X-Git-Url: https://git.librecmc.org/?a=blobdiff_plain;ds=sidebyside;f=src%2Futil%2Fcrypto_ksk.c;h=274457b61e06ecaa6858c0184904385fdd2f3d80;hb=8f654f30c3c4987c9ca1b564d6e6f2d75ae24862;hp=687aece16e7d7f9c6645ced48bbd574b48fe27ce;hpb=592e1b7a112512b7b13384246030e17b9a13e32f;p=oweals%2Fgnunet.git diff --git a/src/util/crypto_ksk.c b/src/util/crypto_ksk.c index 687aece16..274457b61 100644 --- a/src/util/crypto_ksk.c +++ b/src/util/crypto_ksk.c @@ -39,22 +39,24 @@ #include #include +#define LOG(kind,...) GNUNET_log_from (kind, "util", __VA_ARGS__) + /** * Log an error message at log-level 'level' that indicates * a failure of the command 'cmd' with the message given * by gcry_strerror(rc). */ -#define LOG_GCRY(level, cmd, rc) do { GNUNET_log(level, _("`%s' failed at %s:%d with error: %s\n"), cmd, __FILE__, __LINE__, gcry_strerror(rc)); } while(0); +#define LOG_GCRY(level, cmd, rc) do { LOG(level, _("`%s' failed at %s:%d with error: %s\n"), cmd, __FILE__, __LINE__, gcry_strerror(rc)); } while(0); typedef struct { - gcry_mpi_t n; /* public modulus */ - gcry_mpi_t e; /* public exponent */ - gcry_mpi_t d; /* exponent */ - gcry_mpi_t p; /* prime p. */ - gcry_mpi_t q; /* prime q. */ - gcry_mpi_t u; /* inverse of p mod q. */ + gcry_mpi_t n; /* public modulus */ + gcry_mpi_t e; /* public exponent */ + gcry_mpi_t d; /* exponent */ + gcry_mpi_t p; /* prime p. */ + gcry_mpi_t q; /* prime q. */ + gcry_mpi_t u; /* inverse of p mod q. */ } KBlock_secret_key; /** @@ -82,23 +84,23 @@ mpz_randomize (gcry_mpi_t n, unsigned int nbits, GNUNET_HashCode * rnd) tmp = *rnd; for (i = 0; i < cnt; i++) + { + int j; + + if (i > 0) + GNUNET_CRYPTO_hash (&hc, sizeof (GNUNET_HashCode), &tmp); + for (j = 0; j < sizeof (GNUNET_HashCode) / sizeof (uint32_t); j++) { - int j; - - if (i > 0) - GNUNET_CRYPTO_hash (&hc, sizeof (GNUNET_HashCode), &tmp); - for (j=0;j nbits) @@ -110,12 +112,12 @@ mpz_trailing_zeroes (gcry_mpi_t n) { unsigned int idx, cnt; - cnt = gcry_mpi_get_nbits(n); + cnt = gcry_mpi_get_nbits (n); for (idx = 0; idx < cnt; idx++) - { - if (gcry_mpi_test_bit(n, idx) == 0) - return idx; - } + { + if (gcry_mpi_test_bit (n, idx) == 0) + return idx; + } return ULONG_MAX; } @@ -154,7 +156,7 @@ is_prime (gcry_mpi_t n, int steps, GNUNET_HashCode * hc) a2 = gcry_mpi_set_ui (NULL, 2); nbits = gcry_mpi_get_nbits (n); - gcry_mpi_sub_ui(nminus1, n, 1); + gcry_mpi_sub_ui (nminus1, n, 1); /* Find q and k, so that n = 1 + 2^k * q . */ q = gcry_mpi_set (NULL, nminus1); @@ -162,30 +164,30 @@ is_prime (gcry_mpi_t n, int steps, GNUNET_HashCode * hc) mpz_tdiv_q_2exp (q, q, k); for (i = 0; i < steps; i++) + { + if (!i) { - if (!i) - { - gcry_mpi_set_ui (x, 2); - } - else - { - mpz_randomize (x, nbits - 1, hc); - GNUNET_assert (gcry_mpi_cmp (x, nminus1) < 0); - GNUNET_assert (gcry_mpi_cmp_ui (x, 1) > 0); - } - gcry_mpi_powm (y, x, q, n); - if (gcry_mpi_cmp_ui (y, 1) && gcry_mpi_cmp (y, nminus1)) - { - for (j = 1; j < k && gcry_mpi_cmp (y, nminus1); j++) - { - gcry_mpi_powm (y, y, a2, n); - if (!gcry_mpi_cmp_ui (y, 1)) - goto leave; /* Not a prime. */ - } - if (gcry_mpi_cmp (y, nminus1)) - goto leave; /* Not a prime. */ - } + gcry_mpi_set_ui (x, 2); } + else + { + mpz_randomize (x, nbits - 1, hc); + GNUNET_assert (gcry_mpi_cmp (x, nminus1) < 0); + GNUNET_assert (gcry_mpi_cmp_ui (x, 1) > 0); + } + gcry_mpi_powm (y, x, q, n); + if (gcry_mpi_cmp_ui (y, 1) && gcry_mpi_cmp (y, nminus1)) + { + for (j = 1; j < k && gcry_mpi_cmp (y, nminus1); j++) + { + gcry_mpi_powm (y, y, a2, n); + if (!gcry_mpi_cmp_ui (y, 1)) + goto leave; /* Not a prime. */ + } + if (gcry_mpi_cmp (y, nminus1)) + goto leave; /* Not a prime. */ + } + } rc = 1; /* May be a prime. */ leave: @@ -199,11 +201,27 @@ leave: return rc; } +/** + * If target != size, move target bytes to the + * end of the size-sized buffer and zero out the + * first target-size bytes. + */ +static void +adjust (unsigned char *buf, size_t size, size_t target) +{ + if (size < target) + { + memmove (&buf[target - size], buf, size); + memset (buf, 0, target - size); + } +} + + static void -gen_prime (gcry_mpi_t *ptest, unsigned int nbits, GNUNET_HashCode * hc) +gen_prime (gcry_mpi_t * ptest, unsigned int nbits, GNUNET_HashCode * hc) { /* Note: 2 is not included because it can be tested more easily by - looking at bit 0. The last entry in this list is marked by a zero */ + * looking at bit 0. The last entry in this list is marked by a zero */ static const uint16_t small_prime_numbers[] = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, @@ -301,74 +319,77 @@ gen_prime (gcry_mpi_t *ptest, unsigned int nbits, GNUNET_HashCode * hc) /* Make nbits fit into mpz_t implementation. */ val_2 = gcry_mpi_set_ui (NULL, 2); val_3 = gcry_mpi_set_ui (NULL, 3); - prime = gcry_mpi_snew(0); - result = gcry_mpi_new(0); - pminus1 = gcry_mpi_new(0); - *ptest = gcry_mpi_new(0); + prime = gcry_mpi_snew (0); + result = gcry_mpi_new (0); + pminus1 = gcry_mpi_new (0); + *ptest = gcry_mpi_new (0); tmp = gcry_mpi_new (0); sp = gcry_mpi_new (0); while (1) + { + /* generate a random number */ + mpz_randomize (prime, nbits, hc); + /* Set high order bit to 1, set low order bit to 1. If we are + * generating a secret prime we are most probably doing that + * for RSA, to make sure that the modulus does have the + * requested key size we set the 2 high order bits. */ + gcry_mpi_set_bit (prime, nbits - 1); + gcry_mpi_set_bit (prime, nbits - 2); + gcry_mpi_set_bit (prime, 0); + + /* Calculate all remainders. */ + for (i = 0; i < no_of_small_prime_numbers; i++) + { + size_t written; + + gcry_mpi_set_ui (sp, small_prime_numbers[i]); + gcry_mpi_div (NULL, tmp, prime, sp, -1); + mods[i] = 0; + written = sizeof (unsigned int); + GNUNET_assert (0 == + gcry_mpi_print (GCRYMPI_FMT_USG, + (unsigned char *) &mods[i], written, + &written, tmp)); + adjust ((unsigned char *) &mods[i], written, sizeof (unsigned int)); + mods[i] = ntohl (mods[i]); + } + /* Now try some primes starting with prime. */ + for (step = 0; step < 20000; step += 2) { - /* generate a random number */ - mpz_randomize (prime, nbits, hc); - /* Set high order bit to 1, set low order bit to 1. If we are - generating a secret prime we are most probably doing that - for RSA, to make sure that the modulus does have the - requested key size we set the 2 high order bits. */ - gcry_mpi_set_bit (prime, nbits - 1); - gcry_mpi_set_bit (prime, nbits - 2); - gcry_mpi_set_bit (prime, 0); - - /* Calculate all remainders. */ + /* Check against all the small primes we have in mods. */ for (i = 0; i < no_of_small_prime_numbers; i++) - { - size_t written; - - gcry_mpi_set_ui(sp, small_prime_numbers[i]); - gcry_mpi_div (NULL, tmp, prime, sp, -1); - mods[i] = 0; - written = sizeof (unsigned int); - GNUNET_assert (0 == - gcry_mpi_print (GCRYMPI_FMT_USG, - (unsigned char*) &mods[i], written, &written, - tmp)); - } - /* Now try some primes starting with prime. */ - for (step = 0; step < 20000; step += 2) - { - /* Check against all the small primes we have in mods. */ - for (i = 0; i < no_of_small_prime_numbers; i++) - { - uint16_t x = small_prime_numbers[i]; - while (mods[i] + step >= x) - mods[i] -= x; - if (!(mods[i] + step)) - break; - } - if (i < no_of_small_prime_numbers) - continue; /* Found a multiple of an already known prime. */ - - gcry_mpi_add_ui (*ptest, prime, step); - if (!gcry_mpi_test_bit (*ptest, nbits - 2)) - break; - - /* Do a fast Fermat test now. */ - gcry_mpi_sub_ui (pminus1, *ptest, 1); - gcry_mpi_powm (result, val_2, pminus1, *ptest); - if ((!gcry_mpi_cmp_ui (result, 1)) && (is_prime (*ptest, 5, hc))) - { - /* Got it. */ - gcry_mpi_release (sp); - gcry_mpi_release (tmp); - gcry_mpi_release (val_2); - gcry_mpi_release (val_3); - gcry_mpi_release (result); - gcry_mpi_release (pminus1); - gcry_mpi_release (prime); - return; - } - } + { + uint16_t x = small_prime_numbers[i]; + + while (mods[i] + step >= x) + mods[i] -= x; + if (!(mods[i] + step)) + break; + } + if (i < no_of_small_prime_numbers) + continue; /* Found a multiple of an already known prime. */ + + gcry_mpi_add_ui (*ptest, prime, step); + if (!gcry_mpi_test_bit (*ptest, nbits - 2)) + break; + + /* Do a fast Fermat test now. */ + gcry_mpi_sub_ui (pminus1, *ptest, 1); + gcry_mpi_powm (result, val_2, pminus1, *ptest); + if ((!gcry_mpi_cmp_ui (result, 1)) && (is_prime (*ptest, 5, hc))) + { + /* Got it. */ + gcry_mpi_release (sp); + gcry_mpi_release (tmp); + gcry_mpi_release (val_2); + gcry_mpi_release (val_3); + gcry_mpi_release (result); + gcry_mpi_release (pminus1); + gcry_mpi_release (prime); + return; + } } + } } /** @@ -378,11 +399,11 @@ gen_prime (gcry_mpi_t *ptest, unsigned int nbits, GNUNET_HashCode * hc) * @param hc the HC to use for PRNG (modified!) */ static void -generate_kblock_key (KBlock_secret_key * sk, - unsigned int nbits, GNUNET_HashCode * hc) +generate_kblock_key (KBlock_secret_key *sk, unsigned int nbits, + GNUNET_HashCode * hc) { gcry_mpi_t t1, t2; - gcry_mpi_t phi; /* helper: (p-1)(q-1) */ + gcry_mpi_t phi; /* helper: (p-1)(q-1) */ gcry_mpi_t g; gcry_mpi_t f; @@ -391,47 +412,47 @@ generate_kblock_key (KBlock_secret_key * sk, nbits++; sk->e = gcry_mpi_set_ui (NULL, 257); - sk->n = gcry_mpi_new(0); - sk->p = gcry_mpi_new(0); - sk->q = gcry_mpi_new(0); - sk->d = gcry_mpi_new(0); - sk->u = gcry_mpi_new(0); - - t1 = gcry_mpi_new(0); - t2 = gcry_mpi_new(0); - phi = gcry_mpi_new(0); - g = gcry_mpi_new(0); - f = gcry_mpi_new(0); + sk->n = gcry_mpi_new (0); + sk->p = gcry_mpi_new (0); + sk->q = gcry_mpi_new (0); + sk->d = gcry_mpi_new (0); + sk->u = gcry_mpi_new (0); + + t1 = gcry_mpi_new (0); + t2 = gcry_mpi_new (0); + phi = gcry_mpi_new (0); + g = gcry_mpi_new (0); + f = gcry_mpi_new (0); do + { + do { - do - { - gcry_mpi_release (sk->p); - gcry_mpi_release (sk->q); - gen_prime (&sk->p, nbits / 2, hc); - gen_prime (&sk->q, nbits / 2, hc); - - if (gcry_mpi_cmp (sk->p, sk->q) > 0) /* p shall be smaller than q (for calc of u) */ - gcry_mpi_swap (sk->p, sk->q); - /* calculate the modulus */ - gcry_mpi_mul (sk->n, sk->p, sk->q); - } - while (gcry_mpi_get_nbits (sk->n) != nbits); - - /* calculate Euler totient: phi = (p-1)(q-1) */ - gcry_mpi_sub_ui (t1, sk->p, 1); - gcry_mpi_sub_ui (t2, sk->q, 1); - gcry_mpi_mul (phi, t1, t2); - gcry_mpi_gcd (g, t1, t2); - gcry_mpi_div (f, NULL, phi, g, 0); - while (0 == gcry_mpi_gcd (t1, sk->e, phi)) - { /* (while gcd is not 1) */ - gcry_mpi_add_ui (sk->e, sk->e, 2); - } - - /* calculate the secret key d = e^1 mod phi */ + gcry_mpi_release (sk->p); + gcry_mpi_release (sk->q); + gen_prime (&sk->p, nbits / 2, hc); + gen_prime (&sk->q, nbits / 2, hc); + + if (gcry_mpi_cmp (sk->p, sk->q) > 0) /* p shall be smaller than q (for calc of u) */ + gcry_mpi_swap (sk->p, sk->q); + /* calculate the modulus */ + gcry_mpi_mul (sk->n, sk->p, sk->q); + } + while (gcry_mpi_get_nbits (sk->n) != nbits); + + /* calculate Euler totient: phi = (p-1)(q-1) */ + gcry_mpi_sub_ui (t1, sk->p, 1); + gcry_mpi_sub_ui (t2, sk->q, 1); + gcry_mpi_mul (phi, t1, t2); + gcry_mpi_gcd (g, t1, t2); + gcry_mpi_div (f, NULL, phi, g, 0); + while (0 == gcry_mpi_gcd (t1, sk->e, phi)) + { /* (while gcd is not 1) */ + gcry_mpi_add_ui (sk->e, sk->e, 2); } + + /* calculate the secret key d = e^1 mod phi */ + } while ((0 == gcry_mpi_invm (sk->d, sk->e, f)) || (0 == gcry_mpi_invm (sk->u, sk->p, sk->q))); @@ -442,6 +463,7 @@ generate_kblock_key (KBlock_secret_key * sk, gcry_mpi_release (g); } +GNUNET_NETWORK_STRUCT_BEGIN /** * Internal representation of the private key. @@ -461,7 +483,7 @@ struct KskRsaPrivateKeyBinaryEncoded uint16_t sizedmq1 GNUNET_PACKED; /* in big-endian! */ /* followed by the actual values */ }; - +GNUNET_NETWORK_STRUCT_END /** * Deterministically (!) create a hostkey using only the @@ -481,14 +503,14 @@ makeKblockKeyInternal (const GNUNET_HashCode * hc) hx = *hc; generate_kblock_key (&sk, 1024, /* at least 10x as fast than 2048 bits - -- we simply cannot afford 2048 bits - even on modern hardware, and especially - not since clearly a dictionary attack - will still be much cheaper - than breaking a 1024 bit RSA key. - If an adversary can spend the time to - break a 1024 bit RSA key just to forge - a signature -- SO BE IT. [ CG, 6/2005 ] */ + * -- we simply cannot afford 2048 bits + * even on modern hardware, and especially + * not since clearly a dictionary attack + * will still be much cheaper + * than breaking a 1024 bit RSA key. + * If an adversary can spend the time to + * break a 1024 bit RSA key just to forge + * a signature -- SO BE IT. [ CG, 6/2005 ] */ &hx); pkv[0] = &sk.n; pkv[1] = &sk.e; @@ -498,10 +520,10 @@ makeKblockKeyInternal (const GNUNET_HashCode * hc) pkv[5] = &sk.u; size = sizeof (struct KskRsaPrivateKeyBinaryEncoded); for (i = 0; i < 6; i++) - { - gcry_mpi_aprint(GCRYMPI_FMT_STD, &pbu[i], &sizes[i], *pkv[i]); - size += sizes[i]; - } + { + gcry_mpi_aprint (GCRYMPI_FMT_STD, &pbu[i], &sizes[i], *pkv[i]); + size += sizes[i]; + } GNUNET_assert (size < 65536); retval = GNUNET_malloc (size); retval->len = htons (size); @@ -526,227 +548,83 @@ makeKblockKeyInternal (const GNUNET_HashCode * hc) retval->sizedmq1 = htons (0); memcpy (&((char *) &retval[1])[i], pbu[5], sizes[5]); for (i = 0; i < 6; i++) - { - gcry_mpi_release (*pkv[i]); - free (pbu[i]); - } + { + gcry_mpi_release (*pkv[i]); + free (pbu[i]); + } return retval; } /** - * Decode the internal format into the format used - * by libgcrypt. + * Entry in the KSK cache. */ -static struct GNUNET_CRYPTO_RsaPrivateKey * -ksk_decode_key (const struct KskRsaPrivateKeyBinaryEncoded *encoding) -{ - struct GNUNET_CRYPTO_RsaPrivateKey *ret; - gcry_sexp_t res; - gcry_mpi_t n, e, d, p, q, u; - int rc; - size_t size; - int pos; - - pos = 0; - size = ntohs (encoding->sizen); - rc = gcry_mpi_scan (&n, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizen); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - return NULL; - } - size = ntohs (encoding->sizee); - rc = gcry_mpi_scan (&e, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizee); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - return NULL; - } - size = ntohs (encoding->sized); - rc = gcry_mpi_scan (&d, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sized); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - return NULL; - } - /* swap p and q! */ - size = ntohs (encoding->sizep); - if (size > 0) - { - rc = gcry_mpi_scan (&q, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizep); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - return NULL; - } - } - else - q = NULL; - size = ntohs (encoding->sizeq); - if (size > 0) - { - rc = gcry_mpi_scan (&p, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizeq); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - if (q != NULL) - gcry_mpi_release (q); - return NULL; - } - } - else - p = NULL; - pos += ntohs (encoding->sizedmp1); - pos += ntohs (encoding->sizedmq1); - size = - ntohs (encoding->len) - sizeof (struct KskRsaPrivateKeyBinaryEncoded) - - pos; - if (size > 0) - { - rc = gcry_mpi_scan (&u, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - if (p != NULL) - gcry_mpi_release (p); - if (q != NULL) - gcry_mpi_release (q); - return NULL; - } - } - else - u = NULL; - - if ((p != NULL) && (q != NULL) && (u != NULL)) - { - rc = gcry_sexp_build (&res, &size, /* erroff */ - "(private-key(rsa(n %m)(e %m)(d %m)(p %m)(q %m)(u %m)))", - n, e, d, p, q, u); - } - else - { - if ((p != NULL) && (q != NULL)) - { - rc = gcry_sexp_build (&res, &size, /* erroff */ - "(private-key(rsa(n %m)(e %m)(d %m)(p %m)(q %m)))", - n, e, d, p, q); - } - else - { - rc = gcry_sexp_build (&res, &size, /* erroff */ - "(private-key(rsa(n %m)(e %m)(d %m)))", - n, e, d); - } - } - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - if (p != NULL) - gcry_mpi_release (p); - if (q != NULL) - gcry_mpi_release (q); - if (u != NULL) - gcry_mpi_release (u); - - if (rc) - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_sexp_build", rc); -#if EXTRA_CHECKS - if (gcry_pk_testkey (res)) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_pk_testkey", rc); - return NULL; - } -#endif - ret = GNUNET_malloc (sizeof (struct GNUNET_CRYPTO_RsaPrivateKey)); - ret->sexp = res; - return ret; -} - - struct KBlockKeyCacheLine { + /** + * Hash from which the key was generated. + */ GNUNET_HashCode hc; + + /** + * The encoded key. + */ struct KskRsaPrivateKeyBinaryEncoded *pke; }; + +/** + * Cached KSK keys so that we don't have to recompute them + * all the time. + */ static struct KBlockKeyCacheLine **cache; + +/** + * Size of the 'cache' array. + */ static unsigned int cacheSize; + /** * Deterministically (!) create a hostkey using only the * given HashCode as input to the PRNG. + * + * @param hc hash code to generate the key from + * @return corresponding private key; must not be freed! */ struct GNUNET_CRYPTO_RsaPrivateKey * GNUNET_CRYPTO_rsa_key_create_from_hash (const GNUNET_HashCode * hc) { - struct GNUNET_CRYPTO_RsaPrivateKey *ret; struct KBlockKeyCacheLine *line; unsigned int i; - for (i = 0; i < cacheSize; i++) - { - if (0 == memcmp (hc, &cache[i]->hc, sizeof (GNUNET_HashCode))) - { - ret = ksk_decode_key (cache[i]->pke); - return ret; - } - } - + for (i = 0; i < cacheSize; i++) + if (0 == memcmp (hc, &cache[i]->hc, sizeof (GNUNET_HashCode))) + return GNUNET_CRYPTO_rsa_decode_key ((const char*) cache[i]->pke, + ntohs (cache[i]->pke->len)); line = GNUNET_malloc (sizeof (struct KBlockKeyCacheLine)); line->hc = *hc; line->pke = makeKblockKeyInternal (hc); GNUNET_array_grow (cache, cacheSize, cacheSize + 1); cache[cacheSize - 1] = line; - return ksk_decode_key (line->pke); + return GNUNET_CRYPTO_rsa_decode_key ((const char*) line->pke, + ntohs (line->pke->len)); } +/** + * Destructor that frees the KSK cache. + */ void __attribute__ ((destructor)) GNUNET_CRYPTO_ksk_fini () { unsigned int i; for (i = 0; i < cacheSize; i++) - { - GNUNET_free (cache[i]->pke); - GNUNET_free (cache[i]); - } + { + GNUNET_free (cache[i]->pke); + GNUNET_free (cache[i]); + } GNUNET_array_grow (cache, cacheSize, 0); }