* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
* Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
*
+ * Optimization for constant divisors on 32-bit machines:
+ * Copyright (C) 2006-2015 Nicolas Pitre
+ *
* The semantics of do_div() are:
*
* uint32_t do_div(uint64_t *n, uint32_t base)
* {
- * uint32_t remainder = *n % base;
- * *n = *n / base;
- * return remainder;
+ * uint32_t remainder = *n % base;
+ * *n = *n / base;
+ * return remainder;
* }
*
* NOTE: macro parameter n is evaluated multiple times,
*/
#include <linux/types.h>
+#include <linux/compiler.h>
+
+#if BITS_PER_LONG == 64
+
+# define do_div(n,base) ({ \
+ uint32_t __base = (base); \
+ uint32_t __rem; \
+ __rem = ((uint64_t)(n)) % __base; \
+ (n) = ((uint64_t)(n)) / __base; \
+ __rem; \
+ })
+
+#elif BITS_PER_LONG == 32
+
+#include <linux/log2.h>
+
+/*
+ * If the divisor happens to be constant, we determine the appropriate
+ * inverse at compile time to turn the division into a few inline
+ * multiplications which ought to be much faster. And yet only if compiling
+ * with a sufficiently recent gcc version to perform proper 64-bit constant
+ * propagation.
+ *
+ * (It is unfortunate that gcc doesn't perform all this internally.)
+ */
+
+#ifndef __div64_const32_is_OK
+#define __div64_const32_is_OK (__GNUC__ >= 4)
+#endif
+
+#define __div64_const32(n, ___b) \
+({ \
+ /* \
+ * Multiplication by reciprocal of b: n / b = n * (p / b) / p \
+ * \
+ * We rely on the fact that most of this code gets optimized \
+ * away at compile time due to constant propagation and only \
+ * a few multiplication instructions should remain. \
+ * Hence this monstrous macro (static inline doesn't always \
+ * do the trick here). \
+ */ \
+ uint64_t ___res, ___x, ___t, ___m, ___n = (n); \
+ uint32_t ___p, ___bias; \
+ \
+ /* determine MSB of b */ \
+ ___p = 1 << ilog2(___b); \
+ \
+ /* compute m = ((p << 64) + b - 1) / b */ \
+ ___m = (~0ULL / ___b) * ___p; \
+ ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \
+ \
+ /* one less than the dividend with highest result */ \
+ ___x = ~0ULL / ___b * ___b - 1; \
+ \
+ /* test our ___m with res = m * x / (p << 64) */ \
+ ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \
+ ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \
+ ___res += (___x & 0xffffffff) * (___m >> 32); \
+ ___t = (___res < ___t) ? (1ULL << 32) : 0; \
+ ___res = (___res >> 32) + ___t; \
+ ___res += (___m >> 32) * (___x >> 32); \
+ ___res /= ___p; \
+ \
+ /* Now sanitize and optimize what we've got. */ \
+ if (~0ULL % (___b / (___b & -___b)) == 0) { \
+ /* special case, can be simplified to ... */ \
+ ___n /= (___b & -___b); \
+ ___m = ~0ULL / (___b / (___b & -___b)); \
+ ___p = 1; \
+ ___bias = 1; \
+ } else if (___res != ___x / ___b) { \
+ /* \
+ * We can't get away without a bias to compensate \
+ * for bit truncation errors. To avoid it we'd need an \
+ * additional bit to represent m which would overflow \
+ * a 64-bit variable. \
+ * \
+ * Instead we do m = p / b and n / b = (n * m + m) / p. \
+ */ \
+ ___bias = 1; \
+ /* Compute m = (p << 64) / b */ \
+ ___m = (~0ULL / ___b) * ___p; \
+ ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \
+ } else { \
+ /* \
+ * Reduce m / p, and try to clear bit 31 of m when \
+ * possible, otherwise that'll need extra overflow \
+ * handling later. \
+ */ \
+ uint32_t ___bits = -(___m & -___m); \
+ ___bits |= ___m >> 32; \
+ ___bits = (~___bits) << 1; \
+ /* \
+ * If ___bits == 0 then setting bit 31 is unavoidable. \
+ * Simply apply the maximum possible reduction in that \
+ * case. Otherwise the MSB of ___bits indicates the \
+ * best reduction we should apply. \
+ */ \
+ if (!___bits) { \
+ ___p /= (___m & -___m); \
+ ___m /= (___m & -___m); \
+ } else { \
+ ___p >>= ilog2(___bits); \
+ ___m >>= ilog2(___bits); \
+ } \
+ /* No bias needed. */ \
+ ___bias = 0; \
+ } \
+ \
+ /* \
+ * Now we have a combination of 2 conditions: \
+ * \
+ * 1) whether or not we need to apply a bias, and \
+ * \
+ * 2) whether or not there might be an overflow in the cross \
+ * product determined by (___m & ((1 << 63) | (1 << 31))). \
+ * \
+ * Select the best way to do (m_bias + m * n) / (1 << 64). \
+ * From now on there will be actual runtime code generated. \
+ */ \
+ ___res = __arch_xprod_64(___m, ___n, ___bias); \
+ \
+ ___res /= ___p; \
+})
+
+#ifndef __arch_xprod_64
+/*
+ * Default C implementation for __arch_xprod_64()
+ *
+ * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
+ * Semantic: retval = ((bias ? m : 0) + m * n) >> 64
+ *
+ * The product is a 128-bit value, scaled down to 64 bits.
+ * Assuming constant propagation to optimize away unused conditional code.
+ * Architectures may provide their own optimized assembly implementation.
+ */
+static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
+{
+ uint32_t m_lo = m;
+ uint32_t m_hi = m >> 32;
+ uint32_t n_lo = n;
+ uint32_t n_hi = n >> 32;
+ uint64_t res, tmp;
+
+ if (!bias) {
+ res = ((uint64_t)m_lo * n_lo) >> 32;
+ } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
+ /* there can't be any overflow here */
+ res = (m + (uint64_t)m_lo * n_lo) >> 32;
+ } else {
+ res = m + (uint64_t)m_lo * n_lo;
+ tmp = (res < m) ? (1ULL << 32) : 0;
+ res = (res >> 32) + tmp;
+ }
+
+ if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
+ /* there can't be any overflow here */
+ res += (uint64_t)m_lo * n_hi;
+ res += (uint64_t)m_hi * n_lo;
+ res >>= 32;
+ } else {
+ tmp = res += (uint64_t)m_lo * n_hi;
+ res += (uint64_t)m_hi * n_lo;
+ tmp = (res < tmp) ? (1ULL << 32) : 0;
+ res = (res >> 32) + tmp;
+ }
+ res += (uint64_t)m_hi * n_hi;
+
+ return res;
+}
+#endif
+
+#ifndef __div64_32
extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
+#endif
/* The unnecessary pointer compare is there
* to check for type safety (n must be 64bit)
uint32_t __base = (base); \
uint32_t __rem; \
(void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
- if (((n) >> 32) == 0) { \
+ if (__builtin_constant_p(__base) && \
+ is_power_of_2(__base)) { \
+ __rem = (n) & (__base - 1); \
+ (n) >>= ilog2(__base); \
+ } else if (__div64_const32_is_OK && \
+ __builtin_constant_p(__base) && \
+ __base != 0) { \
+ uint32_t __res_lo, __n_lo = (n); \
+ (n) = __div64_const32(n, __base); \
+ /* the remainder can be computed with 32-bit regs */ \
+ __res_lo = (n); \
+ __rem = __n_lo - __res_lo * __base; \
+ } else if (likely(((n) >> 32) == 0)) { \
__rem = (uint32_t)(n) % __base; \
(n) = (uint32_t)(n) / __base; \
- } else \
+ } else \
__rem = __div64_32(&(n), __base); \
__rem; \
})
+#else /* BITS_PER_LONG == ?? */
+
+# error do_div() does not yet support the C64
+
+#endif /* BITS_PER_LONG */
+
/* Wrapper for do_div(). Doesn't modify dividend and returns
* the result, not reminder.
*/
#ifndef _LINUX_MATH64_H
#define _LINUX_MATH64_H
+#include <div64.h>
+#include <linux/bitops.h>
#include <linux/types.h>
#if BITS_PER_LONG == 64
+#define div64_long(x, y) div64_s64((x), (y))
+#define div64_ul(x, y) div64_u64((x), (y))
+
/**
* div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
*
return dividend / divisor;
}
+/**
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ */
+static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+ *remainder = dividend % divisor;
+ return dividend / divisor;
+}
+
/**
* div64_u64 - unsigned 64bit divide with 64bit divisor
*/
return dividend / divisor;
}
+/**
+ * div64_s64 - signed 64bit divide with 64bit divisor
+ */
+static inline s64 div64_s64(s64 dividend, s64 divisor)
+{
+ return dividend / divisor;
+}
+
#elif BITS_PER_LONG == 32
+#define div64_long(x, y) div_s64((x), (y))
+#define div64_ul(x, y) div_u64((x), (y))
+
#ifndef div_u64_rem
static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
{
extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
#endif
+#ifndef div64_u64_rem
+extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
+#endif
+
#ifndef div64_u64
extern u64 div64_u64(u64 dividend, u64 divisor);
#endif
+#ifndef div64_s64
+extern s64 div64_s64(s64 dividend, s64 divisor);
+#endif
+
#endif /* BITS_PER_LONG */
/**
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
+static __always_inline u32
+__iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
+{
+ u32 ret = 0;
+
+ while (dividend >= divisor) {
+ /* The following asm() prevents the compiler from
+ optimising this loop into a modulo operation. */
+ asm("" : "+rm"(dividend));
+
+ dividend -= divisor;
+ ret++;
+ }
+
+ *remainder = dividend;
+
+ return ret;
+}
+
+#ifndef mul_u32_u32
+/*
+ * Many a GCC version messes this up and generates a 64x64 mult :-(
+ */
+static inline u64 mul_u32_u32(u32 a, u32 b)
+{
+ return (u64)a * b;
+}
+#endif
+
+#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
+
+#ifndef mul_u64_u32_shr
+static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
+{
+ return (u64)(((unsigned __int128)a * mul) >> shift);
+}
+#endif /* mul_u64_u32_shr */
+
+#ifndef mul_u64_u64_shr
+static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
+{
+ return (u64)(((unsigned __int128)a * mul) >> shift);
+}
+#endif /* mul_u64_u64_shr */
+
+#else
+
+#ifndef mul_u64_u32_shr
+static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
+{
+ u32 ah, al;
+ u64 ret;
+
+ al = a;
+ ah = a >> 32;
+
+ ret = mul_u32_u32(al, mul) >> shift;
+ if (ah)
+ ret += mul_u32_u32(ah, mul) << (32 - shift);
+
+ return ret;
+}
+#endif /* mul_u64_u32_shr */
+
+#ifndef mul_u64_u64_shr
+static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
+{
+ union {
+ u64 ll;
+ struct {
+#ifdef __BIG_ENDIAN
+ u32 high, low;
+#else
+ u32 low, high;
+#endif
+ } l;
+ } rl, rm, rn, rh, a0, b0;
+ u64 c;
+
+ a0.ll = a;
+ b0.ll = b;
+
+ rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
+ rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
+ rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
+ rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
+
+ /*
+ * Each of these lines computes a 64-bit intermediate result into "c",
+ * starting at bits 32-95. The low 32-bits go into the result of the
+ * multiplication, the high 32-bits are carried into the next step.
+ */
+ rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
+ rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
+ rh.l.high = (c >> 32) + rh.l.high;
+
+ /*
+ * The 128-bit result of the multiplication is in rl.ll and rh.ll,
+ * shift it right and throw away the high part of the result.
+ */
+ if (shift == 0)
+ return rl.ll;
+ if (shift < 64)
+ return (rl.ll >> shift) | (rh.ll << (64 - shift));
+ return rh.ll >> (shift & 63);
+}
+#endif /* mul_u64_u64_shr */
+
+#endif
+
+#ifndef mul_u64_u32_div
+static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
+{
+ union {
+ u64 ll;
+ struct {
+#ifdef __BIG_ENDIAN
+ u32 high, low;
+#else
+ u32 low, high;
+#endif
+ } l;
+ } u, rl, rh;
+
+ u.ll = a;
+ rl.ll = mul_u32_u32(u.l.low, mul);
+ rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
+
+ /* Bits 32-63 of the result will be in rh.l.low. */
+ rl.l.high = do_div(rh.ll, divisor);
+
+ /* Bits 0-31 of the result will be in rl.l.low. */
+ do_div(rl.ll, divisor);
+
+ rl.l.high = rh.l.low;
+ return rl.ll;
+}
+#endif /* mul_u64_u32_div */
+
#endif /* _LINUX_MATH64_H */
*
* Code generated for this function might be very inefficient
* for some CPUs. __div64_32() can be overridden by linking arch-specific
- * assembly versions such as arch/powerpc/lib/div64.S and arch/sh/lib/div64.S.
+ * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
+ * or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
-#include <div64.h>
-#include <linux/types.h>
-#include <linux/compiler.h>
+#include <linux/compat.h>
+#include <linux/kernel.h>
+#include <linux/math64.h>
-uint32_t notrace __div64_32(uint64_t *n, uint32_t base)
+/* Not needed on 64bit architectures */
+#if BITS_PER_LONG == 32
+
+#ifndef __div64_32
+uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
{
uint64_t rem = *n;
uint64_t b = base;
*n = res;
return rem;
}
+EXPORT_SYMBOL(__div64_32);
+#endif
+
+#ifndef div_s64_rem
+s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
+{
+ u64 quotient;
+
+ if (dividend < 0) {
+ quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
+ *remainder = -*remainder;
+ if (divisor > 0)
+ quotient = -quotient;
+ } else {
+ quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
+ if (divisor < 0)
+ quotient = -quotient;
+ }
+ return quotient;
+}
+EXPORT_SYMBOL(div_s64_rem);
+#endif
+
+/**
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ * @remainder: 64bit remainder
+ *
+ * This implementation is a comparable to algorithm used by div64_u64.
+ * But this operation, which includes math for calculating the remainder,
+ * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
+ * systems.
+ */
+#ifndef div64_u64_rem
+u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+ u32 high = divisor >> 32;
+ u64 quot;
+
+ if (high == 0) {
+ u32 rem32;
+ quot = div_u64_rem(dividend, divisor, &rem32);
+ *remainder = rem32;
+ } else {
+ int n = 1 + fls(high);
+ quot = div_u64(dividend >> n, divisor >> n);
+
+ if (quot != 0)
+ quot--;
+
+ *remainder = dividend - quot * divisor;
+ if (*remainder >= divisor) {
+ quot++;
+ *remainder -= divisor;
+ }
+ }
+
+ return quot;
+}
+EXPORT_SYMBOL(div64_u64_rem);
+#endif
+
+/**
+ * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ *
+ * This implementation is a modified version of the algorithm proposed
+ * by the book 'Hacker's Delight'. The original source and full proof
+ * can be found here and is available for use without restriction.
+ *
+ * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
+ */
+#ifndef div64_u64
+u64 div64_u64(u64 dividend, u64 divisor)
+{
+ u32 high = divisor >> 32;
+ u64 quot;
+
+ if (high == 0) {
+ quot = div_u64(dividend, divisor);
+ } else {
+ int n = 1 + fls(high);
+ quot = div_u64(dividend >> n, divisor >> n);
+
+ if (quot != 0)
+ quot--;
+ if ((dividend - quot * divisor) >= divisor)
+ quot++;
+ }
+
+ return quot;
+}
+EXPORT_SYMBOL(div64_u64);
+#endif
+
+/**
+ * div64_s64 - signed 64bit divide with 64bit divisor
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ */
+#ifndef div64_s64
+s64 div64_s64(s64 dividend, s64 divisor)
+{
+ s64 quot, t;
+
+ quot = div64_u64(abs(dividend), abs(divisor));
+ t = (dividend ^ divisor) >> 63;
+
+ return (quot ^ t) - t;
+}
+EXPORT_SYMBOL(div64_s64);
+#endif
+
+#endif /* BITS_PER_LONG == 32 */
+
+/*
+ * Iterative div/mod for use when dividend is not expected to be much
+ * bigger than divisor.
+ */
+u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
+{
+ return __iter_div_u64_rem(dividend, divisor, remainder);
+}
+EXPORT_SYMBOL(iter_div_u64_rem);