X-Git-Url: https://git.librecmc.org/?a=blobdiff_plain;f=src%2Futil%2Fcrypto_ecc.c;h=c4e101369f4f346672bca4e063829d05324a1b67;hb=71e181512d1cd61d3865f93f5b85b208b5720ba5;hp=bcc04fea5c49cc3fdfc456d0486458d428ce0034;hpb=59df216f6ad04e9131ee4fa43e14055252a71651;p=oweals%2Fgnunet.git diff --git a/src/util/crypto_ecc.c b/src/util/crypto_ecc.c index bcc04fea5..c4e101369 100644 --- a/src/util/crypto_ecc.c +++ b/src/util/crypto_ecc.c @@ -1298,6 +1298,77 @@ GNUNET_CRYPTO_eddsa_ecdh (const struct GNUNET_CRYPTO_EddsaPrivateKey *priv, return GNUNET_OK; } +/** + * @ingroup crypto + * Derive key material from a ECDH public key and a private ECDSA key. + * Dual to #GNUNET_CRRYPTO_ecdh_eddsa. + * + * @param priv private key from ECDSA to use for the ECDH (x) + * @param pub public key to use for the ECDH (yG) + * @param key_material where to write the key material H(h(x)yG) + * @return #GNUNET_SYSERR on error, #GNUNET_OK on success + */ +int +GNUNET_CRYPTO_ecdsa_ecdh (const struct GNUNET_CRYPTO_EcdsaPrivateKey *priv, + const struct GNUNET_CRYPTO_EcdhePublicKey *pub, + struct GNUNET_HashCode *key_material) +{ + gcry_mpi_point_t result; + gcry_mpi_point_t q; + gcry_mpi_t d; + gcry_ctx_t ctx; + gcry_sexp_t pub_sexpr; + gcry_mpi_t result_x; + unsigned char xbuf[256 / 8]; + size_t rsize; + + /* first, extract the q = dP value from the public key */ + if (0 != gcry_sexp_build (&pub_sexpr, NULL, + "(public-key(ecc(curve " CURVE ")(q %b)))", + (int)sizeof (pub->q_y), pub->q_y)) + return GNUNET_SYSERR; + GNUNET_assert (0 == gcry_mpi_ec_new (&ctx, pub_sexpr, NULL)); + gcry_sexp_release (pub_sexpr); + q = gcry_mpi_ec_get_point ("q", ctx, 0); + + /* second, extract the d value from our private key */ + GNUNET_CRYPTO_mpi_scan_unsigned (&d, priv->d, sizeof (priv->d)); + + /* then call the 'multiply' function, to compute the product */ + result = gcry_mpi_point_new (0); + gcry_mpi_ec_mul (result, d, q, ctx); + gcry_mpi_point_release (q); + gcry_mpi_release (d); + + /* finally, convert point to string for hashing */ + result_x = gcry_mpi_new (256); + if (gcry_mpi_ec_get_affine (result_x, NULL, result, ctx)) + { + LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "get_affine failed", 0); + gcry_mpi_point_release (result); + gcry_ctx_release (ctx); + return GNUNET_SYSERR; + } + gcry_mpi_point_release (result); + gcry_ctx_release (ctx); + + rsize = sizeof (xbuf); + GNUNET_assert (! gcry_mpi_get_flag (result_x, GCRYMPI_FLAG_OPAQUE)); + /* result_x can be negative here, so we do not use 'GNUNET_CRYPTO_mpi_print_unsigned' + as that does not include the sign bit; x should be a 255-bit + value, so with the sign it should fit snugly into the 256-bit + xbuf */ + GNUNET_assert (0 == + gcry_mpi_print (GCRYMPI_FMT_STD, xbuf, rsize, &rsize, + result_x)); + GNUNET_CRYPTO_hash (xbuf, + rsize, + key_material); + gcry_mpi_release (result_x); + return GNUNET_OK; +} + + /** * @ingroup crypto @@ -1369,6 +1440,24 @@ GNUNET_CRYPTO_ecdh_eddsa (const struct GNUNET_CRYPTO_EcdhePrivateKey *priv, return GNUNET_OK; } - +/** + * @ingroup crypto + * Derive key material from a ECDSA public key and a private ECDH key. + * Dual to #GNUNET_CRRYPTO_eddsa_ecdh. + * + * @param priv private key to use for the ECDH (y) + * @param pub public key from ECDSA to use for the ECDH (X=h(x)G) + * @param key_material where to write the key material H(yX)=H(h(x)yG) + * @return #GNUNET_SYSERR on error, #GNUNET_OK on success + */ +int +GNUNET_CRYPTO_ecdh_ecdsa (const struct GNUNET_CRYPTO_EcdhePrivateKey *priv, + const struct GNUNET_CRYPTO_EcdsaPublicKey *pub, + struct GNUNET_HashCode *key_material) +{ + return GNUNET_CRYPTO_ecdh_eddsa (priv, + (const struct GNUNET_CRYPTO_EddsaPublicKey *)pub, + key_material); +} /* end of crypto_ecc.c */