X-Git-Url: https://git.librecmc.org/?a=blobdiff_plain;f=include%2Fopenssl%2Fbn.h;h=8af05d00e59a90cb7c764eeda0b8a269504dd5a1;hb=ebfd055b29861b127c9cf4ed76553e109301fc64;hp=cca17355547576ab038db19b7c46744612f79771;hpb=aa8f3d76fcf1502586435631be16faa1bef3cdf7;p=oweals%2Fopenssl.git diff --git a/include/openssl/bn.h b/include/openssl/bn.h index cca1735554..8af05d00e5 100644 --- a/include/openssl/bn.h +++ b/include/openssl/bn.h @@ -1,5 +1,5 @@ /* - * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use @@ -107,25 +107,76 @@ void *BN_GENCB_get_arg(BN_GENCB *cb); * on the size of the number */ /* - * number of Miller-Rabin iterations for an error rate of less than 2^-80 for - * random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook of - * Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996]; - * original paper: Damgaard, Landrock, Pomerance: Average case error - * estimates for the strong probable prime test. -- Math. Comp. 61 (1993) - * 177-194) + * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations + * that will be done for checking that a random number is probably prime. The + * error rate for accepting a composite number as prime depends on the size of + * the prime |b|. The error rates used are for calculating an RSA key with 2 primes, + * and so the level is what you would expect for a key of double the size of the + * prime. + * + * This table is generated using the algorithm of FIPS PUB 186-4 + * Digital Signature Standard (DSS), section F.1, page 117. + * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) + * + * The following magma script was used to generate the output: + * securitybits:=125; + * k:=1024; + * for t:=1 to 65 do + * for M:=3 to Floor(2*Sqrt(k-1)-1) do + * S:=0; + * // Sum over m + * for m:=3 to M do + * s:=0; + * // Sum over j + * for j:=2 to m do + * s+:=(RealField(32)!2)^-(j+(k-1)/j); + * end for; + * S+:=2^(m-(m-1)*t)*s; + * end for; + * A:=2^(k-2-M*t); + * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; + * pkt:=2.00743*Log(2)*k*2^-k*(A+B); + * seclevel:=Floor(-Log(2,pkt)); + * if seclevel ge securitybits then + * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; + * break; + * end if; + * end for; + * if seclevel ge securitybits then break; end if; + * end for; + * + * It can be run online at: + * http://magma.maths.usyd.edu.au/calc + * + * And will output: + * k: 1024, security: 129 bits (t: 6, M: 23) + * + * k is the number of bits of the prime, securitybits is the level we want to + * reach. + * + * prime length | RSA key size | # MR tests | security level + * -------------+--------------|------------+--------------- + * (b) >= 6394 | >= 12788 | 3 | 256 bit + * (b) >= 3747 | >= 7494 | 3 | 192 bit + * (b) >= 1345 | >= 2690 | 4 | 128 bit + * (b) >= 1080 | >= 2160 | 5 | 128 bit + * (b) >= 852 | >= 1704 | 5 | 112 bit + * (b) >= 476 | >= 952 | 5 | 80 bit + * (b) >= 400 | >= 800 | 6 | 80 bit + * (b) >= 347 | >= 694 | 7 | 80 bit + * (b) >= 308 | >= 616 | 8 | 80 bit + * (b) >= 55 | >= 110 | 27 | 64 bit + * (b) >= 6 | >= 12 | 34 | 64 bit */ -# define BN_prime_checks_for_size(b) ((b) >= 1300 ? 2 : \ - (b) >= 850 ? 3 : \ - (b) >= 650 ? 4 : \ - (b) >= 550 ? 5 : \ - (b) >= 450 ? 6 : \ - (b) >= 400 ? 7 : \ - (b) >= 350 ? 8 : \ - (b) >= 300 ? 9 : \ - (b) >= 250 ? 12 : \ - (b) >= 200 ? 15 : \ - (b) >= 150 ? 18 : \ - /* b >= 100 */ 27) + +# define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ + (b) >= 1345 ? 4 : \ + (b) >= 476 ? 5 : \ + (b) >= 400 ? 6 : \ + (b) >= 347 ? 7 : \ + (b) >= 308 ? 8 : \ + (b) >= 55 ? 27 : \ + /* b >= 6 */ 34) # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) @@ -154,8 +205,10 @@ void BN_CTX_start(BN_CTX *ctx); BIGNUM *BN_CTX_get(BN_CTX *ctx); void BN_CTX_end(BN_CTX *ctx); int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); -int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); +int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom); int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); +int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range); +int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_num_bits(const BIGNUM *a); int BN_num_bits_word(BN_ULONG l); @@ -184,7 +237,7 @@ int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); */ void BN_set_negative(BIGNUM *b, int n); /** BN_is_negative returns 1 if the BIGNUM is negative - * \param a pointer to the BIGNUM object + * \param b pointer to the BIGNUM object * \return 1 if a < 0 and 0 otherwise */ int BN_is_negative(const BIGNUM *b); @@ -479,7 +532,6 @@ BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); -int ERR_load_BN_strings(void); # ifdef __cplusplus }