4);
+ &pand ("xmm0","xmm6");
+ &pshufb ("xmm2","xmm0");
+ &movdqa ("xmm0",&QWP($k_dipt-$k_dsbd+16,$base));
+ &xor ($magic,0x30);
+ &pshufb ("xmm0","xmm1");
+ &and ($magic,0x30);
+ &pxor ("xmm2","xmm5");
+ &movdqa ("xmm5",&QWP($k_mc_forward+48,$const));
+ &pxor ("xmm0","xmm2");
+ &add ($key,16);
+ &lea ($magic,&DWP($k_sr-$k_dsbd,$base,$magic));
+ &jmp (&label("dec_entry"));
+
+&set_label("dec_loop",16);
+##
+## Inverse mix columns
+##
+ &movdqa ("xmm4",&QWP(-0x20,$base)); # 4 : sb9u
+ &pshufb ("xmm4","xmm2"); # 4 = sb9u
+ &pxor ("xmm4","xmm0");
+ &movdqa ("xmm0",&QWP(-0x10,$base)); # 0 : sb9t
+ &pshufb ("xmm0","xmm3"); # 0 = sb9t
+ &pxor ("xmm0","xmm4"); # 0 = ch
+ &add ($key,16); # next round key
+
+ &pshufb ("xmm0","xmm5"); # MC ch
+ &movdqa ("xmm4",&QWP(0,$base)); # 4 : sbdu
+ &pshufb ("xmm4","xmm2"); # 4 = sbdu
+ &pxor ("xmm4","xmm0"); # 4 = ch
+ &movdqa ("xmm0",&QWP(0x10,$base)); # 0 : sbdt
+ &pshufb ("xmm0","xmm3"); # 0 = sbdt
+ &pxor ("xmm0","xmm4"); # 0 = ch
+ &sub ($round,1); # nr--
+
+ &pshufb ("xmm0","xmm5"); # MC ch
+ &movdqa ("xmm4",&QWP(0x20,$base)); # 4 : sbbu
+ &pshufb ("xmm4","xmm2"); # 4 = sbbu
+ &pxor ("xmm4","xmm0"); # 4 = ch
+ &movdqa ("xmm0",&QWP(0x30,$base)); # 0 : sbbt
+ &pshufb ("xmm0","xmm3"); # 0 = sbbt
+ &pxor ("xmm0","xmm4"); # 0 = ch
+
+ &pshufb ("xmm0","xmm5"); # MC ch
+ &movdqa ("xmm4",&QWP(0x40,$base)); # 4 : sbeu
+ &pshufb ("xmm4","xmm2"); # 4 = sbeu
+ &pxor ("xmm4","xmm0"); # 4 = ch
+ &movdqa ("xmm0",&QWP(0x50,$base)); # 0 : sbet
+ &pshufb ("xmm0","xmm3"); # 0 = sbet
+ &pxor ("xmm0","xmm4"); # 0 = ch
+
+ &palignr("xmm5","xmm5",12);
+
+&set_label("dec_entry");
+ # top of round
+ &movdqa ("xmm1","xmm6"); # 1 : i
+ &pandn ("xmm1","xmm0"); # 1 = i<<4
+ &psrld ("xmm1",4); # 1 = i
+ &pand ("xmm0","xmm6"); # 0 = k
+ &movdqa ("xmm2",&QWP($k_inv+16,$const));# 2 : a/k
+ &pshufb ("xmm2","xmm0"); # 2 = a/k
+ &pxor ("xmm0","xmm1"); # 0 = j
+ &movdqa ("xmm3","xmm7"); # 3 : 1/i
+ &pshufb ("xmm3","xmm1"); # 3 = 1/i
+ &pxor ("xmm3","xmm2"); # 3 = iak = 1/i + a/k
+ &movdqa ("xmm4","xmm7"); # 4 : 1/j
+ &pshufb ("xmm4","xmm0"); # 4 = 1/j
+ &pxor ("xmm4","xmm2"); # 4 = jak = 1/j + a/k
+ &movdqa ("xmm2","xmm7"); # 2 : 1/iak
+ &pshufb ("xmm2","xmm3"); # 2 = 1/iak
+ &pxor ("xmm2","xmm0"); # 2 = io
+ &movdqa ("xmm3","xmm7"); # 3 : 1/jak
+ &pshufb ("xmm3","xmm4"); # 3 = 1/jak
+ &pxor ("xmm3","xmm1"); # 3 = jo
+ &movdqu ("xmm0",&QWP(0,$key));
+ &jnz (&label("dec_loop"));
+
+ # middle of last round
+ &movdqa ("xmm4",&QWP(0x60,$base)); # 3 : sbou
+ &pshufb ("xmm4","xmm2"); # 4 = sbou
+ &pxor ("xmm4","xmm0"); # 4 = sb1u + k
+ &movdqa ("xmm0",&QWP(0x70,$base)); # 0 : sbot
+ &movdqa ("xmm2",&QWP(0,$magic));
+ &pshufb ("xmm0","xmm3"); # 0 = sb1t
+ &pxor ("xmm0","xmm4"); # 0 = A
+ &pshufb ("xmm0","xmm2");
+ &ret ();
+&function_end_B("_vpaes_decrypt_core");
+
+########################################################
+## ##
+## AES key schedule ##
+## ##
+########################################################
+&function_begin_B("_vpaes_schedule_core");
+ &add ($const,&DWP(0,"esp"));
+ &movdqu ("xmm0",&QWP(0,$inp)); # load key (unaligned)
+ &movdqa ("xmm2",&QWP($k_rcon,$const)); # load rcon
+
+ # input transform
+ &movdqa ("xmm3","xmm0");
+ &lea ($base,&DWP($k_ipt,$const));
+ &movdqa (&QWP(4,"esp"),"xmm2"); # xmm8
+ &call ("_vpaes_schedule_transform");
+ &movdqa ("xmm7","xmm0");
+
+ &test ($out,$out);
+ &jnz (&label("schedule_am_decrypting"));
+
+ # encrypting, output zeroth round key after transform
+ &movdqu (&QWP(0,$key),"xmm0");
+ &jmp (&label("schedule_go"));
+
+&set_label("schedule_am_decrypting");
+ # decrypting, output zeroth round key after shiftrows
+ &movdqa ("xmm1",&QWP($k_sr,$const,$magic));
+ &pshufb ("xmm3","xmm1");
+ &movdqu (&QWP(0,$key),"xmm3");
+ &xor ($magic,0x30);
+
+&set_label("schedule_go");
+ &cmp ($round,192);
+ &ja (&label("schedule_256"));
+ &je (&label("schedule_192"));
+ # 128: fall though
+
+##
+## .schedule_128
+##
+## 128-bit specific part of key schedule.
+##
+## This schedule is really simple, because all its parts
+## are accomplished by the subroutines.
+##
+&set_label("schedule_128");
+ &mov ($round,10);
+
+&set_label("loop_schedule_128");
+ &call ("_vpaes_schedule_round");
+ &dec ($round);
+ &jz (&label("schedule_mangle_last"));
+ &call ("_vpaes_schedule_mangle"); # write output
+ &jmp (&label("loop_schedule_128"));
+
+##
+## .aes_schedule_192
+##
+## 192-bit specific part of key schedule.
+##
+## The main body of this schedule is the same as the 128-bit
+## schedule, but with more smearing. The long, high side is
+## stored in %xmm7 as before, and the short, low side is in
+## the high bits of %xmm6.
+##
+## This schedule is somewhat nastier, however, because each
+## round produces 192 bits of key material, or 1.5 round keys.
+## Therefore, on each cycle we do 2 rounds and produce 3 round
+## keys.
+##
+&set_label("schedule_192",16);
+ &movdqu ("xmm0",&QWP(8,$inp)); # load key part 2 (very unaligned)
+ &call ("_vpaes_schedule_transform"); # input transform
+ &movdqa ("xmm6","xmm0"); # save short part
+ &pxor ("xmm4","xmm4"); # clear 4
+ &movhlps("xmm6","xmm4"); # clobber low side with zeros
+ &mov ($round,4);
+
+&set_label("loop_schedule_192");
+ &call ("_vpaes_schedule_round");
+ &palignr("xmm0","xmm6",8);
+ &call ("_vpaes_schedule_mangle"); # save key n
+ &call ("_vpaes_schedule_192_smear");
+ &call ("_vpaes_schedule_mangle"); # save key n+1
+ &call ("_vpaes_schedule_round");
+ &dec ($round);
+ &jz (&label("schedule_mangle_last"));
+ &call ("_vpaes_schedule_mangle"); # save key n+2
+ &call ("_vpaes_schedule_192_smear");
+ &jmp (&label("loop_schedule_192"));
+
+##
+## .aes_schedule_256
+##
+## 256-bit specific part of key schedule.
+##
+## The structure here is very similar to the 128-bit
+## schedule, but with an additional "low side" in
+## %xmm6. The low side's rounds are the same as the
+## high side's, except no rcon and no rotation.
+##
+&set_label("schedule_256",16);
+ &movdqu ("xmm0",&QWP(16,$inp)); # load key part 2 (unaligned)
+ &call ("_vpaes_schedule_transform"); # input transform
+ &mov ($round,7);
+
+&set_label("loop_schedule_256");
+ &call ("_vpaes_schedule_mangle"); # output low result
+ &movdqa ("xmm6","xmm0"); # save cur_lo in xmm6
+
+ # high round
+ &call ("_vpaes_schedule_round");
+ &dec ($round);
+ &jz (&label("schedule_mangle_last"));
+ &call ("_vpaes_schedule_mangle");
+
+ # low round. swap xmm7 and xmm6
+ &pshufd ("xmm0","xmm0",0xFF);
+ &movdqa (&QWP(20,"esp"),"xmm7");
+ &movdqa ("xmm7","xmm6");
+ &call ("_vpaes_schedule_low_round");
+ &movdqa ("xmm7",&QWP(20,"esp"));
+
+ &jmp (&label("loop_schedule_256"));
+
+##
+## .aes_schedule_mangle_last
+##
+## Mangler for last round of key schedule
+## Mangles %xmm0
+## when encrypting, outputs out(%xmm0) ^ 63
+## when decrypting, outputs unskew(%xmm0)
+##
+## Always called right before return... jumps to cleanup and exits
+##
+&set_label("schedule_mangle_last",16);
+ # schedule last round key from xmm0
+ &lea ($base,&DWP($k_deskew,$const));
+ &test ($out,$out);
+ &jnz (&label("schedule_mangle_last_dec"));
+
+ # encrypting
+ &movdqa ("xmm1",&QWP($k_sr,$const,$magic));
+ &pshufb ("xmm0","xmm1"); # output permute
+ &lea ($base,&DWP($k_opt,$const)); # prepare to output transform
+ &add ($key,32);
+
+&set_label("schedule_mangle_last_dec");
+ &add ($key,-16);
+ &pxor ("xmm0",&QWP($k_s63,$const));
+ &call ("_vpaes_schedule_transform"); # output transform
+ &movdqu (&QWP(0,$key),"xmm0"); # save last key
+
+ # cleanup
+ &pxor ("xmm0","xmm0");
+ &pxor ("xmm1","xmm1");
+ &pxor ("xmm2","xmm2");
+ &pxor ("xmm3","xmm3");
+ &pxor ("xmm4","xmm4");
+ &pxor ("xmm5","xmm5");
+ &pxor ("xmm6","xmm6");
+ &pxor ("xmm7","xmm7");
+ &ret ();
+&function_end_B("_vpaes_schedule_core");
+
+##
+## .aes_schedule_192_smear
+##
+## Smear the short, low side in the 192-bit key schedule.
+##
+## Inputs:
+## %xmm7: high side, b a x y
+## %xmm6: low side, d c 0 0
+## %xmm13: 0
+##
+## Outputs:
+## %xmm6: b+c+d b+c 0 0
+## %xmm0: b+c+d b+c b a
+##
+&function_begin_B("_vpaes_schedule_192_smear");
+ &pshufd ("xmm0","xmm6",0x80); # d c 0 0 -> c 0 0 0
+ &pxor ("xmm6","xmm0"); # -> c+d c 0 0
+ &pshufd ("xmm0","xmm7",0xFE); # b a _ _ -> b b b a
+ &pxor ("xmm6","xmm0"); # -> b+c+d b+c b a
+ &movdqa ("xmm0","xmm6");
+ &pxor ("xmm1","xmm1");
+ &movhlps("xmm6","xmm1"); # clobber low side with zeros
+ &ret ();
+&function_end_B("_vpaes_schedule_192_smear");
+
+##
+## .aes_schedule_round
+##
+## Runs one main round of the key schedule on %xmm0, %xmm7
+##
+## Specifically, runs subbytes on the high dword of %xmm0
+## then rotates it by one byte and xors into the low dword of
+## %xmm7.
+##
+## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
+## next rcon.
+##
+## Smears the dwords of %xmm7 by xoring the low into the
+## second low, result into third, result into highest.
+##
+## Returns results in %xmm7 = %xmm0.
+## Clobbers %xmm1-%xmm5.
+##
+&function_begin_B("_vpaes_schedule_round");
+ # extract rcon from xmm8
+ &movdqa ("xmm2",&QWP(8,"esp")); # xmm8
+ &pxor ("xmm1","xmm1");
+ &palignr("xmm1","xmm2",15);
+ &palignr("xmm2","xmm2",15);
+ &pxor ("xmm7","xmm1");
+
+ # rotate
+ &pshufd ("xmm0","xmm0",0xFF);
+ &palignr("xmm0","xmm0",1);
+
+ # fall through...
+ &movdqa (&QWP(8,"esp"),"xmm2"); # xmm8
+
+ # low round: same as high round, but no rotation and no rcon.
+&set_label("_vpaes_schedule_low_round");
+ # smear xmm7
+ &movdqa ("xmm1","xmm7");
+ &pslldq ("xmm7",4);
+ &pxor ("xmm7","xmm1");
+ &movdqa ("xmm1","xmm7");
+ &pslldq ("xmm7",8);
+ &pxor ("xmm7","xmm1");
+ &pxor ("xmm7",&QWP($k_s63,$const));
+
+ # subbyte
+ &movdqa ("xmm4",&QWP($k_s0F,$const));
+ &movdqa ("xmm5",&QWP($k_inv,$const)); # 4 : 1/j
+ &movdqa ("xmm1","xmm4");
+ &pandn ("xmm1","xmm0");
+ &psrld ("xmm1",4); # 1 = i
+ &pand ("xmm0","xmm4"); # 0 = k
+ &movdqa ("xmm2",&QWP($k_inv+16,$const));# 2 : a/k
+ &pshufb ("xmm2","xmm0"); # 2 = a/k
+ &pxor ("xmm0","xmm1"); # 0 = j
+ &movdqa ("xmm3","xmm5"); # 3 : 1/i
+ &pshufb ("xmm3","xmm1"); # 3 = 1/i
+ &pxor ("xmm3","xmm2"); # 3 = iak = 1/i + a/k
+ &movdqa ("xmm4","xmm5"); # 4 : 1/j
+ &pshufb ("xmm4","xmm0"); # 4 = 1/j
+ &pxor ("xmm4","xmm2"); # 4 = jak = 1/j + a/k
+ &movdqa ("xmm2","xmm5"); # 2 : 1/iak
+ &pshufb ("xmm2","xmm3"); # 2 = 1/iak
+ &pxor ("xmm2","xmm0"); # 2 = io
+ &movdqa ("xmm3","xmm5"); # 3 : 1/jak
+ &pshufb ("xmm3","xmm4"); # 3 = 1/jak
+ &pxor ("xmm3","xmm1"); # 3 = jo
+ &movdqa ("xmm4",&QWP($k_sb1,$const)); # 4 : sbou
+ &pshufb ("xmm4","xmm2"); # 4 = sbou
+ &movdqa ("xmm0",&QWP($k_sb1+16,$const));# 0 : sbot
+ &pshufb ("xmm0","xmm3"); # 0 = sb1t
+ &pxor ("xmm0","xmm4"); # 0 = sbox output
+
+ # add in smeared stuff
+ &pxor ("xmm0","xmm7");
+ &movdqa ("xmm7","xmm0");
+ &ret ();
+&function_end_B("_vpaes_schedule_round");
+
+##
+## .aes_schedule_transform
+##
+## Linear-transform %xmm0 according to tables at (%ebx)
+##
+## Output in %xmm0
+## Clobbers %xmm1, %xmm2
+##
+&function_begin_B("_vpaes_schedule_transform");
+ &movdqa ("xmm2",&QWP($k_s0F,$const));
+ &movdqa ("xmm1","xmm2");
+ &pandn ("xmm1","xmm0");
+ &psrld ("xmm1",4);
+ &pand ("xmm0","xmm2");
+ &movdqa ("xmm2",&QWP(0,$base));
+ &pshufb ("xmm2","xmm0");
+ &movdqa ("xmm0",&QWP(16,$base));
+ &pshufb ("xmm0","xmm1");
+ &pxor ("xmm0","xmm2");
+ &ret ();
+&function_end_B("_vpaes_schedule_transform");
+
+##
+## .aes_schedule_mangle
+##
+## Mangle xmm0 from (basis-transformed) standard version
+## to our version.
+##
+## On encrypt,
+## xor with 0x63
+## multiply by circulant 0,1,1,1
+## apply shiftrows transform
+##
+## On decrypt,
+## xor with 0x63
+## multiply by "inverse mixcolumns" circulant E,B,D,9
+## deskew
+## apply shiftrows transform
+##
+##
+## Writes out to (%edx), and increments or decrements it
+## Keeps track of round number mod 4 in %ecx
+## Preserves xmm0
+## Clobbers xmm1-xmm5
+##
+&function_begin_B("_vpaes_schedule_mangle");
+ &movdqa ("xmm4","xmm0"); # save xmm0 for later
+ &movdqa ("xmm5",&QWP($k_mc_forward,$const));
+ &test ($out,$out);
+ &jnz (&label("schedule_mangle_dec"));
+
+ # encrypting
+ &add ($key,16);
+ &pxor ("xmm4",&QWP($k_s63,$const));
+ &pshufb ("xmm4","xmm5");
+ &movdqa ("xmm3","xmm4");
+ &pshufb ("xmm4","xmm5");
+ &pxor ("xmm3","xmm4");
+ &pshufb ("xmm4","xmm5");
+ &pxor ("xmm3","xmm4");
+
+ &jmp (&label("schedule_mangle_both"));
+
+&set_label("schedule_mangle_dec",16);
+ # inverse mix columns
+ &movdqa ("xmm2",&QWP($k_s0F,$const));
+ &lea ($inp,&DWP($k_dksd,$const));
+ &movdqa ("xmm1","xmm2");
+ &pandn ("xmm1","xmm4");
+ &psrld ("xmm1",4); # 1 = hi
+ &pand ("xmm4","xmm2"); # 4 = lo
+
+ &movdqa ("xmm2",&QWP(0,$inp));
+ &pshufb ("xmm2","xmm4");
+ &movdqa ("xmm3",&QWP(0x10,$inp));
+ &pshufb ("xmm3","xmm1");
+ &pxor ("xmm3","xmm2");
+ &pshufb ("xmm3","xmm5");
+
+ &movdqa ("xmm2",&QWP(0x20,$inp));
+ &pshufb ("xmm2","xmm4");
+ &pxor ("xmm2","xmm3");
+ &movdqa ("xmm3",&QWP(0x30,$inp));
+ &pshufb ("xmm3","xmm1");
+ &pxor ("xmm3","xmm2");
+ &pshufb ("xmm3","xmm5");
+
+ &movdqa ("xmm2",&QWP(0x40,$inp));
+ &pshufb ("xmm2","xmm4");
+ &pxor ("xmm2","xmm3");
+ &movdqa ("xmm3",&QWP(0x50,$inp));
+ &pshufb ("xmm3","xmm1");
+ &pxor ("xmm3","xmm2");
+ &pshufb ("xmm3","xmm5");
+
+ &movdqa ("xmm2",&QWP(0x60,$inp));
+ &pshufb ("xmm2","xmm4");
+ &pxor ("xmm2","xmm3");
+ &movdqa ("xmm3",&QWP(0x70,$inp));
+ &pshufb ("xmm3","xmm1");
+ &pxor ("xmm3","xmm2");
+
+ &add ($key,-16);
+
+&set_label("schedule_mangle_both");
+ &movdqa ("xmm1",&QWP($k_sr,$const,$magic));
+ &pshufb ("xmm3","xmm1");
+ &add ($magic,-16);
+ &and ($magic,0x30);
+ &movdqu (&QWP(0,$key),"xmm3");
+ &ret ();
+&function_end_B("_vpaes_schedule_mangle");
+
+#
+# Interface to OpenSSL
+#
+&function_begin("${PREFIX}_set_encrypt_key");
+ &mov ($inp,&wparam(0)); # inp
+ &lea ($base,&DWP(-56,"esp"));
+ &mov ($round,&wparam(1)); # bits
+ &and ($base,-16);
+ &mov ($key,&wparam(2)); # key
+ &xchg ($base,"esp"); # alloca
+ &mov (&DWP(48,"esp"),$base);
+
+ &mov ($base,$round);
+ &shr ($base,5);
+ &add ($base,5);
+ &mov (&DWP(240,$key),$base); # AES_KEY->rounds = nbits/32+5;
+ &mov ($magic,0x30);
+ &mov ($out,0);
+
+ &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point")));
+ &call ("_vpaes_schedule_core");
+&set_label("pic_point");
+
+ &mov ("esp",&DWP(48,"esp"));
+ &xor ("eax","eax");
+&function_end("${PREFIX}_set_encrypt_key");
+
+&function_begin("${PREFIX}_set_decrypt_key");
+ &mov ($inp,&wparam(0)); # inp
+ &lea ($base,&DWP(-56,"esp"));
+ &mov ($round,&wparam(1)); # bits
+ &and ($base,-16);
+ &mov ($key,&wparam(2)); # key
+ &xchg ($base,"esp"); # alloca
+ &mov (&DWP(48,"esp"),$base);
+
+ &mov ($base,$round);
+ &shr ($base,5);
+ &add ($base,5);
+ &mov (&DWP(240,$key),$base); # AES_KEY->rounds = nbits/32+5;
+ &shl ($base,4);
+ &lea ($key,&DWP(16,$key,$base));
+
+ &mov ($out,1);
+ &mov ($magic,$round);
+ &shr ($magic,1);
+ &and ($magic,32);
+ &xor ($magic,32); # nbist==192?0:32;
+
+ &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point")));
+ &call ("_vpaes_schedule_core");
+&set_label("pic_point");
+
+ &mov ("esp",&DWP(48,"esp"));
+ &xor ("eax","eax");
+&function_end("${PREFIX}_set_decrypt_key");
+
+&function_begin("${PREFIX}_encrypt");
+ &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point")));
+ &call ("_vpaes_preheat");
+&set_label("pic_point");
+ &mov ($inp,&wparam(0)); # inp
+ &lea ($base,&DWP(-56,"esp"));
+ &mov ($out,&wparam(1)); # out
+ &and ($base,-16);
+ &mov ($key,&wparam(2)); # key
+ &xchg ($base,"esp"); # alloca
+ &mov (&DWP(48,"esp"),$base);
+
+ &movdqu ("xmm0",&QWP(0,$inp));
+ &call ("_vpaes_encrypt_core");
+ &movdqu (&QWP(0,$out),"xmm0");
+
+ &mov ("esp",&DWP(48,"esp"));
+&function_end("${PREFIX}_encrypt");
+
+&function_begin("${PREFIX}_decrypt");
+ &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point")));
+ &call ("_vpaes_preheat");
+&set_label("pic_point");
+ &mov ($inp,&wparam(0)); # inp
+ &lea ($base,&DWP(-56,"esp"));
+ &mov ($out,&wparam(1)); # out
+ &and ($base,-16);
+ &mov ($key,&wparam(2)); # key
+ &xchg ($base,"esp"); # alloca
+ &mov (&DWP(48,"esp"),$base);
+
+ &movdqu ("xmm0",&QWP(0,$inp));
+ &call ("_vpaes_decrypt_core");
+ &movdqu (&QWP(0,$out),"xmm0");
+
+ &mov ("esp",&DWP(48,"esp"));
+&function_end("${PREFIX}_decrypt");
+
+&function_begin("${PREFIX}_cbc_encrypt");
+ &mov ($inp,&wparam(0)); # inp
+ &mov ($out,&wparam(1)); # out
+ &mov ($round,&wparam(2)); # len
+ &mov ($key,&wparam(3)); # key
+ &lea ($base,&DWP(-56,"esp"));
+ &mov ($const,&wparam(4)); # ivp
+ &and ($base,-16);
+ &mov ($magic,&wparam(5)); # enc
+ &xchg ($base,"esp"); # alloca
+ &movdqu ("xmm1",&QWP(0,$const)); # load IV
+ &sub ($out,$inp);
+ &mov (&DWP(48,"esp"),$base);
+
+ &mov (&DWP(0,"esp"),$out); # save out
+ &sub ($round,16);
+ &mov (&DWP(4,"esp"),$key) # save key
+ &mov (&DWP(8,"esp"),$const); # save ivp
+ &mov ($out,$round); # $out works as $len
+
+ &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point")));
+ &call ("_vpaes_preheat");
+&set_label("pic_point");
+ &cmp ($magic,0);
+ &je (&label("cbc_dec_loop"));
+ &jmp (&label("cbc_enc_loop"));
+
+&set_label("cbc_enc_loop",16);
+ &movdqu ("xmm0",&QWP(0,$inp)); # load input
+ &pxor ("xmm0","xmm1"); # inp^=iv
+ &call ("_vpaes_encrypt_core");
+ &mov ($base,&DWP(0,"esp")); # restore out
+ &mov ($key,&DWP(4,"esp")); # restore key
+ &movdqa ("xmm1","xmm0");
+ &movdqu (&QWP(0,$base,$inp),"xmm0"); # write output
+ &lea ($inp,&DWP(16,$inp));
+ &sub ($out,16);
+ &jnc (&label("cbc_enc_loop"));
+ &jmp (&label("cbc_done"));
+
+&set_label("cbc_dec_loop",16);
+ &movdqu ("xmm0",&QWP(0,$inp)); # load input
+ &movdqa (&QWP(16,"esp"),"xmm1"); # save IV
+ &movdqa (&QWP(32,"esp"),"xmm0"); # save future IV
+ &call ("_vpaes_decrypt_core");
+ &mov ($base,&DWP(0,"esp")); # restore out
+ &mov ($key,&DWP(4,"esp")); # restore key
+ &pxor ("xmm0",&QWP(16,"esp")); # out^=iv
+ &movdqa ("xmm1",&QWP(32,"esp")); # load next IV
+ &movdqu (&QWP(0,$base,$inp),"xmm0"); # write output
+ &lea ($inp,&DWP(16,$inp));
+ &sub ($out,16);
+ &jnc (&label("cbc_dec_loop"));
+
+&set_label("cbc_done");
+ &mov ($base,&DWP(8,"esp")); # restore ivp
+ &mov ("esp",&DWP(48,"esp"));
+ &movdqu (&QWP(0,$base),"xmm1"); # write IV
+&function_end("${PREFIX}_cbc_encrypt");
+
+&asm_finish();
--- /dev/null
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# May 2011
+#
+# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
+# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
+# the time being... Except that it has three code paths: pure integer
+# code suitable for any x86 CPU, MMX code suitable for PIII and later
+# and PCLMULQDQ suitable for Westmere and later. Improvement varies
+# from one benchmark and µ-arch to another. Below are interval values
+# for 163- and 571-bit ECDH benchmarks relative to compiler-generated
+# code:
+#
+# PIII 16%-30%
+# P4 12%-12%
+# Opteron 18%-40%
+# Core2 19%-44%
+# Atom 38%-64%
+# Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX)
+# Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX)
+#
+# Note that above improvement coefficients are not coefficients for
+# bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result
+# of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark
+# is more and more dominated by other subroutines, most notably by
+# BN_GF2m_mod[_mul]_arr...
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+push(@INC,"${dir}","${dir}../../perlasm");
+require "x86asm.pl";
+
+&asm_init($ARGV[0],$0,$x86only = $ARGV[$#ARGV] eq "386");
+
+$sse2=0;
+for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
+
+&external_label("OPENSSL_ia32cap_P") if ($sse2);
+
+$a="eax";
+$b="ebx";
+($a1,$a2,$a4)=("ecx","edx","ebp");
+
+$R="mm0";
+@T=("mm1","mm2");
+($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5");
+@i=("esi","edi");
+
+ if (!$x86only) {
+&function_begin_B("_mul_1x1_mmx");
+ &sub ("esp",32+4);
+ &mov ($a1,$a);
+ &lea ($a2,&DWP(0,$a,$a));
+ &and ($a1,0x3fffffff);
+ &lea ($a4,&DWP(0,$a2,$a2));
+ &mov (&DWP(0*4,"esp"),0);
+ &and ($a2,0x7fffffff);
+ &movd ($A,$a);
+ &movd ($B,$b);
+ &mov (&DWP(1*4,"esp"),$a1); # a1
+ &xor ($a1,$a2); # a1^a2
+ &pxor ($B31,$B31);
+ &pxor ($B30,$B30);
+ &mov (&DWP(2*4,"esp"),$a2); # a2
+ &xor ($a2,$a4); # a2^a4
+ &mov (&DWP(3*4,"esp"),$a1); # a1^a2
+ &pcmpgtd($B31,$A); # broadcast 31st bit
+ &paddd ($A,$A); # $A<<=1
+ &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
+ &mov (&DWP(4*4,"esp"),$a4); # a4
+ &xor ($a4,$a2); # a2=a4^a2^a4
+ &pand ($B31,$B);
+ &pcmpgtd($B30,$A); # broadcast 30th bit
+ &mov (&DWP(5*4,"esp"),$a1); # a1^a4
+ &xor ($a4,$a1); # a1^a2^a4
+ &psllq ($B31,31);
+ &pand ($B30,$B);
+ &mov (&DWP(6*4,"esp"),$a2); # a2^a4
+ &mov (@i[0],0x7);
+ &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
+ &mov ($a4,@i[0]);
+ &and (@i[0],$b);
+ &shr ($b,3);
+ &mov (@i[1],$a4);
+ &psllq ($B30,30);
+ &and (@i[1],$b);
+ &shr ($b,3);
+ &movd ($R,&DWP(0,"esp",@i[0],4));
+ &mov (@i[0],$a4);
+ &and (@i[0],$b);
+ &shr ($b,3);
+ for($n=1;$n<9;$n++) {
+ &movd (@T[1],&DWP(0,"esp",@i[1],4));
+ &mov (@i[1],$a4);
+ &psllq (@T[1],3*$n);
+ &and (@i[1],$b);
+ &shr ($b,3);
+ &pxor ($R,@T[1]);
+
+ push(@i,shift(@i)); push(@T,shift(@T));
+ }
+ &movd (@T[1],&DWP(0,"esp",@i[1],4));
+ &pxor ($R,$B30);
+ &psllq (@T[1],3*$n++);
+ &pxor ($R,@T[1]);
+
+ &movd (@T[0],&DWP(0,"esp",@i[0],4));
+ &pxor ($R,$B31);
+ &psllq (@T[0],3*$n);
+ &add ("esp",32+4);
+ &pxor ($R,@T[0]);
+ &ret ();
+&function_end_B("_mul_1x1_mmx");
+ }
+
+($lo,$hi)=("eax","edx");
+@T=("ecx","ebp");
+
+&function_begin_B("_mul_1x1_ialu");
+ &sub ("esp",32+4);
+ &mov ($a1,$a);
+ &lea ($a2,&DWP(0,$a,$a));
+ &lea ($a4,&DWP(0,"",$a,4));
+ &and ($a1,0x3fffffff);
+ &lea (@i[1],&DWP(0,$lo,$lo));
+ &sar ($lo,31); # broadcast 31st bit
+ &mov (&DWP(0*4,"esp"),0);
+ &and ($a2,0x7fffffff);
+ &mov (&DWP(1*4,"esp"),$a1); # a1
+ &xor ($a1,$a2); # a1^a2
+ &mov (&DWP(2*4,"esp"),$a2); # a2
+ &xor ($a2,$a4); # a2^a4
+ &mov (&DWP(3*4,"esp"),$a1); # a1^a2
+ &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
+ &mov (&DWP(4*4,"esp"),$a4); # a4
+ &xor ($a4,$a2); # a2=a4^a2^a4
+ &mov (&DWP(5*4,"esp"),$a1); # a1^a4
+ &xor ($a4,$a1); # a1^a2^a4
+ &sar (@i[1],31); # broardcast 30th bit
+ &and ($lo,$b);
+ &mov (&DWP(6*4,"esp"),$a2); # a2^a4
+ &and (@i[1],$b);
+ &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
+ &mov ($hi,$lo);
+ &shl ($lo,31);
+ &mov (@T[0],@i[1]);
+ &shr ($hi,1);
+
+ &mov (@i[0],0x7);
+ &shl (@i[1],30);
+ &and (@i[0],$b);
+ &shr (@T[0],2);
+ &xor ($lo,@i[1]);
+
+ &shr ($b,3);
+ &mov (@i[1],0x7); # 5-byte instruction!?
+ &and (@i[1],$b);
+ &shr ($b,3);
+ &xor ($hi,@T[0]);
+ &xor ($lo,&DWP(0,"esp",@i[0],4));
+ &mov (@i[0],0x7);
+ &and (@i[0],$b);
+ &shr ($b,3);
+ for($n=1;$n<9;$n++) {
+ &mov (@T[1],&DWP(0,"esp",@i[1],4));
+ &mov (@i[1],0x7);
+ &mov (@T[0],@T[1]);
+ &shl (@T[1],3*$n);
+ &and (@i[1],$b);
+ &shr (@T[0],32-3*$n);
+ &xor ($lo,@T[1]);
+ &shr ($b,3);
+ &xor ($hi,@T[0]);
+
+ push(@i,shift(@i)); push(@T,shift(@T));
+ }
+ &mov (@T[1],&DWP(0,"esp",@i[1],4));
+ &mov (@T[0],@T[1]);
+ &shl (@T[1],3*$n);
+ &mov (@i[1],&DWP(0,"esp",@i[0],4));
+ &shr (@T[0],32-3*$n); $n++;
+ &mov (@i[0],@i[1]);
+ &xor ($lo,@T[1]);
+ &shl (@i[1],3*$n);
+ &xor ($hi,@T[0]);
+ &shr (@i[0],32-3*$n);
+ &xor ($lo,@i[1]);
+ &xor ($hi,@i[0]);
+
+ &add ("esp",32+4);
+ &ret ();
+&function_end_B("_mul_1x1_ialu");
+
+# void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
+&function_begin_B("bn_GF2m_mul_2x2");
+if (!$x86only) {
+ &picmeup("edx","OPENSSL_ia32cap_P");
+ &mov ("eax",&DWP(0,"edx"));
+ &mov ("edx",&DWP(4,"edx"));
+ &test ("eax",1<<23); # check MMX bit
+ &jz (&label("ialu"));
+if ($sse2) {
+ &test ("eax",1<<24); # check FXSR bit
+ &jz (&label("mmx"));
+ &test ("edx",1<<1); # check PCLMULQDQ bit
+ &jz (&label("mmx"));
+
+ &movups ("xmm0",&QWP(8,"esp"));
+ &shufps ("xmm0","xmm0",0b10110001);
+ &pclmulqdq ("xmm0","xmm0",1);
+ &mov ("eax",&DWP(4,"esp"));
+ &movups (&QWP(0,"eax"),"xmm0");
+ &ret ();
+
+&set_label("mmx",16);
+}
+ &push ("ebp");
+ &push ("ebx");
+ &push ("esi");
+ &push ("edi");
+ &mov ($a,&wparam(1));
+ &mov ($b,&wparam(3));
+ &call ("_mul_1x1_mmx"); # a1·b1
+ &movq ("mm7",$R);
+
+ &mov ($a,&wparam(2));
+ &mov ($b,&wparam(4));
+ &call ("_mul_1x1_mmx"); # a0·b0
+ &movq ("mm6",$R);
+
+ &mov ($a,&wparam(1));
+ &mov ($b,&wparam(3));
+ &xor ($a,&wparam(2));
+ &xor ($b,&wparam(4));
+ &call ("_mul_1x1_mmx"); # (a0+a1)·(b0+b1)
+ &pxor ($R,"mm7");
+ &mov ($a,&wparam(0));
+ &pxor ($R,"mm6"); # (a0+a1)·(b0+b1)-a1·b1-a0·b0
+
+ &movq ($A,$R);
+ &psllq ($R,32);
+ &pop ("edi");
+ &psrlq ($A,32);
+ &pop ("esi");
+ &pxor ($R,"mm6");
+ &pop ("ebx");
+ &pxor ($A,"mm7");
+ &movq (&QWP(0,$a),$R);
+ &pop ("ebp");
+ &movq (&QWP(8,$a),$A);
+ &emms ();
+ &ret ();
+&set_label("ialu",16);
+}
+ &push ("ebp");
+ &push ("ebx");
+ &push ("esi");
+ &push ("edi");
+ &stack_push(4+1);
+
+ &mov ($a,&wparam(1));
+ &mov ($b,&wparam(3));
+ &call ("_mul_1x1_ialu"); # a1·b1
+ &mov (&DWP(8,"esp"),$lo);
+ &mov (&DWP(12,"esp"),$hi);
+
+ &mov ($a,&wparam(2));
+ &mov ($b,&wparam(4));
+ &call ("_mul_1x1_ialu"); # a0·b0
+ &mov (&DWP(0,"esp"),$lo);
+ &mov (&DWP(4,"esp"),$hi);
+
+ &mov ($a,&wparam(1));
+ &mov ($b,&wparam(3));
+ &xor ($a,&wparam(2));
+ &xor ($b,&wparam(4));
+ &call ("_mul_1x1_ialu"); # (a0+a1)·(b0+b1)
+
+ &mov ("ebp",&wparam(0));
+ @r=("ebx","ecx","edi","esi");
+ &mov (@r[0],&DWP(0,"esp"));
+ &mov (@r[1],&DWP(4,"esp"));
+ &mov (@r[2],&DWP(8,"esp"));
+ &mov (@r[3],&DWP(12,"esp"));
+
+ &xor ($lo,$hi);
+ &xor ($hi,@r[1]);
+ &xor ($lo,@r[0]);
+ &mov (&DWP(0,"ebp"),@r[0]);
+ &xor ($hi,@r[2]);
+ &mov (&DWP(12,"ebp"),@r[3]);
+ &xor ($lo,@r[3]);
+ &stack_pop(4+1);
+ &xor ($hi,@r[3]);
+ &pop ("edi");
+ &xor ($lo,$hi);
+ &pop ("esi");
+ &mov (&DWP(8,"ebp"),$hi);
+ &pop ("ebx");
+ &mov (&DWP(4,"ebp"),$lo);
+ &pop ("ebp");
+ &ret ();
+&function_end_B("bn_GF2m_mul_2x2");
+
+&asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
+
+&asm_finish();