X-Git-Url: https://git.librecmc.org/?a=blobdiff_plain;f=src%2Fregex%2Fregex.c;h=c8b8ad3faedb680268ff3256c91ea8b868a9a449;hb=adbde8be4b6ee0a854177237391936faa8ca61c2;hp=814ae5597f5afc68e3baaf80f8062bdcdeeb7c3e;hpb=2e7a6b023989a31954928972150e6ee4d10e06df;p=oweals%2Fgnunet.git diff --git a/src/regex/regex.c b/src/regex/regex.c index 814ae5597..c8b8ad3fa 100644 --- a/src/regex/regex.c +++ b/src/regex/regex.c @@ -26,9 +26,14 @@ #include "gnunet_container_lib.h" #include "gnunet_crypto_lib.h" #include "gnunet_regex_lib.h" -#include "regex.h" +#include "regex_internal.h" + + +/** + * Constant for how many bits the initial string regex should have. + */ +#define INITIAL_BITS 8 -#define initial_bits 10 /** * Context that contains an id counter for states and transitions as well as a @@ -46,11 +51,6 @@ struct GNUNET_REGEX_Context */ unsigned int transition_id; - /** - * Unique SCC (Strongly Connected Component) id. - */ - unsigned int scc_id; - /** * DLL of GNUNET_REGEX_Automaton's used as a stack. */ @@ -62,219 +62,43 @@ struct GNUNET_REGEX_Context struct GNUNET_REGEX_Automaton *stack_tail; }; -/** - * Type of an automaton. - */ -enum GNUNET_REGEX_automaton_type -{ - NFA, - DFA -}; /** - * Automaton representation. + * Set of states. */ -struct GNUNET_REGEX_Automaton +struct GNUNET_REGEX_StateSet { /** - * This is a linked list. - */ - struct GNUNET_REGEX_Automaton *prev; - - /** - * This is a linked list. - */ - struct GNUNET_REGEX_Automaton *next; - - /** - * First state of the automaton. This is mainly used for constructing an NFA, - * where each NFA itself consists of one or more NFAs linked together. - */ - struct GNUNET_REGEX_State *start; - - /** - * End state of the automaton. - */ - struct GNUNET_REGEX_State *end; - - /** - * Number of states in the automaton. - */ - unsigned int state_count; - - /** - * DLL of states. - */ - struct GNUNET_REGEX_State *states_head; - - /** - * DLL of states + * Array of states. */ - struct GNUNET_REGEX_State *states_tail; + struct GNUNET_REGEX_State **states; /** - * Type of the automaton. + * Length of the 'states' array. */ - enum GNUNET_REGEX_automaton_type type; + unsigned int len; }; -/** - * A state. Can be used in DFA and NFA automatons. - */ -struct GNUNET_REGEX_State -{ - /** - * This is a linked list. - */ - struct GNUNET_REGEX_State *prev; - - /** - * This is a linked list. - */ - struct GNUNET_REGEX_State *next; - - /** - * Unique state id. - */ - unsigned int id; - - /** - * If this is an accepting state or not. - */ - int accepting; - - /** - * Marking of the state. This is used for marking all visited states when - * traversing all states of an automaton and for cases where the state id - * cannot be used (dfa minimization). - */ - int marked; - - /** - * Marking the state as contained. This is used for checking, if the state is - * contained in a set in constant time - */ - int contained; - - /** - * Marking the state as part of an SCC (Strongly Connected Component). All - * states with the same scc_id are part of the same SCC. scc_id is 0, if state - * is not a part of any SCC. - */ - unsigned int scc_id; - - /** - * Used for SCC detection. - */ - int index; - - /** - * Used for SCC detection. - */ - int lowlink; - - /** - * Human readable name of the automaton. Used for debugging and graph - * creation. - */ - char *name; - - /** - * Hash of the state. - */ - GNUNET_HashCode hash; - - /** - * Proof for this state. - */ - char *proof; - - /** - * Number of transitions from this state to other states. - */ - unsigned int transition_count; - - /** - * DLL of transitions. - */ - struct Transition *transitions_head; - - /** - * DLL of transitions. - */ - struct Transition *transitions_tail; - - /** - * Number of incoming transitions. - */ - unsigned int incoming_transition_count; - - /** - * Set of incoming transitions. - */ - struct Transition **incoming_transitions; - /** - * Set of states on which this state is based on. Used when creating a DFA out - * of several NFA states. - */ - struct GNUNET_REGEX_StateSet *nfa_set; -}; +/* + * Debug helper functions + */ /** - * Transition between two states. Each state can have 0-n transitions. If label - * is 0, this is considered to be an epsilon transition. + * Print all the transitions of state 's'. + * + * @param s state for which to print it's transitions. */ -struct Transition -{ - /** - * This is a linked list. - */ - struct Transition *prev; - - /** - * This is a linked list. - */ - struct Transition *next; - - /** - * Unique id of this transition. - */ - unsigned int id; - - /** - * Label for this transition. This is basically the edge label for the graph. - */ - char label; - - /** - * State to which this transition leads. - */ - struct GNUNET_REGEX_State *to_state; +void +debug_print_transitions (struct GNUNET_REGEX_State *s); - /** - * State from which this transition origins. - */ - struct GNUNET_REGEX_State *from_state; -}; /** - * Set of states. + * Print information of the given state 's'. + * + * @param s state for which debug information should be printed. */ -struct GNUNET_REGEX_StateSet -{ - /** - * Array of states. - */ - struct GNUNET_REGEX_State **states; - - /** - * Length of the 'states' array. - */ - unsigned int len; -}; - -static void +void debug_print_state (struct GNUNET_REGEX_State *s) { char *proof; @@ -288,23 +112,34 @@ debug_print_state (struct GNUNET_REGEX_State *s) "State %i: %s marked: %i accepting: %i scc_id: %i transitions: %i proof: %s\n", s->id, s->name, s->marked, s->accepting, s->scc_id, s->transition_count, proof); + + GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transitions:\n"); + debug_print_transitions (s); } -static void -debug_print_states (struct GNUNET_REGEX_StateSet *sset) + +/** + * Print debug information for all states contained in the automaton 'a'. + * + * @param a automaton for which debug information of it's states should be printed. + */ +void +debug_print_states (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; - int i; - for (i = 0; i < sset->len; i++) - { - s = sset->states[i]; + for (s = a->states_head; NULL != s; s = s->next) debug_print_state (s); - } } -static void -debug_print_transition (struct Transition *t) + +/** + * Print debug information for given transition 't'. + * + * @param t transition for which to print debug info. + */ +void +debug_print_transition (struct GNUNET_REGEX_Transition *t) { char *to_state; char *from_state; @@ -332,104 +167,16 @@ debug_print_transition (struct Transition *t) t->id, from_state, label, to_state); } -static void + +void debug_print_transitions (struct GNUNET_REGEX_State *s) { - struct Transition *t; + struct GNUNET_REGEX_Transition *t; for (t = s->transitions_head; NULL != t; t = t->next) debug_print_transition (t); } -/** - * Recursive function doing DFS with 'v' as a start, detecting all SCCs inside - * the subgraph reachable from 'v'. Used with scc_tarjan function to detect all - * SCCs inside an automaton. - * - * @param ctx context - * @param v start vertex - * @param index current index - * @param stack stack for saving all SCCs - * @param stack_size current size of the stack - */ -static void -scc_tarjan_strongconnect (struct GNUNET_REGEX_Context *ctx, - struct GNUNET_REGEX_State *v, int *index, - struct GNUNET_REGEX_State **stack, - unsigned int *stack_size) -{ - struct GNUNET_REGEX_State *w; - struct Transition *t; - - v->index = *index; - v->lowlink = *index; - (*index)++; - stack[(*stack_size)++] = v; - v->contained = 1; - - for (t = v->transitions_head; NULL != t; t = t->next) - { - w = t->to_state; - if (NULL != w && w->index < 0) - { - scc_tarjan_strongconnect (ctx, w, index, stack, stack_size); - v->lowlink = (v->lowlink > w->lowlink) ? w->lowlink : v->lowlink; - } - else if (0 != w->contained) - v->lowlink = (v->lowlink > w->index) ? w->index : v->lowlink; - } - - if (v->lowlink == v->index) - { - w = stack[--(*stack_size)]; - w->contained = 0; - - if (v != w) - { - ctx->scc_id++; - while (v != w) - { - w->scc_id = ctx->scc_id; - w = stack[--(*stack_size)]; - w->contained = 0; - } - w->scc_id = ctx->scc_id; - } - } -} - -/** - * Detect all SCCs (Strongly Connected Components) inside the given automaton. - * SCCs will be marked using the scc_id on each state. - * - * @param ctx context - * @param a automaton - */ -static void -scc_tarjan (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *a) -{ - unsigned int i; - int index; - struct GNUNET_REGEX_State *v; - struct GNUNET_REGEX_State *stack[a->state_count]; - unsigned int stack_size; - - for (v = a->states_head; NULL != v; v = v->next) - { - v->contained = 0; - v->index = -1; - v->lowlink = -1; - } - - stack_size = 0; - index = 0; - - for (i = 0, v = a->states_head; NULL != v; v = v->next) - { - if (v->index < 0) - scc_tarjan_strongconnect (ctx, v, &index, stack, &stack_size); - } -} /** * Adds a transition from one state to another on 'label'. Does not add @@ -446,7 +193,8 @@ state_add_transition (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_State *to_state) { int is_dup; - struct Transition *t; + struct GNUNET_REGEX_Transition *t; + struct GNUNET_REGEX_Transition *oth; if (NULL == from_state) { @@ -466,10 +214,17 @@ state_add_transition (struct GNUNET_REGEX_Context *ctx, } } - if (is_dup) + if (GNUNET_YES == is_dup) return; - t = GNUNET_malloc (sizeof (struct Transition)); + // sort transitions by label + for (oth = from_state->transitions_head; NULL != oth; oth = oth->next) + { + if (oth->label > label) + break; + } + + t = GNUNET_malloc (sizeof (struct GNUNET_REGEX_Transition)); t->id = ctx->transition_id++; t->label = label; t->to_state = to_state; @@ -477,10 +232,34 @@ state_add_transition (struct GNUNET_REGEX_Context *ctx, // Add outgoing transition to 'from_state' from_state->transition_count++; - GNUNET_CONTAINER_DLL_insert (from_state->transitions_head, - from_state->transitions_tail, t); + GNUNET_CONTAINER_DLL_insert_before (from_state->transitions_head, + from_state->transitions_tail, oth, t); +} + + +/** + * Remove a 'transition' from 'state'. + * + * @param state state from which the to-be-removed transition originates. + * @param transition transition that should be removed from state 'state'. + */ +static void +state_remove_transition (struct GNUNET_REGEX_State *state, + struct GNUNET_REGEX_Transition *transition) +{ + if (NULL == state || NULL == transition) + return; + + if (transition->from_state != state) + return; + + state->transition_count--; + GNUNET_CONTAINER_DLL_remove (state->transitions_head, state->transitions_tail, + transition); + GNUNET_free (transition); } + /** * Compare two states. Used for sorting. * @@ -503,85 +282,20 @@ state_compare (const void *a, const void *b) return (*s1)->id - (*s2)->id; } -/** - * Create a proof for the given state. Intended to be used as a parameter for - * automaton_traverse() function. - * - * @param cls closure - * @param s state - */ -void -state_create_proof (void *cls, struct GNUNET_REGEX_State *s) -{ - struct Transition *inc_t; - int i; - char *proof = NULL; - char *stars = NULL; - char *tmp = NULL; - - for (i = 0; i < s->incoming_transition_count; i++) - { - inc_t = s->incoming_transitions[i]; - - if (NULL == inc_t) - continue; - - GNUNET_assert (inc_t->label != 0 && inc_t->from_state != NULL); - - if (inc_t->from_state == inc_t->to_state) - GNUNET_asprintf (&stars, "%c*", inc_t->label); - else - { - if (NULL != inc_t->from_state->proof) - GNUNET_asprintf (&tmp, "%s%c", inc_t->from_state->proof, inc_t->label); - else - GNUNET_asprintf (&tmp, "%c", inc_t->label); - } - - if (i > 0 && NULL != tmp && NULL != proof) - GNUNET_asprintf (&proof, "%s|%s", proof, tmp); - else if (NULL != tmp) - proof = GNUNET_strdup (tmp); - - if (NULL != tmp) - { - GNUNET_free (tmp); - tmp = NULL; - } - } - - if (NULL != s->proof) - GNUNET_free (s->proof); - - if (s->incoming_transition_count > 1) - { - if (NULL != stars) - { - GNUNET_asprintf (&s->proof, "(%s)%s", proof, stars); - GNUNET_free (stars); - } - else if (NULL != proof) - GNUNET_asprintf (&s->proof, "(%s)", proof); - - if (NULL != proof) - GNUNET_free (proof); - } - else - s->proof = proof; -} /** * Get all edges leaving state 's'. * * @param s state. - * @param edges all edges leaving 's'. + * @param edges all edges leaving 's', expected to be allocated and have enough + * space for s->transitions_count elements. * * @return number of edges. */ static unsigned int state_get_edges (struct GNUNET_REGEX_State *s, struct GNUNET_REGEX_Edge *edges) { - struct Transition *t; + struct GNUNET_REGEX_Transition *t; unsigned int count; if (NULL == s) @@ -601,6 +315,7 @@ state_get_edges (struct GNUNET_REGEX_State *s, struct GNUNET_REGEX_Edge *edges) return count; } + /** * Compare to state sets by comparing the id's of the states that are contained * in each set. Both sets are expected to be sorted by id! @@ -617,7 +332,7 @@ state_set_compare (struct GNUNET_REGEX_StateSet *sset1, struct GNUNET_REGEX_StateSet *sset2) { int result; - int i; + unsigned int i; if (NULL == sset1 || NULL == sset2) return 1; @@ -634,6 +349,7 @@ state_set_compare (struct GNUNET_REGEX_StateSet *sset1, return result; } + /** * Clears the given StateSet 'set' * @@ -644,12 +360,12 @@ state_set_clear (struct GNUNET_REGEX_StateSet *set) { if (NULL != set) { - if (NULL != set->states) - GNUNET_free (set->states); + GNUNET_free_non_null (set->states); GNUNET_free (set); } } + /** * Clears an automaton fragment. Does not destroy the states inside the * automaton. @@ -670,6 +386,7 @@ automaton_fragment_clear (struct GNUNET_REGEX_Automaton *a) GNUNET_free (a); } + /** * Frees the memory used by State 's' * @@ -678,14 +395,14 @@ automaton_fragment_clear (struct GNUNET_REGEX_Automaton *a) static void automaton_destroy_state (struct GNUNET_REGEX_State *s) { - struct Transition *t; - struct Transition *next_t; + struct GNUNET_REGEX_Transition *t; + struct GNUNET_REGEX_Transition *next_t; if (NULL == s) return; - if (NULL != s->name) - GNUNET_free (s->name); + GNUNET_free_non_null (s->name); + GNUNET_free_non_null (s->proof); for (t = s->transitions_head; NULL != t; t = next_t) { @@ -694,16 +411,12 @@ automaton_destroy_state (struct GNUNET_REGEX_State *s) GNUNET_free (t); } - if (s->incoming_transition_count > 0 && NULL != s->incoming_transitions) - { - GNUNET_free (s->incoming_transitions); - } - state_set_clear (s->nfa_set); GNUNET_free (s); } + /** * Remove a state from the given automaton 'a'. Always use this function when * altering the states of an automaton. Will also remove all transitions leading @@ -718,7 +431,7 @@ automaton_remove_state (struct GNUNET_REGEX_Automaton *a, { struct GNUNET_REGEX_State *ss; struct GNUNET_REGEX_State *s_check; - struct Transition *t_check; + struct GNUNET_REGEX_Transition *t_check; if (NULL == a || NULL == s) return; @@ -746,6 +459,7 @@ automaton_remove_state (struct GNUNET_REGEX_Automaton *a, automaton_destroy_state (ss); } + /** * Merge two states into one. Will merge 's1' and 's2' into 's1' and destroy * 's2'. @@ -762,144 +476,808 @@ automaton_merge_states (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_State *s2) { struct GNUNET_REGEX_State *s_check; - struct Transition *t_check; + struct GNUNET_REGEX_Transition *t_check; + struct GNUNET_REGEX_Transition *t; + struct GNUNET_REGEX_Transition *t_next; char *new_name; - int i; - struct Transition *inc_t; + int is_dup; GNUNET_assert (NULL != ctx && NULL != a && NULL != s1 && NULL != s2); if (s1 == s2) return; - // 1. Make all transitions pointing to s2 point to s1 + // 1. Make all transitions pointing to s2 point to s1, unless this transition + // does not already exists, if it already exists remove transition. for (s_check = a->states_head; NULL != s_check; s_check = s_check->next) { - for (t_check = s_check->transitions_head; NULL != t_check; - t_check = t_check->next) + for (t_check = s_check->transitions_head; NULL != t_check; t_check = t_next) { + t_next = t_check->next; + if (s2 == t_check->to_state) - t_check->to_state = s1; + { + is_dup = GNUNET_NO; + for (t = t_check->from_state->transitions_head; NULL != t; t = t->next) + { + if (t->to_state == s1 && t_check->label == t->label) + is_dup = GNUNET_YES; + } + if (GNUNET_NO == is_dup) + t_check->to_state = s1; + else + state_remove_transition (t_check->from_state, t_check); + } } } - // 2. Remove all transitions coming from s2 - for (s_check = a->states_head; NULL != s_check; s_check = s_check->next) + // 2. Add all transitions from s2 to sX to s1 + for (t_check = s2->transitions_head; NULL != t_check; t_check = t_check->next) + { + if (t_check->to_state != s1) + state_add_transition (ctx, s1, t_check->label, t_check->to_state); + } + + // 3. Rename s1 to {s1,s2} + new_name = s1->name; + GNUNET_asprintf (&s1->name, "{%s,%s}", new_name, s2->name); + GNUNET_free (new_name); + + // remove state + GNUNET_CONTAINER_DLL_remove (a->states_head, a->states_tail, s2); + a->state_count--; + automaton_destroy_state (s2); +} + + +/** + * Add a state to the automaton 'a', always use this function to alter the + * states DLL of the automaton. + * + * @param a automaton to add the state to + * @param s state that should be added + */ +static void +automaton_add_state (struct GNUNET_REGEX_Automaton *a, + struct GNUNET_REGEX_State *s) +{ + GNUNET_CONTAINER_DLL_insert (a->states_head, a->states_tail, s); + a->state_count++; +} + + +/** + * Depth-first traversal of all states that are reachable from state 's'. Expects the states to + * be unmarked (s->marked == GNUNET_NO). Performs 'action' on each visited + * state. + * + * @param s start state. + * @param count current count of the state. + * @param action action to be performed on each state. + * @param action_cls closure for action + */ +static void +automaton_state_traverse (struct GNUNET_REGEX_State *s, unsigned int *count, + GNUNET_REGEX_traverse_action action, void *action_cls) +{ + struct GNUNET_REGEX_Transition *t; + + if (GNUNET_NO != s->marked) + return; + s->marked = GNUNET_YES; + if (NULL != action) + action (action_cls, *count, s); + (*count)++; + for (t = s->transitions_head; NULL != t; t = t->next) + automaton_state_traverse (t->to_state, count, action, action_cls); +} + + +/** + * Traverses the given automaton from it's start state, visiting all reachable + * states and calling 'action' on each one of them. + * + * @param a automaton. + * @param action action to be performed on each state. + * @param action_cls closure for action + */ +void +GNUNET_REGEX_automaton_traverse (struct GNUNET_REGEX_Automaton *a, + GNUNET_REGEX_traverse_action action, + void *action_cls) +{ + unsigned int count; + struct GNUNET_REGEX_State *s; + + for (s = a->states_head; NULL != s; s = s->next) + s->marked = GNUNET_NO; + count = 0; + automaton_state_traverse (a->start, &count, action, action_cls); +} + + +/** + * Check if the given string 'str' needs parentheses around it when + * using it to generate a regex. + * + * @param str string + * + * @return GNUNET_YES if parentheses are needed, GNUNET_NO otherwise + */ +static int +needs_parentheses (const char *str) +{ + size_t slen; + const char *op; + const char *cl; + const char *pos; + unsigned int cnt; + + if ((NULL == str) || ((slen = strlen (str)) < 2)) + return GNUNET_NO; + + if ('(' != str[0]) + return GNUNET_YES; + cnt = 1; + pos = &str[1]; + while (cnt > 0) + { + cl = strchr (pos, ')'); + if (NULL == cl) + { + GNUNET_break (0); + return GNUNET_YES; + } + op = strchr (pos, '('); + if ((NULL != op) && (op < cl)) + { + cnt++; + pos = op + 1; + continue; + } + /* got ')' first */ + cnt--; + pos = cl + 1; + } + return (*pos == '\0') ? GNUNET_NO : GNUNET_YES; +} + + +/** + * Remove parentheses surrounding string 'str'. + * Example: "(a)" becomes "a", "(a|b)|(a|c)" stays the same. + * You need to GNUNET_free the returned string. + * + * @param str string, free'd or re-used by this function, can be NULL + * + * @return string without surrounding parentheses, string 'str' if no preceding + * epsilon could be found, NULL if 'str' was NULL + */ +static char * +remove_parentheses (char *str) +{ + size_t slen; + const char *pos; + + if ((NULL == str) || ('(' != str[0]) || + (str[(slen = strlen (str)) - 1] != ')')) + return str; + + pos = strchr (&str[1], ')'); + if (pos == &str[slen - 1]) + { + memmove (str, &str[1], slen - 2); + str[slen - 2] = '\0'; + } + return str; +} + + +/** + * Check if the string 'str' starts with an epsilon (empty string). + * Example: "(|a)" is starting with an epsilon. + * + * @param str string to test + * + * @return 0 if str has no epsilon, 1 if str starts with '(|' and ends with ')' + */ +static int +has_epsilon (const char *str) +{ + return (NULL != str) && ('(' == str[0]) && ('|' == str[1]) && + (')' == str[strlen (str) - 1]); +} + + +/** + * Remove an epsilon from the string str. Where epsilon is an empty string + * Example: str = "(|a|b|c)", result: "a|b|c" + * The returned string needs to be freed. + * + * @param str string + * + * @return string without preceding epsilon, string 'str' if no preceding epsilon + * could be found, NULL if 'str' was NULL + */ +static char * +remove_epsilon (const char *str) +{ + size_t len; + + if (NULL == str) + return NULL; + if (('(' == str[0]) && ('|' == str[1])) + { + len = strlen (str); + if (')' == str[len - 1]) + return GNUNET_strndup (&str[2], len - 3); + } + return GNUNET_strdup (str); +} + + +/** + * Compare 'str1', starting from position 'k', with whole 'str2' + * + * @param str1 first string to compare, starting from position 'k' + * @param str2 second string for comparison + * @param k starting position in 'str1' + * + * @return -1 if any of the strings is NULL, 0 if equal, non 0 otherwise + */ +static int +strkcmp (const char *str1, const char *str2, size_t k) +{ + if ((NULL == str1) || (NULL == str2) || (strlen (str1) < k)) + return -1; + return strcmp (&str1[k], str2); +} + + +/** + * Compare two strings for equality. If either is NULL (or if both are + * NULL), they are not equal. + * + * @param str1 first string for comparison. + * @param str2 second string for comparison. + * + * @return 0 if the strings are the same, 1 or -1 if not + */ +static int +nullstrcmp (const char *str1, const char *str2) +{ + if ((NULL == str1) || (NULL == str2)) + return -1; + return strcmp (str1, str2); +} + + +/** + * Helper function used as 'action' in 'GNUNET_REGEX_automaton_traverse' function to create + * the depth-first numbering of the states. + * + * @param cls states array. + * @param count current state counter. + * @param s current state. + */ +static void +number_states (void *cls, unsigned int count, struct GNUNET_REGEX_State *s) +{ + struct GNUNET_REGEX_State **states = cls; + + s->proof_id = count; + if (NULL != states) + states[count] = s; +} + + +/** + * Construct the regular expression given the inductive step, + * $R^{(k)}_{ij} = R^{(k-1)}_{ij} | R^{(k-1)}_{ik} ( R^{(k-1)}_{kk} )^* + * R^{(k-1)}_{kj}, and simplify the resulting expression saved in R_cur_ij. + * + * @param R_last_ij value of $R^{(k-1)_{ij}. + * @param R_last_ik value of $R^{(k-1)_{ik}. + * @param R_last_kk value of $R^{(k-1)_{kk}. + * @param R_last_kj value of $R^{(k-1)_{kj}. + * @param R_cur_ij result for this inductive step is saved in R_cur_ij, R_cur_ij + * is expected to be NULL when called! + */ +static void +automaton_create_proofs_simplify (char *R_last_ij, char *R_last_ik, + char *R_last_kk, char *R_last_kj, + char **R_cur_ij) +{ + char *R_cur_l; + char *R_cur_r; + char *temp_a; + char *temp_b; + char *R_temp_ij; + char *R_temp_ik; + char *R_temp_kj; + char *R_temp_kk; + + int eps_check; + int ij_ik_cmp; + int ij_kj_cmp; + + int ik_kk_cmp; + int kk_kj_cmp; + int clean_ik_kk_cmp; + int clean_kk_kj_cmp; + unsigned int cnt; + + size_t length; + size_t length_l; + size_t length_r; + + GNUNET_assert (NULL == *R_cur_ij && NULL != R_cur_ij); + + // $R^{(k)}_{ij} = R^{(k-1)}_{ij} | R^{(k-1)}_{ik} ( R^{(k-1)}_{kk} )^* R^{(k-1)}_{kj} + // R_last == R^{(k-1)}, R_cur == R^{(k)} + // R_cur_ij = R_cur_l | R_cur_r + // R_cur_l == R^{(k-1)}_{ij} + // R_cur_r == R^{(k-1)}_{ik} ( R^{(k-1)}_{kk} )^* R^{(k-1)}_{kj} + + if ((NULL == R_last_ij) && ((NULL == R_last_ik) || (NULL == R_last_kk) || /* technically cannot happen, but looks saner */ + (NULL == R_last_kj))) + { + /* R^{(k)}_{ij} = N | N */ + *R_cur_ij = NULL; + return; + } + + if ((NULL == R_last_ik) || (NULL == R_last_kk) || /* technically cannot happen, but looks saner */ + (NULL == R_last_kj)) + { + /* R^{(k)}_{ij} = R^{(k-1)}_{ij} | N */ + *R_cur_ij = GNUNET_strdup (R_last_ij); + return; + } + + // $R^{(k)}_{ij} = N | R^{(k-1)}_{ik} ( R^{(k-1)}_{kk} )^* R^{(k-1)}_{kj} OR + // $R^{(k)}_{ij} = R^{(k-1)}_{ij} | R^{(k-1)}_{ik} ( R^{(k-1)}_{kk} )^* R^{(k-1)}_{kj} + + R_cur_r = NULL; + R_cur_l = NULL; + + // cache results from strcmp, we might need these many times + ij_kj_cmp = nullstrcmp (R_last_ij, R_last_kj); + ij_ik_cmp = nullstrcmp (R_last_ij, R_last_ik); + ik_kk_cmp = nullstrcmp (R_last_ik, R_last_kk); + kk_kj_cmp = nullstrcmp (R_last_kk, R_last_kj); + + // Assign R_temp_(ik|kk|kj) to R_last[][] and remove epsilon as well + // as parentheses, so we can better compare the contents + R_temp_ik = remove_parentheses (remove_epsilon (R_last_ik)); + R_temp_kk = remove_parentheses (remove_epsilon (R_last_kk)); + R_temp_kj = remove_parentheses (remove_epsilon (R_last_kj)); + + clean_ik_kk_cmp = nullstrcmp (R_last_ik, R_temp_kk); + clean_kk_kj_cmp = nullstrcmp (R_temp_kk, R_last_kj); + + // construct R_cur_l (and, if necessary R_cur_r) + if (NULL != R_last_ij) + { + // Assign R_temp_ij to R_last_ij and remove epsilon as well + // as parentheses, so we can better compare the contents + R_temp_ij = remove_parentheses (remove_epsilon (R_last_ij)); + + if (0 == strcmp (R_temp_ij, R_temp_ik) && 0 == strcmp (R_temp_ik, R_temp_kk) + && 0 == strcmp (R_temp_kk, R_temp_kj)) + { + if (0 == strlen (R_temp_ij)) + { + R_cur_r = GNUNET_strdup (""); + } + else if ((0 == strncmp (R_last_ij, "(|", 2)) || + (0 == strncmp (R_last_ik, "(|", 2) && + 0 == strncmp (R_last_kj, "(|", 2))) + { + // a|(e|a)a*(e|a) = a* + // a|(e|a)(e|a)*(e|a) = a* + // (e|a)|aa*a = a* + // (e|a)|aa*(e|a) = a* + // (e|a)|(e|a)a*a = a* + // (e|a)|(e|a)a*(e|a) = a* + // (e|a)|(e|a)(e|a)*(e|a) = a* + if (GNUNET_YES == needs_parentheses (R_temp_ij)) + GNUNET_asprintf (&R_cur_r, "(%s)*", R_temp_ij); + else + GNUNET_asprintf (&R_cur_r, "%s*", R_temp_ij); + } + else + { + // a|aa*a = a+ + // a|(e|a)a*a = a+ + // a|aa*(e|a) = a+ + // a|(e|a)(e|a)*a = a+ + // a|a(e|a)*(e|a) = a+ + if (GNUNET_YES == needs_parentheses (R_temp_ij)) + GNUNET_asprintf (&R_cur_r, "(%s)+", R_temp_ij); + else + GNUNET_asprintf (&R_cur_r, "%s+", R_temp_ij); + } + } + else if (0 == ij_ik_cmp && 0 == clean_kk_kj_cmp && 0 != clean_ik_kk_cmp) + { + // a|ab*b = ab* + if (strlen (R_last_kk) < 1) + R_cur_r = GNUNET_strdup (R_last_ij); + else if (GNUNET_YES == needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "%s(%s)*", R_last_ij, R_temp_kk); + else + GNUNET_asprintf (&R_cur_r, "%s%s*", R_last_ij, R_last_kk); + + R_cur_l = NULL; + } + else if (0 == ij_kj_cmp && 0 == clean_ik_kk_cmp && 0 != clean_kk_kj_cmp) + { + // a|bb*a = b*a + if (strlen (R_last_kk) < 1) + R_cur_r = GNUNET_strdup (R_last_kj); + else if (GNUNET_YES == needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)*%s", R_temp_kk, R_last_kj); + else + GNUNET_asprintf (&R_cur_r, "%s*%s", R_temp_kk, R_last_kj); + + R_cur_l = NULL; + } + else if (0 == ij_ik_cmp && 0 == kk_kj_cmp && !has_epsilon (R_last_ij) && + has_epsilon (R_last_kk)) + { + // a|a(e|b)*(e|b) = a|ab* = a|a|ab|abb|abbb|... = ab* + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "%s(%s)*", R_last_ij, R_temp_kk); + else + GNUNET_asprintf (&R_cur_r, "%s%s*", R_last_ij, R_temp_kk); + + R_cur_l = NULL; + } + else if (0 == ij_kj_cmp && 0 == ik_kk_cmp && !has_epsilon (R_last_ij) && + has_epsilon (R_last_kk)) + { + // a|(e|b)(e|b)*a = a|b*a = a|a|ba|bba|bbba|... = b*a + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)*%s", R_temp_kk, R_last_ij); + else + GNUNET_asprintf (&R_cur_r, "%s*%s", R_temp_kk, R_last_ij); + + R_cur_l = NULL; + } + else + { + temp_a = (NULL == R_last_ij) ? NULL : GNUNET_strdup (R_last_ij); + temp_a = remove_parentheses (temp_a); + R_cur_l = temp_a; + } + + GNUNET_free_non_null (R_temp_ij); + } + else { - for (i = 0; i < s_check->incoming_transition_count; i++) + // we have no left side + R_cur_l = NULL; + } + + // construct R_cur_r, if not already constructed + if (NULL == R_cur_r) + { + length = strlen (R_temp_kk) - strlen (R_last_ik); + + // a(ba)*bx = (ab)+x + if (length > 0 && NULL != R_last_kk && 0 < strlen (R_last_kk) && + NULL != R_last_kj && 0 < strlen (R_last_kj) && NULL != R_last_ik && + 0 < strlen (R_last_ik) && 0 == strkcmp (R_temp_kk, R_last_ik, length) && + 0 == strncmp (R_temp_kk, R_last_kj, length)) { - inc_t = s_check->incoming_transitions[i]; + temp_a = GNUNET_malloc (length + 1); + temp_b = GNUNET_malloc ((strlen (R_last_kj) - length) + 1); - if (inc_t != 0 && inc_t->from_state == s2) + length_l = 0; + length_r = 0; + + for (cnt = 0; cnt < strlen (R_last_kj); cnt++) + { + if (cnt < length) + { + temp_a[length_l] = R_last_kj[cnt]; + length_l++; + } + else + { + temp_b[length_r] = R_last_kj[cnt]; + length_r++; + } + } + temp_a[length_l] = '\0'; + temp_b[length_r] = '\0'; + + // e|(ab)+ = (ab)* + if (NULL != R_cur_l && 0 == strlen (R_cur_l) && 0 == strlen (temp_b)) + { + GNUNET_asprintf (&R_cur_r, "(%s%s)*", R_last_ik, temp_a); + GNUNET_free (R_cur_l); + R_cur_l = NULL; + } + else + { + GNUNET_asprintf (&R_cur_r, "(%s%s)+%s", R_last_ik, temp_a, temp_b); + } + GNUNET_free (temp_a); + GNUNET_free (temp_b); + } + else if (0 == strcmp (R_temp_ik, R_temp_kk) && + 0 == strcmp (R_temp_kk, R_temp_kj)) + { + // (e|a)a*(e|a) = a* + // (e|a)(e|a)*(e|a) = a* + if (has_epsilon (R_last_ik) && has_epsilon (R_last_kj)) + { + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)*", R_temp_kk); + else + GNUNET_asprintf (&R_cur_r, "%s*", R_temp_kk); + } + // aa*a = a+a + else if (0 == clean_ik_kk_cmp && 0 == clean_kk_kj_cmp && + !has_epsilon (R_last_ik)) + { + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)+%s", R_temp_kk, R_temp_kk); + else + GNUNET_asprintf (&R_cur_r, "(%s)+%s", R_temp_kk, R_temp_kk); + } + // (e|a)a*a = a+ + // aa*(e|a) = a+ + // a(e|a)*(e|a) = a+ + // (e|a)a*a = a+ + else + { + eps_check = + (has_epsilon (R_last_ik) + has_epsilon (R_last_kk) + + has_epsilon (R_last_kj)); + + if (eps_check == 1) + { + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)+", R_temp_kk); + else + GNUNET_asprintf (&R_cur_r, "%s+", R_temp_kk); + } + } + } + // aa*b = a+b + // (e|a)(e|a)*b = a*b + else if (0 == strcmp (R_temp_ik, R_temp_kk)) + { + if (has_epsilon (R_last_ik)) + { + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)*%s", R_temp_kk, R_last_kj); + else + GNUNET_asprintf (&R_cur_r, "%s*%s", R_temp_kk, R_last_kj); + } + else + { + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)+%s", R_temp_kk, R_last_kj); + else + GNUNET_asprintf (&R_cur_r, "%s+%s", R_temp_kk, R_last_kj); + } + } + // ba*a = ba+ + // b(e|a)*(e|a) = ba* + else if (0 == strcmp (R_temp_kk, R_temp_kj)) + { + if (has_epsilon (R_last_kj)) + { + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "%s(%s)*", R_last_ik, R_temp_kk); + else + GNUNET_asprintf (&R_cur_r, "%s%s*", R_last_ik, R_temp_kk); + } + else { - s_check->incoming_transitions[i] = NULL; + if (needs_parentheses (R_temp_kk)) + GNUNET_asprintf (&R_cur_r, "(%s)+%s", R_last_ik, R_temp_kk); + else + GNUNET_asprintf (&R_cur_r, "%s+%s", R_last_ik, R_temp_kk); + } + } + else + { + if (strlen (R_temp_kk) > 0) + { + if (needs_parentheses (R_temp_kk)) + { + GNUNET_asprintf (&R_cur_r, "%s(%s)*%s", R_last_ik, R_temp_kk, + R_last_kj); + } + else + { + GNUNET_asprintf (&R_cur_r, "%s%s*%s", R_last_ik, R_temp_kk, + R_last_kj); + } + } + else + { + GNUNET_asprintf (&R_cur_r, "%s%s", R_last_ik, R_last_kj); } } } - // 3. Add all transitions from s2 to sX to s1 - for (t_check = s2->transitions_head; NULL != t_check; t_check = t_check->next) + GNUNET_free_non_null (R_temp_ik); + GNUNET_free_non_null (R_temp_kk); + GNUNET_free_non_null (R_temp_kj); + + if (NULL == R_cur_l && NULL == R_cur_r) { - if (t_check->to_state != s1) - state_add_transition (ctx, s1, t_check->label, t_check->to_state); + *R_cur_ij = NULL; + return; + } + + if (NULL != R_cur_l && NULL == R_cur_r) + { + *R_cur_ij = R_cur_l; + return; + } + + if (NULL == R_cur_l && NULL != R_cur_r) + { + *R_cur_ij = R_cur_r; + return; } - // 4. Rename s1 to {s1,s2} - new_name = GNUNET_strdup (s1->name); - if (NULL != s1->name) + if (0 == nullstrcmp (R_cur_l, R_cur_r)) { - GNUNET_free (s1->name); - s1->name = NULL; + *R_cur_ij = R_cur_l; + GNUNET_free (R_cur_r); + return; } - GNUNET_asprintf (&s1->name, "{%s,%s}", new_name, s2->name); - GNUNET_free (new_name); - // remove state - GNUNET_CONTAINER_DLL_remove (a->states_head, a->states_tail, s2); - a->state_count--; - automaton_destroy_state (s2); -} + GNUNET_asprintf (R_cur_ij, "(%s|%s)", R_cur_l, R_cur_r); -/** - * Add a state to the automaton 'a', always use this function to alter the - * states DLL of the automaton. - * - * @param a automaton to add the state to - * @param s state that should be added - */ -static void -automaton_add_state (struct GNUNET_REGEX_Automaton *a, - struct GNUNET_REGEX_State *s) -{ - GNUNET_CONTAINER_DLL_insert (a->states_head, a->states_tail, s); - a->state_count++; + GNUNET_free (R_cur_l); + GNUNET_free (R_cur_r); } -/** - * Function that is called with each state, when traversing an automaton. - * - * @param cls closure - * @param s state - */ -typedef void (*GNUNET_REGEX_traverse_action) (void *cls, - struct GNUNET_REGEX_State * s); /** - * Traverses all states that are reachable from state 's'. Expects the states to - * be unmarked (s->marked == GNUNET_NO). Performs 'action' on each visited - * state. + * create proofs for all states in the given automaton. Implementation of the + * algorithm descriped in chapter 3.2.1 of "Automata Theory, Languages, and + * Computation 3rd Edition" by Hopcroft, Motwani and Ullman. * - * @param cls closure. - * @param s start state. - * @param action action to be performed on each state. + * @param a automaton. */ static void -automaton_state_traverse (void *cls, struct GNUNET_REGEX_State *s, - GNUNET_REGEX_traverse_action action) +automaton_create_proofs (struct GNUNET_REGEX_Automaton *a) { - struct Transition *t; - int i; + unsigned int n = a->state_count; + struct GNUNET_REGEX_State *states[n]; + char *R_last[n][n]; + char *R_cur[n][n]; + char *temp; + struct GNUNET_REGEX_Transition *t; + char *complete_regex; + unsigned int i; + unsigned int j; + unsigned int k; - if (GNUNET_NO == s->marked) - { - s->marked = GNUNET_YES; - // First make sure all incoming states have been traversed - for (i = 0; i < s->incoming_transition_count; i++) + /* create depth-first numbering of the states, initializes 'state' */ + GNUNET_REGEX_automaton_traverse (a, &number_states, states); + + /* Compute regular expressions of length "1" between each pair of states */ + for (i = 0; i < n; i++) + { + for (j = 0; j < n; j++) + { + R_cur[i][j] = NULL; + R_last[i][j] = NULL; + } + for (t = states[i]->transitions_head; NULL != t; t = t->next) + { + j = t->to_state->proof_id; + if (NULL == R_last[i][j]) + GNUNET_asprintf (&R_last[i][j], "%c", t->label); + else + { + temp = R_last[i][j]; + GNUNET_asprintf (&R_last[i][j], "%s|%c", R_last[i][j], t->label); + GNUNET_free (temp); + } + } + if (NULL == R_last[i][i]) + GNUNET_asprintf (&R_last[i][i], ""); + else { - if (NULL != s->incoming_transitions[i]) - automaton_state_traverse (cls, s->incoming_transitions[i]->from_state, - action); + temp = R_last[i][i]; + GNUNET_asprintf (&R_last[i][i], "(|%s)", R_last[i][i]); + GNUNET_free (temp); } + } + for (i = 0; i < n; i++) + for (j = 0; j < n; j++) + if (needs_parentheses (R_last[i][j])) + { + temp = R_last[i][j]; + GNUNET_asprintf (&R_last[i][j], "(%s)", R_last[i][j]); + GNUNET_free (temp); + } - if (action > 0) - action (cls, s); + /* Compute regular expressions of length "k" between each pair of states per induction */ + for (k = 0; k < n; k++) + { + for (i = 0; i < n; i++) + { + for (j = 0; j < n; j++) + { + // Basis for the recursion: + // $R^{(k)}_{ij} = R^{(k-1)}_{ij} | R^{(k-1)}_{ik} ( R^{(k-1)}_{kk} )^* R^{(k-1)}_{kj} + // R_last == R^{(k-1)}, R_cur == R^{(k)} + + // Create R_cur[i][j] and simplify the expression + automaton_create_proofs_simplify (R_last[i][j], R_last[i][k], + R_last[k][k], R_last[k][j], + &R_cur[i][j]); + } + } - for (t = s->transitions_head; NULL != t; t = t->next) - automaton_state_traverse (cls, t->to_state, action); + // set R_last = R_cur + for (i = 0; i < n; i++) + { + for (j = 0; j < n; j++) + { + GNUNET_free_non_null (R_last[i][j]); + R_last[i][j] = R_cur[i][j]; + R_cur[i][j] = NULL; + } + } } -} -/** - * Traverses the given automaton from it's start state, visiting all reachable - * states and calling 'action' on each one of them. - * - * @param cls closure. - * @param a automaton. - * @param action action to be performed on each state. - */ -static void -automaton_traverse (void *cls, struct GNUNET_REGEX_Automaton *a, - GNUNET_REGEX_traverse_action action) -{ - struct GNUNET_REGEX_State *s; + // assign proofs and hashes + for (i = 0; i < n; i++) + { + if (NULL != R_last[a->start->proof_id][i]) + { + states[i]->proof = GNUNET_strdup (R_last[a->start->proof_id][i]); + GNUNET_CRYPTO_hash (states[i]->proof, strlen (states[i]->proof), + &states[i]->hash); + } + } - for (s = a->states_head; NULL != s; s = s->next) - s->marked = GNUNET_NO; + // complete regex for whole DFA: union of all pairs (start state/accepting state(s)). + complete_regex = NULL; + for (i = 0; i < n; i++) + { + if (states[i]->accepting) + { + if (NULL == complete_regex && 0 < strlen (R_last[a->start->proof_id][i])) + { + GNUNET_asprintf (&complete_regex, "%s", R_last[a->start->proof_id][i]); + } + else if (NULL != R_last[a->start->proof_id][i] && + 0 < strlen (R_last[a->start->proof_id][i])) + { + temp = complete_regex; + GNUNET_asprintf (&complete_regex, "%s|%s", complete_regex, + R_last[a->start->proof_id][i]); + GNUNET_free (temp); + } + } + } + a->canonical_regex = complete_regex; - automaton_state_traverse (cls, a->start, action); + // cleanup + for (i = 0; i < n; i++) + { + for (j = 0; j < n; j++) + GNUNET_free_non_null (R_last[i][j]); + } } + /** * Creates a new DFA state based on a set of NFA states. Needs to be freed using * automaton_destroy_state. @@ -917,10 +1295,8 @@ dfa_state_create (struct GNUNET_REGEX_Context *ctx, char *name; int len = 0; struct GNUNET_REGEX_State *cstate; - struct Transition *ctran; - int insert = 1; - struct Transition *t; - int i; + struct GNUNET_REGEX_Transition *ctran; + unsigned int i; s = GNUNET_malloc (sizeof (struct GNUNET_REGEX_State)); s->id = ctx->state_id++; @@ -967,21 +1343,7 @@ dfa_state_create (struct GNUNET_REGEX_Context *ctx, for (ctran = cstate->transitions_head; NULL != ctran; ctran = ctran->next) { if (0 != ctran->label) - { - insert = 1; - - for (t = s->transitions_head; NULL != t; t = t->next) - { - if (t->label == ctran->label) - { - insert = 0; - break; - } - } - - if (insert) - state_add_transition (ctx, s, ctran->label, NULL); - } + state_add_transition (ctx, s, ctran->label, NULL); } // If the nfa_states contain an accepting state, the new dfa state is also @@ -995,6 +1357,7 @@ dfa_state_create (struct GNUNET_REGEX_Context *ctx, return s; } + /** * Move from the given state 's' to the next state on transition 'label' * @@ -1006,7 +1369,7 @@ dfa_state_create (struct GNUNET_REGEX_Context *ctx, static struct GNUNET_REGEX_State * dfa_move (struct GNUNET_REGEX_State *s, const char label) { - struct Transition *t; + struct GNUNET_REGEX_Transition *t; struct GNUNET_REGEX_State *new_s; if (NULL == s) @@ -1026,6 +1389,7 @@ dfa_move (struct GNUNET_REGEX_State *s, const char label) return new_s; } + /** * Remove all unreachable states from DFA 'a'. Unreachable states are those * states that are not reachable from the starting state. @@ -1043,7 +1407,7 @@ dfa_remove_unreachable_states (struct GNUNET_REGEX_Automaton *a) s->marked = GNUNET_NO; // 2. traverse dfa from start state and mark all visited states - automaton_traverse (NULL, a, NULL); + GNUNET_REGEX_automaton_traverse (a, NULL, NULL); // 3. delete all states that were not visited for (s = a->states_head; NULL != s; s = s_next) @@ -1054,9 +1418,10 @@ dfa_remove_unreachable_states (struct GNUNET_REGEX_Automaton *a) } } + /** * Remove all dead states from the DFA 'a'. Dead states are those states that do - * not transition to any other state but themselfes. + * not transition to any other state but themselves. * * @param a DFA automaton */ @@ -1064,7 +1429,7 @@ static void dfa_remove_dead_states (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; - struct Transition *t; + struct GNUNET_REGEX_Transition *t; int dead; GNUNET_assert (DFA == a->type); @@ -1092,6 +1457,7 @@ dfa_remove_dead_states (struct GNUNET_REGEX_Automaton *a) } } + /** * Merge all non distinguishable states in the DFA 'a' * @@ -1102,16 +1468,16 @@ static void dfa_merge_nondistinguishable_states (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *a) { - int i; + unsigned int i; int table[a->state_count][a->state_count]; struct GNUNET_REGEX_State *s1; struct GNUNET_REGEX_State *s2; - struct Transition *t1; - struct Transition *t2; + struct GNUNET_REGEX_Transition *t1; + struct GNUNET_REGEX_Transition *t2; struct GNUNET_REGEX_State *s1_next; struct GNUNET_REGEX_State *s2_next; int change; - int num_equal_edges; + unsigned int num_equal_edges; for (i = 0, s1 = a->states_head; i < a->state_count && NULL != s1; i++, s1 = s1->next) @@ -1163,12 +1529,8 @@ dfa_merge_nondistinguishable_states (struct GNUNET_REGEX_Context *ctx, } } } - if (num_equal_edges == 0) - { - table[s1->marked][s2->marked] = -1; - } - else if (num_equal_edges != s1->transition_count || - num_equal_edges != s2->transition_count) + if (num_equal_edges != s1->transition_count || + num_equal_edges != s2->transition_count) { // Make sure ALL edges of possible equal states are the same table[s1->marked][s2->marked] = -2; @@ -1190,6 +1552,7 @@ dfa_merge_nondistinguishable_states (struct GNUNET_REGEX_Context *ctx, } } + /** * Minimize the given DFA 'a' by removing all unreachable states, removing all * dead states and merging all non distinguishable states @@ -1216,6 +1579,7 @@ dfa_minimize (struct GNUNET_REGEX_Context *ctx, dfa_merge_nondistinguishable_states (ctx, a); } + /** * Creates a new NFA fragment. Needs to be cleared using * automaton_fragment_clear. @@ -1237,7 +1601,7 @@ nfa_fragment_create (struct GNUNET_REGEX_State *start, n->start = NULL; n->end = NULL; - if (NULL == start && NULL == end) + if (NULL == start || NULL == end) return n; automaton_add_state (n, end); @@ -1249,6 +1613,7 @@ nfa_fragment_create (struct GNUNET_REGEX_State *start, return n; } + /** * Adds a list of states to the given automaton 'n'. * @@ -1286,6 +1651,7 @@ nfa_add_states (struct GNUNET_REGEX_Automaton *n, n->state_count++; } + /** * Creates a new NFA state. Needs to be freed using automaton_destroy_state. * @@ -1313,6 +1679,7 @@ nfa_state_create (struct GNUNET_REGEX_Context *ctx, int accepting) return s; } + /** * Calculates the NFA closure set for the given state. * @@ -1331,7 +1698,7 @@ nfa_closure_create (struct GNUNET_REGEX_Automaton *nfa, struct GNUNET_REGEX_StateSet *cls_check; struct GNUNET_REGEX_State *clsstate; struct GNUNET_REGEX_State *currentstate; - struct Transition *ctran; + struct GNUNET_REGEX_Transition *ctran; if (NULL == s) return NULL; @@ -1371,6 +1738,7 @@ nfa_closure_create (struct GNUNET_REGEX_Automaton *nfa, GNUNET_assert (0 == cls_check->len); GNUNET_free (cls_check); + // sort the states if (cls->len > 1) qsort (cls->states, cls->len, sizeof (struct GNUNET_REGEX_State *), state_compare); @@ -1378,6 +1746,7 @@ nfa_closure_create (struct GNUNET_REGEX_Automaton *nfa, return cls; } + /** * Calculates the closure set for the given set of states. * @@ -1395,10 +1764,10 @@ nfa_closure_set_create (struct GNUNET_REGEX_Automaton *nfa, struct GNUNET_REGEX_State *s; struct GNUNET_REGEX_StateSet *sset; struct GNUNET_REGEX_StateSet *cls; - int i; - int j; - int k; - int contains; + unsigned int i; + unsigned int j; + unsigned int k; + unsigned int contains; if (NULL == states) return NULL; @@ -1434,6 +1803,7 @@ nfa_closure_set_create (struct GNUNET_REGEX_Automaton *nfa, return cls; } + /** * Pops two NFA fragments (a, b) from the stack and concatenates them (ab) * @@ -1444,28 +1814,31 @@ nfa_add_concatenation (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; struct GNUNET_REGEX_Automaton *b; - struct GNUNET_REGEX_Automaton *new; + struct GNUNET_REGEX_Automaton *new_nfa; b = ctx->stack_tail; + GNUNET_assert (NULL != b); GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, b); a = ctx->stack_tail; + GNUNET_assert (NULL != a); GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); state_add_transition (ctx, a->end, 0, b->start); a->end->accepting = 0; b->end->accepting = 1; - new = nfa_fragment_create (NULL, NULL); - nfa_add_states (new, a->states_head, a->states_tail); - nfa_add_states (new, b->states_head, b->states_tail); - new->start = a->start; - new->end = b->end; + new_nfa = nfa_fragment_create (NULL, NULL); + nfa_add_states (new_nfa, a->states_head, a->states_tail); + nfa_add_states (new_nfa, b->states_head, b->states_tail); + new_nfa->start = a->start; + new_nfa->end = b->end; automaton_fragment_clear (a); automaton_fragment_clear (b); - GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); + GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new_nfa); } + /** * Pops a NFA fragment from the stack (a) and adds a new fragment (a*) * @@ -1475,12 +1848,11 @@ static void nfa_add_star_op (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; - struct GNUNET_REGEX_Automaton *new; + struct GNUNET_REGEX_Automaton *new_nfa; struct GNUNET_REGEX_State *start; struct GNUNET_REGEX_State *end; a = ctx->stack_tail; - GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); if (NULL == a) { @@ -1489,6 +1861,8 @@ nfa_add_star_op (struct GNUNET_REGEX_Context *ctx) return; } + GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); + start = nfa_state_create (ctx, 0); end = nfa_state_create (ctx, 1); @@ -1500,13 +1874,14 @@ nfa_add_star_op (struct GNUNET_REGEX_Context *ctx) a->end->accepting = 0; end->accepting = 1; - new = nfa_fragment_create (start, end); - nfa_add_states (new, a->states_head, a->states_tail); + new_nfa = nfa_fragment_create (start, end); + nfa_add_states (new_nfa, a->states_head, a->states_tail); automaton_fragment_clear (a); - GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); + GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new_nfa); } + /** * Pops an NFA fragment (a) from the stack and adds a new fragment (a+) * @@ -1525,6 +1900,7 @@ nfa_add_plus_op (struct GNUNET_REGEX_Context *ctx) GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, a); } + /** * Pops an NFA fragment (a) from the stack and adds a new fragment (a?) * @@ -1534,12 +1910,11 @@ static void nfa_add_question_op (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; - struct GNUNET_REGEX_Automaton *new; + struct GNUNET_REGEX_Automaton *new_nfa; struct GNUNET_REGEX_State *start; struct GNUNET_REGEX_State *end; a = ctx->stack_tail; - GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); if (NULL == a) { @@ -1548,6 +1923,8 @@ nfa_add_question_op (struct GNUNET_REGEX_Context *ctx) return; } + GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); + start = nfa_state_create (ctx, 0); end = nfa_state_create (ctx, 1); @@ -1557,13 +1934,14 @@ nfa_add_question_op (struct GNUNET_REGEX_Context *ctx) a->end->accepting = 0; - new = nfa_fragment_create (start, end); - nfa_add_states (new, a->states_head, a->states_tail); + new_nfa = nfa_fragment_create (start, end); + nfa_add_states (new_nfa, a->states_head, a->states_tail); automaton_fragment_clear (a); - GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); + GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new_nfa); } + /** * Pops two NFA fragments (a, b) from the stack and adds a new NFA fragment that * alternates between a and b (a|b) @@ -1575,13 +1953,15 @@ nfa_add_alternation (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; struct GNUNET_REGEX_Automaton *b; - struct GNUNET_REGEX_Automaton *new; + struct GNUNET_REGEX_Automaton *new_nfa; struct GNUNET_REGEX_State *start; struct GNUNET_REGEX_State *end; b = ctx->stack_tail; + GNUNET_assert (NULL != b); GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, b); a = ctx->stack_tail; + GNUNET_assert (NULL != a); GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); start = nfa_state_create (ctx, 0); @@ -1596,15 +1976,16 @@ nfa_add_alternation (struct GNUNET_REGEX_Context *ctx) b->end->accepting = 0; end->accepting = 1; - new = nfa_fragment_create (start, end); - nfa_add_states (new, a->states_head, a->states_tail); - nfa_add_states (new, b->states_head, b->states_tail); + new_nfa = nfa_fragment_create (start, end); + nfa_add_states (new_nfa, a->states_head, a->states_tail); + nfa_add_states (new_nfa, b->states_head, b->states_tail); automaton_fragment_clear (a); automaton_fragment_clear (b); - GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); + GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new_nfa); } + /** * Adds a new nfa fragment to the stack * @@ -1628,6 +2009,7 @@ nfa_add_label (struct GNUNET_REGEX_Context *ctx, const char lit) GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, n); } + /** * Initialize a new context * @@ -1643,11 +2025,11 @@ GNUNET_REGEX_context_init (struct GNUNET_REGEX_Context *ctx) } ctx->state_id = 0; ctx->transition_id = 0; - ctx->scc_id = 0; ctx->stack_head = NULL; ctx->stack_tail = NULL; } + /** * Construct an NFA by parsing the regex string of length 'len'. * @@ -1758,6 +2140,7 @@ GNUNET_REGEX_construct_nfa (const char *regex, const size_t len) case 92: /* escape: \ */ regexp++; count++; + /* fall through! */ default: if (atomcount > 1) { @@ -1779,8 +2162,7 @@ GNUNET_REGEX_construct_nfa (const char *regex, const size_t len) for (; altcount > 0; altcount--) nfa_add_alternation (&ctx); - if (NULL != p) - GNUNET_free (p); + GNUNET_free_non_null (p); nfa = ctx.stack_tail; GNUNET_CONTAINER_DLL_remove (ctx.stack_head, ctx.stack_tail, nfa); @@ -1791,23 +2173,30 @@ GNUNET_REGEX_construct_nfa (const char *regex, const size_t len) goto error; } + nfa->regex = GNUNET_strdup (regex); + + /* create depth-first numbering of the states for pretty printing */ + GNUNET_REGEX_automaton_traverse (nfa, &number_states, NULL); + return nfa; error: - GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not parse regex\n"); + GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not parse regex: %s\n", regex); if (NULL != error_msg) GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "%s\n", error_msg); - if (NULL != p) - GNUNET_free (p); - while (NULL != ctx.stack_tail) + + GNUNET_free_non_null (p); + + while (NULL != (nfa = ctx.stack_head)) { - GNUNET_REGEX_automaton_destroy (ctx.stack_tail); - GNUNET_CONTAINER_DLL_remove (ctx.stack_head, ctx.stack_tail, - ctx.stack_tail); + GNUNET_CONTAINER_DLL_remove (ctx.stack_head, ctx.stack_tail, nfa); + GNUNET_REGEX_automaton_destroy (nfa); } + return NULL; } + /** * Create DFA states based on given 'nfa' and starting with 'dfa_state'. * @@ -1823,7 +2212,7 @@ construct_dfa_states (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *dfa, struct GNUNET_REGEX_State *dfa_state) { - struct Transition *ctran; + struct GNUNET_REGEX_Transition *ctran; struct GNUNET_REGEX_State *state_iter; struct GNUNET_REGEX_State *new_dfa_state; struct GNUNET_REGEX_State *state_contains; @@ -1850,20 +2239,18 @@ construct_dfa_states (struct GNUNET_REGEX_Context *ctx, if (NULL == state_contains) { automaton_add_state (dfa, new_dfa_state); - construct_dfa_states (ctx, nfa, dfa, new_dfa_state); ctran->to_state = new_dfa_state; + construct_dfa_states (ctx, nfa, dfa, new_dfa_state); } else { ctran->to_state = state_contains; automaton_destroy_state (new_dfa_state); } - - GNUNET_array_append (ctran->to_state->incoming_transitions, - ctran->to_state->incoming_transition_count, ctran); } } + /** * Construct DFA for the given 'regex' of length 'len' * @@ -1894,6 +2281,7 @@ GNUNET_REGEX_construct_dfa (const char *regex, const size_t len) dfa = GNUNET_malloc (sizeof (struct GNUNET_REGEX_Automaton)); dfa->type = DFA; + dfa->regex = GNUNET_strdup (regex); // Create DFA start state from epsilon closure nfa_set = nfa_closure_create (nfa, nfa->start, 0); @@ -1907,16 +2295,13 @@ GNUNET_REGEX_construct_dfa (const char *regex, const size_t len) // Minimize DFA dfa_minimize (&ctx, dfa); - // Calculate SCCs - scc_tarjan (&ctx, dfa); - // Create proofs for all states - automaton_traverse (NULL, dfa, &state_create_proof); - + automaton_create_proofs (dfa); return dfa; } + /** * Free the memory allocated by constructing the GNUNET_REGEX_Automaton data * structure. @@ -1932,6 +2317,9 @@ GNUNET_REGEX_automaton_destroy (struct GNUNET_REGEX_Automaton *a) if (NULL == a) return; + GNUNET_free_non_null (a->regex); + GNUNET_free_non_null (a->canonical_regex); + for (s = a->states_head; NULL != s;) { next_state = s->next; @@ -1942,113 +2330,6 @@ GNUNET_REGEX_automaton_destroy (struct GNUNET_REGEX_Automaton *a) GNUNET_free (a); } -/** - * Save the given automaton as a GraphViz dot file - * - * @param a the automaton to be saved - * @param filename where to save the file - */ -void -GNUNET_REGEX_automaton_save_graph (struct GNUNET_REGEX_Automaton *a, - const char *filename) -{ - struct GNUNET_REGEX_State *s; - struct Transition *ctran; - char *s_acc = NULL; - char *s_tran = NULL; - char *start; - char *end; - FILE *p; - - if (NULL == a) - { - GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print NFA, was NULL!"); - return; - } - - if (NULL == filename || strlen (filename) < 1) - { - GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "No Filename given!"); - return; - } - - p = fopen (filename, "w"); - - if (NULL == p) - { - GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not open file for writing: %s", - filename); - return; - } - - start = "digraph G {\nrankdir=LR\n"; - fwrite (start, strlen (start), 1, p); - - for (s = a->states_head; NULL != s; s = s->next) - { - if (s->accepting) - { - GNUNET_asprintf (&s_acc, - "\"%s\" [shape=doublecircle, color=\"0.%i 0.8 0.95\"];\n", - s->name, s->scc_id); - } - else - { - GNUNET_asprintf (&s_acc, "\"%s\" [color=\"0.%i 0.8 0.95\"];\n", s->name, - s->scc_id); - } - - if (NULL == s_acc) - { - GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print state %s\n", - s->name); - return; - } - fwrite (s_acc, strlen (s_acc), 1, p); - GNUNET_free (s_acc); - s_acc = NULL; - - for (ctran = s->transitions_head; NULL != ctran; ctran = ctran->next) - { - if (NULL == ctran->to_state) - { - GNUNET_log (GNUNET_ERROR_TYPE_ERROR, - "Transition from State %i has has no state for transitioning\n", - s->id); - continue; - } - - if (ctran->label == 0) - { - GNUNET_asprintf (&s_tran, - "\"%s\" -> \"%s\" [label = \"epsilon\", color=\"0.%i 0.8 0.95\"];\n", - s->name, ctran->to_state->name, s->scc_id); - } - else - { - GNUNET_asprintf (&s_tran, - "\"%s\" -> \"%s\" [label = \"%c\", color=\"0.%i 0.8 0.95\"];\n", - s->name, ctran->to_state->name, ctran->label, - s->scc_id); - } - - if (NULL == s_tran) - { - GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print state %s\n", - s->name); - return; - } - - fwrite (s_tran, strlen (s_tran), 1, p); - GNUNET_free (s_tran); - s_tran = NULL; - } - } - - end = "\n}\n"; - fwrite (end, strlen (end), 1, p); - fclose (p); -} /** * Evaluates the given string using the given DFA automaton @@ -2073,6 +2354,10 @@ evaluate_dfa (struct GNUNET_REGEX_Automaton *a, const char *string) s = a->start; + // If the string is empty but the starting state is accepting, we accept. + if ((NULL == string || 0 == strlen (string)) && s->accepting) + return 0; + for (strp = string; NULL != strp && *strp; strp++) { s = dfa_move (s, *strp); @@ -2086,6 +2371,7 @@ evaluate_dfa (struct GNUNET_REGEX_Automaton *a, const char *string) return 1; } + /** * Evaluates the given string using the given NFA automaton * @@ -2101,7 +2387,7 @@ evaluate_nfa (struct GNUNET_REGEX_Automaton *a, const char *string) struct GNUNET_REGEX_State *s; struct GNUNET_REGEX_StateSet *sset; struct GNUNET_REGEX_StateSet *new_sset; - int i; + unsigned int i; int result; if (NFA != a->type) @@ -2111,8 +2397,11 @@ evaluate_nfa (struct GNUNET_REGEX_Automaton *a, const char *string) return -1; } + // If the string is empty but the starting state is accepting, we accept. + if ((NULL == string || 0 == strlen (string)) && a->start->accepting) + return 0; + result = 1; - strp = string; sset = nfa_closure_create (a, a->start, 0); for (strp = string; NULL != strp && *strp; strp++) @@ -2137,6 +2426,7 @@ evaluate_nfa (struct GNUNET_REGEX_Automaton *a, const char *string) return result; } + /** * Evaluates the given 'string' against the given compiled regex * @@ -2168,9 +2458,31 @@ GNUNET_REGEX_eval (struct GNUNET_REGEX_Automaton *a, const char *string) return result; } + +/** + * Get the canonical regex of the given automaton. + * When constructing the automaton a proof is computed for each state, + * consisting of the regular expression leading to this state. A complete + * regex for the automaton can be computed by combining these proofs. + * As of now this function is only useful for testing. + * + * @param a automaton for which the canonical regex should be returned. + * + * @return + */ +const char * +GNUNET_REGEX_get_canonical_regex (struct GNUNET_REGEX_Automaton *a) +{ + if (NULL == a) + return NULL; + + return a->canonical_regex; +} + + /** * Get the first key for the given 'input_string'. This hashes the first x bits - * of the 'input_strings'. + * of the 'input_string'. * * @param input_string string. * @param string_len length of the 'input_string'. @@ -2179,13 +2491,13 @@ GNUNET_REGEX_eval (struct GNUNET_REGEX_Automaton *a, const char *string) * @return number of bits of 'input_string' that have been consumed * to construct the key */ -unsigned int -GNUNET_REGEX_get_first_key (const char *input_string, unsigned int string_len, - GNUNET_HashCode * key) +size_t +GNUNET_REGEX_get_first_key (const char *input_string, size_t string_len, + struct GNUNET_HashCode * key) { unsigned int size; - size = string_len < initial_bits ? string_len : initial_bits; + size = string_len < INITIAL_BITS ? string_len : INITIAL_BITS; if (NULL == input_string) { @@ -2198,20 +2510,142 @@ GNUNET_REGEX_get_first_key (const char *input_string, unsigned int string_len, return size; } + /** * Check if the given 'proof' matches the given 'key'. * - * @param proof partial regex - * @param key hash + * @param proof partial regex of a state. + * @param key hash of a state. * - * @return GNUNET_OK if the proof is valid for the given key + * @return GNUNET_OK if the proof is valid for the given key. */ int -GNUNET_REGEX_check_proof (const char *proof, const GNUNET_HashCode * key) +GNUNET_REGEX_check_proof (const char *proof, const struct GNUNET_HashCode *key) +{ + struct GNUNET_HashCode key_check; + + GNUNET_CRYPTO_hash (proof, strlen (proof), &key_check); + return (0 == + GNUNET_CRYPTO_hash_cmp (key, &key_check)) ? GNUNET_OK : GNUNET_NO; +} + + +/** + * Recursive helper function for iterate_initial_edges. Will call iterator + * function for each initial state. + * + * @param min_len minimum length of the path in the graph. + * @param max_len maximum length of the path in the graph. + * @param cur_len current length of the path already traversed. + * @param consumed_string string consumed by traversing the graph till this state. + * @param state current state of the automaton. + * @param iterator iterator function called for each edge. + * @param iterator_cls closure for the iterator function. + */ +static void +iterate_initial_edge (const unsigned int min_len, const unsigned int max_len, + unsigned int cur_len, char *consumed_string, + struct GNUNET_REGEX_State *state, + GNUNET_REGEX_KeyIterator iterator, void *iterator_cls) +{ + unsigned int i; + char label[state->transition_count][2]; + char *temp; + struct GNUNET_REGEX_Transition *t; + unsigned int num_edges = state->transition_count; + struct GNUNET_REGEX_Edge edges[num_edges]; + struct GNUNET_HashCode hash; + + if (cur_len > min_len && NULL != consumed_string && cur_len <= max_len) + { + for (i = 0, t = state->transitions_head; NULL != t; t = t->next, i++) + { + label[i][0] = t->label; + label[i][1] = '\0'; + edges[i].label = label[i]; + edges[i].destination = t->to_state->hash; + } + + GNUNET_CRYPTO_hash (consumed_string, strlen (consumed_string), &hash); + iterator (iterator_cls, &hash, consumed_string, state->accepting, num_edges, + edges); + } + + if (cur_len < max_len) + { + cur_len++; + for (t = state->transitions_head; NULL != t; t = t->next) + { + if (NULL != consumed_string) + GNUNET_asprintf (&temp, "%s%c", consumed_string, t->label); + else + GNUNET_asprintf (&temp, "%c", t->label); + + iterate_initial_edge (min_len, max_len, cur_len, temp, t->to_state, + iterator, iterator_cls); + GNUNET_free (temp); + } + } +} + + +/** + * Iterate over all initial edges that aren't actually part of the automaton. + * This is needed to find the initial states returned by + * GNUNET_REGEX_get_first_key. Iteration will start at the first branch state (a + * state that has more than one outgoing edge, can be the first state), because + * all previous states will have the same proof and be iterated over in + * iterate_all_edges. + * + * @param a the automaton for which the initial states should be computed. + * @param initial_len length of the initial state string. + * @param iterator iterator function called for each edge. + * @param iterator_cls closure for the iterator function. + */ +void +iterate_initial_edges (struct GNUNET_REGEX_Automaton *a, + const unsigned int initial_len, + GNUNET_REGEX_KeyIterator iterator, void *iterator_cls) { - return GNUNET_OK; + char *consumed_string; + char *temp; + struct GNUNET_REGEX_State *s; + unsigned int cur_len; + + if (1 > initial_len) + return; + + consumed_string = NULL; + s = a->start; + cur_len = 0; + + if (1 == s->transition_count) + { + do + { + if (NULL != consumed_string) + { + temp = consumed_string; + GNUNET_asprintf (&consumed_string, "%s%c", consumed_string, + s->transitions_head->label); + GNUNET_free (temp); + } + else + GNUNET_asprintf (&consumed_string, "%c", s->transitions_head->label); + + s = s->transitions_head->to_state; + cur_len++; + } + while (cur_len < initial_len && 1 == s->transition_count); + } + + iterate_initial_edge (cur_len, initial_len, cur_len, consumed_string, s, + iterator, iterator_cls); + + GNUNET_free_non_null (consumed_string); } + /** * Iterate over all edges helper function starting from state 's', calling * iterator on for each edge. @@ -2224,7 +2658,7 @@ static void iterate_edge (struct GNUNET_REGEX_State *s, GNUNET_REGEX_KeyIterator iterator, void *iterator_cls) { - struct Transition *t; + struct GNUNET_REGEX_Transition *t; struct GNUNET_REGEX_Edge edges[s->transition_count]; unsigned int num_edges; @@ -2234,13 +2668,16 @@ iterate_edge (struct GNUNET_REGEX_State *s, GNUNET_REGEX_KeyIterator iterator, num_edges = state_get_edges (s, edges); - iterator (iterator_cls, &s->hash, s->proof, s->accepting, num_edges, edges); + if (0 < strlen (s->proof) || s->accepting) + iterator (iterator_cls, &s->hash, s->proof, s->accepting, num_edges, + edges); for (t = s->transitions_head; NULL != t; t = t->next) iterate_edge (t->to_state, iterator, iterator_cls); } } + /** * Iterate over all edges starting from start state of automaton 'a'. Calling * iterator for each edge. @@ -2259,5 +2696,6 @@ GNUNET_REGEX_iterate_all_edges (struct GNUNET_REGEX_Automaton *a, for (s = a->states_head; NULL != s; s = s->next) s->marked = GNUNET_NO; + iterate_initial_edges (a, INITIAL_BITS, iterator, iterator_cls); iterate_edge (a->start, iterator, iterator_cls); }