conditional final subtraction in Montgomery multiplication.
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
BN_CTX *ctx);
-int BN_div_no_branch(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
- const BIGNUM *d, BN_CTX *ctx);
#define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */
BIGNUM *BN_mod_inverse(BIGNUM *ret,
const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
-BIGNUM *BN_mod_inverse_no_branch(BIGNUM *ret,
- const BIGNUM *A, const BIGNUM *n,BN_CTX *ctx);
BIGNUM *BN_mod_sqrt(BIGNUM *ret,
const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
#endif /* OPENSSL_NO_ASM */
-/* BN_div computes dv := num / divisor, rounding towards zero, and sets up
- * rm such that dv*divisor + rm = num holds.
+/* BN_div[_no_branch] computes dv := num / divisor, rounding towards
+ * zero, and sets up rm such that dv*divisor + rm = num holds.
* Thus:
* dv->neg == num->neg ^ divisor->neg (unless the result is zero)
* rm->neg == num->neg (unless the remainder is zero)
* If 'dv' or 'rm' is NULL, the respective value is not returned.
*/
+static int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
+ const BIGNUM *divisor, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
BN_CTX *ctx)
{
/* BN_div_no_branch is a special version of BN_div. It does not contain
* branches that may leak sensitive information.
*/
-int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
+static int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
const BIGNUM *divisor, BN_CTX *ctx)
{
int norm_shift,i,loop;
/* solves ax == 1 (mod n) */
+static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
+ const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
BIGNUM *BN_mod_inverse(BIGNUM *in,
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
* It does not contain branches that may leak sensitive information.
*/
-BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
+static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
max=(nl+al+1); /* allow for overflow (no?) XXX */
if (bn_wexpand(r,max) == NULL) goto err;
- if (bn_wexpand(ret,max) == NULL) goto err;
r->neg=a->neg^n->neg;
np=n->d;
}
bn_correct_top(r);
- /* mont->ri will be a multiple of the word size */
-#if 0
- BN_rshift(ret,r,mont->ri);
-#else
- ret->neg = r->neg;
- x=ri;
+ /* mont->ri will be a multiple of the word size and below code
+ * is kind of BN_rshift(ret,r,mont->ri) equivalent */
+ if (r->top <= ri)
+ {
+ ret->top=0;
+ retn=1;
+ goto err;
+ }
+ al=r->top-ri;
+
+# define BRANCH_FREE 1
+# if BRANCH_FREE
+ if (bn_wexpand(ret,ri) == NULL) goto err;
+ x=0-(((al-ri)>>(sizeof(al)*8-1))&1);
+ ret->top=x=(ri&~x)|(al&x); /* min(ri,al) */
+ ret->neg=r->neg;
+
rp=ret->d;
- ap= &(r->d[x]);
- if (r->top < x)
- al=0;
- else
- al=r->top-x;
+ ap=&(r->d[ri]);
+ nrp=ap;
+
+ /* This 'if' denotes violation of 2*M<r^(n-1) boundary condition
+ * formulated by C.D.Walter in "Montgomery exponentiation needs
+ * no final subtractions." Incurred branch can disclose only
+ * information about modulus length, which is not really secret. */
+ if ((mont->N.d[ri-1]>>(BN_BITS2-2))!=0)
+ {
+ size_t m1,m2;
+
+ v=bn_sub_words(rp,ap,mont->N.d,ri);
+ /* this -----------------------^^ works even in al<ri case
+ * thanks to zealous zeroing of top of the vector in the
+ * beginning. */
+
+ /* if (al==ri && !v) || al>ri) nrp=rp; else nrp=ap; */
+ /* in other words if subtraction result is real, then
+ * trick unconditional memcpy below to perform in-place
+ * "refresh" instead of actual copy. */
+ m1=0-(size_t)(((al-ri)>>(sizeof(al)*8-1))&1); /* al<ri */
+ m2=0-(size_t)(((ri-al)>>(sizeof(al)*8-1))&1); /* al>ri */
+ m1|=m2; /* (al!=ri) */
+ m1|=(0-(size_t)v); /* (al!=ri || v) */
+ m1&=~m2; /* (al!=ri || v) && !al>ri */
+ nrp=(BN_ULONG *)(((size_t)rp&~m1)|((size_t)ap&m1));
+ }
+
+ /* 'i<ri' is chosen to eliminate dependency on input data, even
+ * though it results in redundant copy in al<ri case. */
+ for (i=0,ri-=4; i<ri; i+=4)
+ {
+ BN_ULONG t1,t2,t3,t4;
+
+ t1=nrp[i+0];
+ t2=nrp[i+1];
+ t3=nrp[i+2]; ap[i+0]=0;
+ t4=nrp[i+3]; ap[i+1]=0;
+ rp[i+0]=t1; ap[i+2]=0;
+ rp[i+1]=t2; ap[i+3]=0;
+ rp[i+2]=t3;
+ rp[i+3]=t4;
+ }
+ for (ri+=4; i<ri; i++)
+ rp[i]=nrp[i], ap[i]=0;
+# else
+ if (bn_wexpand(ret,al) == NULL) goto err;
ret->top=al;
+ ret->neg=r->neg;
+
+ rp=ret->d;
+ ap=&(r->d[ri]);
al-=4;
for (i=0; i<al; i+=4)
{
al+=4;
for (; i<al; i++)
rp[i]=ap[i];
-#endif
+# endif
#else /* !MONT_WORD */
BIGNUM *t1,*t2;
if (!BN_rshift(ret,t2,mont->ri)) goto err;
#endif /* MONT_WORD */
+#if !defined(BRANCH_FREE) || BRANCH_FREE==0
if (BN_ucmp(ret, &(mont->N)) >= 0)
{
if (!BN_usub(ret,ret,&(mont->N))) goto err;
}
+#endif
retn=1;
bn_check_top(ret);
err:
BIO_set_callback 3903 EXIST::FUNCTION:
d2i_ASIdOrRange 3904 EXIST::FUNCTION:RFC3779
i2d_ASIdentifiers 3905 EXIST::FUNCTION:RFC3779
-BN_div_no_branch 3906 EXIST::FUNCTION:
-BN_mod_inverse_no_branch 3907 EXIST::FUNCTION:
SEED_decrypt 3908 EXIST::FUNCTION:SEED
SEED_encrypt 3909 EXIST::FUNCTION:SEED
SEED_cbc_encrypt 3910 EXIST::FUNCTION:SEED