X-Git-Url: https://git.librecmc.org/?a=blobdiff_plain;f=crypto%2Frc4%2Fasm%2Frc4-586.pl;h=ab16a97b6805835023b97259a1f32ad92d726c37;hb=9be34ee5c8576539a929d5b396ad071aed525f43;hp=9766abfb6e1376edf75f4d2be9f199c5d2e80f47;hpb=287546242539e686ef1233d0a7c57c935fb61c3f;p=oweals%2Fopenssl.git diff --git a/crypto/rc4/asm/rc4-586.pl b/crypto/rc4/asm/rc4-586.pl index 9766abfb6e..ab16a97b68 100644 --- a/crypto/rc4/asm/rc4-586.pl +++ b/crypto/rc4/asm/rc4-586.pl @@ -1,14 +1,28 @@ -#!/usr/local/bin/perl +#! /usr/bin/env perl +# Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved. +# +# Licensed under the OpenSSL license (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + + +# ==================================================================== +# [Re]written by Andy Polyakov for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== # At some point it became apparent that the original SSLeay RC4 -# assembler implementation performs suboptimaly on latest IA-32 +# assembler implementation performs suboptimally on latest IA-32 # microarchitectures. After re-tuning performance has changed as # following: # -# Pentium +0% -# Pentium III +17% -# AMD +52%(*) -# P4 +180%(**) +# Pentium -10% +# Pentium III +12% +# AMD +50%(*) +# P4 +250%(**) # # (*) This number is actually a trade-off:-) It's possible to # achieve +72%, but at the cost of -48% off PIII performance. @@ -17,209 +31,281 @@ # For reference! This code delivers ~80% of rc4-amd64.pl # performance on the same Opteron machine. # (**) This number requires compressed key schedule set up by -# RC4_set_key and therefore doesn't apply to 0.9.7 [option for -# compressed key schedule is implemented in 0.9.8 and later, -# see commentary section in rc4_skey.c for further details]. +# RC4_set_key [see commentary below for further details]. # # -push(@INC,"perlasm","../../perlasm"); +# May 2011 +# +# Optimize for Core2 and Westmere [and incidentally Opteron]. Current +# performance in cycles per processed byte (less is better) and +# improvement relative to previous version of this module is: +# +# Pentium 10.2 # original numbers +# Pentium III 7.8(*) +# Intel P4 7.5 +# +# Opteron 6.1/+20% # new MMX numbers +# Core2 5.3/+67%(**) +# Westmere 5.1/+94%(**) +# Sandy Bridge 5.0/+8% +# Atom 12.6/+6% +# VIA Nano 6.4/+9% +# Ivy Bridge 4.9/±0% +# Bulldozer 4.9/+15% +# +# (*) PIII can actually deliver 6.6 cycles per byte with MMX code, +# but this specific code performs poorly on Core2. And vice +# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs +# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU +# [anymore], I chose to discard PIII-specific code path and opt +# for original IALU-only code, which is why MMX/SSE code path +# is guarded by SSE2 bit (see below), not MMX/SSE. +# (**) Performance vs. block size on Core2 and Westmere had a maximum +# at ... 64 bytes block size. And it was quite a maximum, 40-60% +# in comparison to largest 8KB block size. Above improvement +# coefficients are for the largest block size. + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; -&asm_init($ARGV[0],"rc4-586.pl"); +$output=pop; +open STDOUT,">$output"; -$x="eax"; -$y="ebx"; +&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); + +$xx="eax"; +$yy="ebx"; $tx="ecx"; $ty="edx"; -$in="esi"; -$out="edi"; -$d="ebp"; - -sub RC4_loop - { - local($n,$p,$char)=@_; - - &comment("Round $n"); - - if ($char) - { - if ($p >= 0) - { - &mov($ty, &swtmp(2)); - &cmp($ty, $in); - &jbe(&label("finished")); - &inc($in); - } - else - { - &add($ty, 8); - &inc($in); - &cmp($ty, $in); - &jb(&label("finished")); - &mov(&swtmp(2), $ty); - } - } - # Moved out - # &mov( $tx, &DWP(0,$d,$x,4)) if $p < 0; - - &add( &LB($y), &LB($tx)); - &mov( $ty, &DWP(0,$d,$y,4)); - # XXX - &mov( &DWP(0,$d,$x,4),$ty); - &add( $ty, $tx); - &mov( &DWP(0,$d,$y,4),$tx); - &and( $ty, 0xff); - &inc( &LB($x)); # NEXT ROUND - &mov( $tx, &DWP(0,$d,$x,4)) if $p < 1; # NEXT ROUND - &mov( $ty, &DWP(0,$d,$ty,4)); - - if (!$char) - { - #moved up into last round - if ($p >= 1) - { - &add( $out, 8) - } - &movb( &BP($n,"esp","",0), &LB($ty)); - } - else - { - # Note in+=8 has occured - &movb( &HB($ty), &BP(-1,$in,"",0)); - # XXX - &xorb(&LB($ty), &HB($ty)); - # XXX - &movb(&BP($n,$out,"",0),&LB($ty)); - } +$inp="esi"; +$out="ebp"; +$dat="edi"; + +sub RC4_loop { + my $i=shift; + my $func = ($i==0)?*mov:*or; + + &add (&LB($yy),&LB($tx)); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &add ($ty,$tx); + &inc (&LB($xx)); + &and ($ty,0xff); + &ror ($out,8) if ($i!=0); + if ($i<3) { + &mov ($tx,&DWP(0,$dat,$xx,4)); + } else { + &mov ($tx,&wparam(3)); # reload [re-biased] out } + &$func ($out,&DWP(0,$dat,$ty,4)); +} +if ($alt=0) { + # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, + # but ~40% slower on Core2 and Westmere... Attempt to add movz + # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet + # on Core2 with movz it's almost 20% slower than below alternative + # code... Yes, it's a total mess... + my @XX=($xx,$out); + $RC4_loop_mmx = sub { # SSE actually... + my $i=shift; + my $j=$i<=0?0:$i>>1; + my $mm=$i<=0?"mm0":"mm".($i&1); + + &add (&LB($yy),&LB($tx)); + &lea (@XX[1],&DWP(1,@XX[0])); + &pxor ("mm2","mm0") if ($i==0); + &psllq ("mm1",8) if ($i==0); + &and (@XX[1],0xff); + &pxor ("mm0","mm0") if ($i<=0); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &pxor ("mm1","mm2") if ($i==0); + &mov (&DWP(0,$dat,$XX[0],4),$ty); + &add (&LB($ty),&LB($tx)); + &movd (@XX[0],"mm7") if ($i==0); + &mov ($tx,&DWP(0,$dat,@XX[1],4)); + &pxor ("mm1","mm1") if ($i==1); + &movq ("mm2",&QWP(0,$inp)) if ($i==1); + &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); + &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); + + push (@XX,shift(@XX)) if ($i>=0); + } +} else { + # Using pinsrw here improves performane on Intel CPUs by 2-3%, but + # brings down AMD by 7%... + $RC4_loop_mmx = sub { + my $i=shift; + + &add (&LB($yy),&LB($tx)); + &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &inc ($xx); + &add ($ty,$tx); + &movz ($xx,&LB($xx)); # (*) + &movz ($ty,&LB($ty)); # (*) + &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); + &movq ("mm0",&QWP(0,$inp)) if ($i<=0); + &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); + + # (*) This is the key to Core2 and Westmere performance. + # Without movz out-of-order execution logic confuses + # itself and fails to reorder loads and stores. Problem + # appears to be fixed in Sandy Bridge... + } +} -&function_begin_B("RC4"); - { - local($name)=@_; - - - &mov($ty,&wparam(1)); # len - &cmp($ty,0); - &jne(&label("proceed")); - &ret(); - &set_label("proceed"); - - &comment(""); - - &push("ebp"); - &push("ebx"); - &push("esi"); - &xor( $x, $x); # avoid partial register stalls - &push("edi"); - &xor( $y, $y); # avoid partial register stalls - &mov( $d, &wparam(0)); # key - &mov( $in, &wparam(2)); - - &movb( &LB($x), &BP(0,$d,"",1)); - &movb( &LB($y), &BP(4,$d,"",1)); - - &mov( $out, &wparam(3)); - &inc( &LB($x)); - - &stack_push(3); # 3 temp variables - &add( $d, 8); - - # detect compressed schedule, see commentary section in rc4_skey.c... - # in 0.9.7 context ~50 bytes below RC4_CHAR label remain redundant, - # as compressed key schedule is set up in 0.9.8 and later. - &cmp(&DWP(256,$d),-1); - &je(&label("RC4_CHAR")); - - &lea( $ty, &DWP(-8,$ty,$in)); - - # check for 0 length input - - &mov( &swtmp(2), $ty); # this is now address to exit at - &mov( $tx, &DWP(0,$d,$x,4)); - - &cmp( $ty, $in); - &jb( &label("end")); # less than 8 bytes - - &set_label("start"); - - # filling DELAY SLOT - &add( $in, 8); - - &RC4_loop(0,-1,0); - &RC4_loop(1,0,0); - &RC4_loop(2,0,0); - &RC4_loop(3,0,0); - &RC4_loop(4,0,0); - &RC4_loop(5,0,0); - &RC4_loop(6,0,0); - &RC4_loop(7,1,0); - - &comment("apply the cipher text"); - # xor the cipher data with input - - #&add( $out, 8); #moved up into last round - - &mov( $tx, &swtmp(0)); - &mov( $ty, &DWP(-8,$in,"",0)); - &xor( $tx, $ty); - &mov( $ty, &DWP(-4,$in,"",0)); - &mov( &DWP(-8,$out,"",0), $tx); - &mov( $tx, &swtmp(1)); - &xor( $tx, $ty); - &mov( $ty, &swtmp(2)); # load end ptr; - &mov( &DWP(-4,$out,"",0), $tx); - &mov( $tx, &DWP(0,$d,$x,4)); - &cmp($in, $ty); - &jbe(&label("start")); - - &set_label("end"); - - # There is quite a bit of extra crap in RC4_loop() for this - # first round - &RC4_loop(0,-1,1); - &RC4_loop(1,0,1); - &RC4_loop(2,0,1); - &RC4_loop(3,0,1); - &RC4_loop(4,0,1); - &RC4_loop(5,0,1); - &RC4_loop(6,1,1); - - &jmp(&label("finished")); - - &align(16); - # this is essentially Intel P4 specific codepath, see rc4_skey.c, - # and is engaged in 0.9.8 and later context... - &set_label("RC4_CHAR"); - - &lea ($ty,&DWP(0,$in,$ty)); - &mov (&swtmp(2),$ty); - &movz ($tx,&BP(0,$d,$x)); +&external_label("OPENSSL_ia32cap_P"); +# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); +&function_begin("RC4"); + &mov ($dat,&wparam(0)); # load key schedule pointer + &mov ($ty, &wparam(1)); # load len + &mov ($inp,&wparam(2)); # load inp + &mov ($out,&wparam(3)); # load out + + &xor ($xx,$xx); # avoid partial register stalls + &xor ($yy,$yy); + + &cmp ($ty,0); # safety net + &je (&label("abort")); + + &mov (&LB($xx),&BP(0,$dat)); # load key->x + &mov (&LB($yy),&BP(4,$dat)); # load key->y + &add ($dat,8); + + &lea ($tx,&DWP(0,$inp,$ty)); + &sub ($out,$inp); # re-bias out + &mov (&wparam(1),$tx); # save input+len + + &inc (&LB($xx)); + + # detect compressed key schedule... + &cmp (&DWP(256,$dat),-1); + &je (&label("RC4_CHAR")); + + &mov ($tx,&DWP(0,$dat,$xx,4)); + + &and ($ty,-4); # how many 4-byte chunks? + &jz (&label("loop1")); + + &mov (&wparam(3),$out); # $out as accumulator in these loops + if ($x86only) { + &jmp (&label("go4loop4")); + } else { + &test ($ty,-8); + &jz (&label("go4loop4")); + + &picmeup($out,"OPENSSL_ia32cap_P"); + &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] + &jnc (&label("go4loop4")); + + &mov ($out,&wparam(3)) if (!$alt); + &movd ("mm7",&wparam(3)) if ($alt); + &and ($ty,-8); + &lea ($ty,&DWP(-8,$inp,$ty)); + &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 + + &$RC4_loop_mmx(-1); + &jmp(&label("loop_mmx_enter")); + + &set_label("loop_mmx",16); + &$RC4_loop_mmx(0); + &set_label("loop_mmx_enter"); + for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } + &mov ($ty,$yy); + &xor ($yy,$yy); # this is second key to Core2 + &mov (&LB($yy),&LB($ty)); # and Westmere performance... + &cmp ($inp,&DWP(-4,$dat)); + &lea ($inp,&DWP(8,$inp)); + &jb (&label("loop_mmx")); + + if ($alt) { + &movd ($out,"mm7"); + &pxor ("mm2","mm0"); + &psllq ("mm1",8); + &pxor ("mm1","mm2"); + &movq (&QWP(-8,$out,$inp),"mm1"); + } else { + &psllq ("mm1",56); + &pxor ("mm2","mm1"); + &movq (&QWP(-8,$out,$inp),"mm2"); + } + &emms (); + + &cmp ($inp,&wparam(1)); # compare to input+len + &je (&label("done")); + &jmp (&label("loop1")); + } + +&set_label("go4loop4",16); + &lea ($ty,&DWP(-4,$inp,$ty)); + &mov (&wparam(2),$ty); # save input+(len/4)*4-4 + + &set_label("loop4"); + for ($i=0;$i<4;$i++) { RC4_loop($i); } + &ror ($out,8); + &xor ($out,&DWP(0,$inp)); + &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 + &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here + &lea ($inp,&DWP(4,$inp)); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &jb (&label("loop4")); + + &cmp ($inp,&wparam(1)); # compare to input+len + &je (&label("done")); + &mov ($out,&wparam(3)); # restore $out + + &set_label("loop1",16); + &add (&LB($yy),&LB($tx)); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &add ($ty,$tx); + &inc (&LB($xx)); + &and ($ty,0xff); + &mov ($ty,&DWP(0,$dat,$ty,4)); + &xor (&LB($ty),&BP(0,$inp)); + &lea ($inp,&DWP(1,$inp)); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &cmp ($inp,&wparam(1)); # compare to input+len + &mov (&BP(-1,$out,$inp),&LB($ty)); + &jb (&label("loop1")); + + &jmp (&label("done")); + +# this is essentially Intel P4 specific codepath... +&set_label("RC4_CHAR",16); + &movz ($tx,&BP(0,$dat,$xx)); # strangely enough unrolled loop performs over 20% slower... - &set_label("RC4_CHAR_loop"); - &add (&LB($y),&LB($tx)); - &movz ($ty,&BP(0,$d,$y)); - &movb (&BP(0,$d,$y),&LB($tx)); - &movb (&BP(0,$d,$x),&LB($ty)); + &set_label("cloop1"); + &add (&LB($yy),&LB($tx)); + &movz ($ty,&BP(0,$dat,$yy)); + &mov (&BP(0,$dat,$yy),&LB($tx)); + &mov (&BP(0,$dat,$xx),&LB($ty)); &add (&LB($ty),&LB($tx)); - &movz ($ty,&BP(0,$d,$ty)); - &add (&LB($x),1); - &xorb (&LB($ty),&BP(0,$in)); - &lea ($in,&BP(1,$in)); - &movz ($tx,&BP(0,$d,$x)); - &cmp ($in,&swtmp(2)); - &movb (&BP(0,$out),&LB($ty)); - &lea ($out,&BP(1,$out)); - &jb (&label("RC4_CHAR_loop")); - - &set_label("finished"); - &dec( $x); - &stack_pop(3); - &movb( &BP(-4,$d,"",0),&LB($y)); - &movb( &BP(-8,$d,"",0),&LB($x)); -} + &movz ($ty,&BP(0,$dat,$ty)); + &add (&LB($xx),1); + &xor (&LB($ty),&BP(0,$inp)); + &lea ($inp,&DWP(1,$inp)); + &movz ($tx,&BP(0,$dat,$xx)); + &cmp ($inp,&wparam(1)); + &mov (&BP(-1,$out,$inp),&LB($ty)); + &jb (&label("cloop1")); + +&set_label("done"); + &dec (&LB($xx)); + &mov (&DWP(-4,$dat),$yy); # save key->y + &mov (&BP(-8,$dat),&LB($xx)); # save key->x +&set_label("abort"); &function_end("RC4"); ######################################################################## @@ -230,8 +316,6 @@ $idi="ebp"; $ido="ecx"; $idx="edx"; -&external_label("OPENSSL_ia32cap_P"); - # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); &function_begin("RC4_set_key"); &mov ($out,&wparam(0)); # load key @@ -271,6 +355,17 @@ $idx="edx"; &jnc (&label("w2ndloop")); &jmp (&label("exit")); +# Unlike all other x86 [and x86_64] implementations, Intel P4 core +# [including EM64T] was found to perform poorly with above "32-bit" key +# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded +# assembler turned out to be 3.5x if re-coded for compressed 8-bit one, +# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit +# schedule for x86[_64], because non-P4 implementations suffer from +# significant performance losses then, e.g. PIII exhibits >2x +# deterioration, and so does Opteron. In order to assure optimal +# all-round performance, we detect P4 at run-time and set up compressed +# key schedule, which is recognized by RC4 procedure. + &set_label("c1stloop",16); &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; &add (&LB("eax"),1); # i++; @@ -309,17 +404,25 @@ $idx="edx"; &blindpop("eax"); &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); &picmeup("edx","OPENSSL_ia32cap_P"); - &bt (&DWP(0,"edx"),20); - &jnc (&label("skip")); - &add ("eax",12); - &set_label("skip"); + &mov ("edx",&DWP(0,"edx")); + &bt ("edx",20); + &jc (&label("1xchar")); + &bt ("edx",26); + &jnc (&label("ret")); + &add ("eax",25); + &ret (); +&set_label("1xchar"); + &add ("eax",12); +&set_label("ret"); &ret (); &set_label("opts",64); -&asciz ("rc4(8x,int)"); +&asciz ("rc4(4x,int)"); &asciz ("rc4(1x,char)"); -&asciz ("RC4 for x86, OpenSSL project"); # RC4_version +&asciz ("rc4(8x,mmx)"); +&asciz ("RC4 for x86, CRYPTOGAMS by "); &align (64); &function_end_B("RC4_options"); &asm_finish(); +close STDOUT;