X-Git-Url: https://git.librecmc.org/?a=blobdiff_plain;ds=sidebyside;f=src%2Futil%2Fcrypto_ksk.c;h=274457b61e06ecaa6858c0184904385fdd2f3d80;hb=8f654f30c3c4987c9ca1b564d6e6f2d75ae24862;hp=1aa493ca82b88fcadc2f86092b71bd85921c772a;hpb=94f01bdd2fda575769f01f8072689fa6936af8f4;p=oweals%2Fgnunet.git diff --git a/src/util/crypto_ksk.c b/src/util/crypto_ksk.c index 1aa493ca8..274457b61 100644 --- a/src/util/crypto_ksk.c +++ b/src/util/crypto_ksk.c @@ -36,25 +36,27 @@ #include "gnunet_common.h" #include "gnunet_crypto_lib.h" #include "gnunet_os_lib.h" -#include #include +#include + +#define LOG(kind,...) GNUNET_log_from (kind, "util", __VA_ARGS__) /** * Log an error message at log-level 'level' that indicates * a failure of the command 'cmd' with the message given * by gcry_strerror(rc). */ -#define LOG_GCRY(level, cmd, rc) do { GNUNET_log(level, _("`%s' failed at %s:%d with error: %s\n"), cmd, __FILE__, __LINE__, gcry_strerror(rc)); } while(0); +#define LOG_GCRY(level, cmd, rc) do { LOG(level, _("`%s' failed at %s:%d with error: %s\n"), cmd, __FILE__, __LINE__, gcry_strerror(rc)); } while(0); typedef struct { - mpz_t n; /* public modulus */ - mpz_t e; /* public exponent */ - mpz_t d; /* exponent */ - mpz_t p; /* prime p. */ - mpz_t q; /* prime q. */ - mpz_t u; /* inverse of p mod q. */ + gcry_mpi_t n; /* public modulus */ + gcry_mpi_t e; /* public exponent */ + gcry_mpi_t d; /* exponent */ + gcry_mpi_t p; /* prime p. */ + gcry_mpi_t q; /* prime q. */ + gcry_mpi_t u; /* inverse of p mod q. */ } KBlock_secret_key; /** @@ -67,110 +69,159 @@ struct GNUNET_CRYPTO_RsaPrivateKey }; -static unsigned int -get_nbits (mpz_t a) -{ - return mpz_sizeinbase (a, 2); -} - - static void -mpz_randomize (mpz_t n, unsigned int nbits, GNUNET_HashCode * rnd) +mpz_randomize (gcry_mpi_t n, unsigned int nbits, GNUNET_HashCode * rnd) { - GNUNET_HashCode *tmp; + GNUNET_HashCode hc; + GNUNET_HashCode tmp; int bits_per_hc = sizeof (GNUNET_HashCode) * 8; int cnt; int i; GNUNET_assert (nbits > 0); cnt = (nbits + bits_per_hc - 1) / bits_per_hc; - tmp = GNUNET_malloc (sizeof (GNUNET_HashCode) * cnt); + gcry_mpi_set_ui (n, 0); + + tmp = *rnd; + for (i = 0; i < cnt; i++) + { + int j; - tmp[0] = *rnd; - for (i = 0; i < cnt - 1; i++) + if (i > 0) + GNUNET_CRYPTO_hash (&hc, sizeof (GNUNET_HashCode), &tmp); + for (j = 0; j < sizeof (GNUNET_HashCode) / sizeof (uint32_t); j++) { - GNUNET_CRYPTO_hash (&tmp[i], sizeof (GNUNET_HashCode), &tmp[i + 1]); +#if HAVE_GCRY_MPI_LSHIFT + gcry_mpi_lshift (n, n, sizeof (uint32_t) * 8); +#else + gcry_mpi_mul_ui (n, n, 1 << (sizeof (uint32_t) * 4)); + gcry_mpi_mul_ui (n, n, 1 << (sizeof (uint32_t) * 4)); +#endif + gcry_mpi_add_ui (n, n, ntohl (((uint32_t *) & tmp)[j])); } - GNUNET_CRYPTO_hash (&tmp[i], sizeof (GNUNET_HashCode), rnd); - mpz_import (n, cnt * sizeof (GNUNET_HashCode) / sizeof (unsigned int), - 1, sizeof (unsigned int), 1, 0, tmp); - GNUNET_free (tmp); - i = get_nbits (n); + hc = tmp; + } + GNUNET_CRYPTO_hash (&hc, sizeof (GNUNET_HashCode), rnd); + i = gcry_mpi_get_nbits (n); while (i > nbits) - mpz_clrbit (n, --i); + gcry_mpi_clear_bit (n, --i); +} + +static unsigned long +mpz_trailing_zeroes (gcry_mpi_t n) +{ + unsigned int idx, cnt; + + cnt = gcry_mpi_get_nbits (n); + for (idx = 0; idx < cnt; idx++) + { + if (gcry_mpi_test_bit (n, idx) == 0) + return idx; + } + + return ULONG_MAX; +} + +static void +mpz_tdiv_q_2exp (gcry_mpi_t q, gcry_mpi_t n, unsigned int b) +{ + gcry_mpi_t u, d; + + u = gcry_mpi_set_ui (NULL, 1); + d = gcry_mpi_new (0); + gcry_mpi_mul_2exp (d, u, b); + gcry_mpi_div (q, NULL, n, d, 0); } /** * Return true if n is probably a prime */ static int -is_prime (mpz_t n, int steps, GNUNET_HashCode * hc) +is_prime (gcry_mpi_t n, int steps, GNUNET_HashCode * hc) { - mpz_t x; - mpz_t y; - mpz_t z; - mpz_t nminus1; - mpz_t a2; - mpz_t q; + gcry_mpi_t x; + gcry_mpi_t y; + gcry_mpi_t z; + gcry_mpi_t nminus1; + gcry_mpi_t a2; + gcry_mpi_t q; unsigned int i, j, k; int rc = 0; unsigned int nbits; - mpz_init (x); - mpz_init (y); - mpz_init (z); - mpz_init (nminus1); - mpz_init_set_ui (a2, 2); - nbits = get_nbits (n); - mpz_sub_ui (nminus1, n, 1); + x = gcry_mpi_new (0); + y = gcry_mpi_new (0); + z = gcry_mpi_new (0); + nminus1 = gcry_mpi_new (0); + a2 = gcry_mpi_set_ui (NULL, 2); + + nbits = gcry_mpi_get_nbits (n); + gcry_mpi_sub_ui (nminus1, n, 1); /* Find q and k, so that n = 1 + 2^k * q . */ - mpz_init_set (q, nminus1); - k = mpz_scan1 (q, 0); + q = gcry_mpi_set (NULL, nminus1); + k = mpz_trailing_zeroes (q); mpz_tdiv_q_2exp (q, q, k); for (i = 0; i < steps; i++) + { + if (!i) { - if (!i) - { - mpz_set_ui (x, 2); - } - else - { - mpz_randomize (x, nbits - 1, hc); - GNUNET_assert (mpz_cmp (x, nminus1) < 0 && mpz_cmp_ui (x, 1) > 0); - } - mpz_powm (y, x, q, n); - if (mpz_cmp_ui (y, 1) && mpz_cmp (y, nminus1)) - { - for (j = 1; j < k && mpz_cmp (y, nminus1); j++) - { - mpz_powm (y, y, a2, n); - if (!mpz_cmp_ui (y, 1)) - goto leave; /* Not a prime. */ - } - if (mpz_cmp (y, nminus1)) - goto leave; /* Not a prime. */ - } + gcry_mpi_set_ui (x, 2); } + else + { + mpz_randomize (x, nbits - 1, hc); + GNUNET_assert (gcry_mpi_cmp (x, nminus1) < 0); + GNUNET_assert (gcry_mpi_cmp_ui (x, 1) > 0); + } + gcry_mpi_powm (y, x, q, n); + if (gcry_mpi_cmp_ui (y, 1) && gcry_mpi_cmp (y, nminus1)) + { + for (j = 1; j < k && gcry_mpi_cmp (y, nminus1); j++) + { + gcry_mpi_powm (y, y, a2, n); + if (!gcry_mpi_cmp_ui (y, 1)) + goto leave; /* Not a prime. */ + } + if (gcry_mpi_cmp (y, nminus1)) + goto leave; /* Not a prime. */ + } + } rc = 1; /* May be a prime. */ leave: - mpz_clear (x); - mpz_clear (y); - mpz_clear (z); - mpz_clear (nminus1); - mpz_clear (q); - mpz_clear (a2); + gcry_mpi_release (x); + gcry_mpi_release (y); + gcry_mpi_release (z); + gcry_mpi_release (nminus1); + gcry_mpi_release (q); + gcry_mpi_release (a2); return rc; } +/** + * If target != size, move target bytes to the + * end of the size-sized buffer and zero out the + * first target-size bytes. + */ static void -gen_prime (mpz_t ptest, unsigned int nbits, GNUNET_HashCode * hc) +adjust (unsigned char *buf, size_t size, size_t target) +{ + if (size < target) + { + memmove (&buf[target - size], buf, size); + memset (buf, 0, target - size); + } +} + + +static void +gen_prime (gcry_mpi_t * ptest, unsigned int nbits, GNUNET_HashCode * hc) { /* Note: 2 is not included because it can be tested more easily by - looking at bit 0. The last entry in this list is marked by a zero */ + * looking at bit 0. The last entry in this list is marked by a zero */ static const uint16_t small_prime_numbers[] = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, @@ -256,99 +307,89 @@ gen_prime (mpz_t ptest, unsigned int nbits, GNUNET_HashCode * hc) #define DIM(v) (sizeof(v)/sizeof((v)[0])) static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1; - mpz_t prime, pminus1, val_2, val_3, result; - int i; - unsigned x, step; - int *mods; - mpz_t tmp; + gcry_mpi_t prime, pminus1, val_2, val_3, result; + unsigned int i; + unsigned int step; + unsigned int mods[no_of_small_prime_numbers]; + gcry_mpi_t tmp; + gcry_mpi_t sp; GNUNET_assert (nbits >= 16); - mods = GNUNET_malloc (no_of_small_prime_numbers * sizeof (*mods)); /* Make nbits fit into mpz_t implementation. */ - mpz_init_set_ui (val_2, 2); - mpz_init_set_ui (val_3, 3); - mpz_init (prime); - mpz_init (result); - mpz_init (pminus1); - mpz_init (ptest); + val_2 = gcry_mpi_set_ui (NULL, 2); + val_3 = gcry_mpi_set_ui (NULL, 3); + prime = gcry_mpi_snew (0); + result = gcry_mpi_new (0); + pminus1 = gcry_mpi_new (0); + *ptest = gcry_mpi_new (0); + tmp = gcry_mpi_new (0); + sp = gcry_mpi_new (0); while (1) + { + /* generate a random number */ + mpz_randomize (prime, nbits, hc); + /* Set high order bit to 1, set low order bit to 1. If we are + * generating a secret prime we are most probably doing that + * for RSA, to make sure that the modulus does have the + * requested key size we set the 2 high order bits. */ + gcry_mpi_set_bit (prime, nbits - 1); + gcry_mpi_set_bit (prime, nbits - 2); + gcry_mpi_set_bit (prime, 0); + + /* Calculate all remainders. */ + for (i = 0; i < no_of_small_prime_numbers; i++) { - /* generate a random number */ - mpz_randomize (prime, nbits, hc); - /* Set high order bit to 1, set low order bit to 1. If we are - generating a secret prime we are most probably doing that - for RSA, to make sure that the modulus does have the - requested key size we set the 2 high order bits. */ - mpz_setbit (prime, nbits - 1); - mpz_setbit (prime, nbits - 2); - mpz_setbit (prime, 0); - - /* Calculate all remainders. */ - mpz_init (tmp); - for (i = 0; (x = small_prime_numbers[i]); i++) - mods[i] = mpz_fdiv_r_ui (tmp, prime, x); - mpz_clear (tmp); - /* Now try some primes starting with prime. */ - for (step = 0; step < 20000; step += 2) - { - /* Check against all the small primes we have in mods. */ - for (i = 0; (x = small_prime_numbers[i]); i++) - { - while (mods[i] + step >= x) - mods[i] -= x; - if (!(mods[i] + step)) - break; - } - if (x) - continue; /* Found a multiple of an already known prime. */ - - mpz_add_ui (ptest, prime, step); - if (!mpz_tstbit (ptest, nbits - 2)) - break; - - /* Do a fast Fermat test now. */ - mpz_sub_ui (pminus1, ptest, 1); - mpz_powm (result, val_2, pminus1, ptest); - if ((!mpz_cmp_ui (result, 1)) && (is_prime (ptest, 5, hc))) - { - /* Got it. */ - mpz_clear (val_2); - mpz_clear (val_3); - mpz_clear (result); - mpz_clear (pminus1); - mpz_clear (prime); - GNUNET_free (mods); - return; - } - } + size_t written; + + gcry_mpi_set_ui (sp, small_prime_numbers[i]); + gcry_mpi_div (NULL, tmp, prime, sp, -1); + mods[i] = 0; + written = sizeof (unsigned int); + GNUNET_assert (0 == + gcry_mpi_print (GCRYMPI_FMT_USG, + (unsigned char *) &mods[i], written, + &written, tmp)); + adjust ((unsigned char *) &mods[i], written, sizeof (unsigned int)); + mods[i] = ntohl (mods[i]); } -} - -/** - * Find the greatest common divisor G of A and B. - * Return: 1 if this 1, 0 in all other cases - */ -static int -test_gcd (mpz_t g, mpz_t xa, mpz_t xb) -{ - mpz_t a, b; - - mpz_init_set (a, xa); - mpz_init_set (b, xb); - - /* TAOCP Vol II, 4.5.2, Algorithm A */ - while (mpz_cmp_ui (b, 0)) + /* Now try some primes starting with prime. */ + for (step = 0; step < 20000; step += 2) { - mpz_fdiv_r (g, a, b); /* g used as temorary variable */ - mpz_set (a, b); - mpz_set (b, g); + /* Check against all the small primes we have in mods. */ + for (i = 0; i < no_of_small_prime_numbers; i++) + { + uint16_t x = small_prime_numbers[i]; + + while (mods[i] + step >= x) + mods[i] -= x; + if (!(mods[i] + step)) + break; + } + if (i < no_of_small_prime_numbers) + continue; /* Found a multiple of an already known prime. */ + + gcry_mpi_add_ui (*ptest, prime, step); + if (!gcry_mpi_test_bit (*ptest, nbits - 2)) + break; + + /* Do a fast Fermat test now. */ + gcry_mpi_sub_ui (pminus1, *ptest, 1); + gcry_mpi_powm (result, val_2, pminus1, *ptest); + if ((!gcry_mpi_cmp_ui (result, 1)) && (is_prime (*ptest, 5, hc))) + { + /* Got it. */ + gcry_mpi_release (sp); + gcry_mpi_release (tmp); + gcry_mpi_release (val_2); + gcry_mpi_release (val_3); + gcry_mpi_release (result); + gcry_mpi_release (pminus1); + gcry_mpi_release (prime); + return; + } } - mpz_set (g, a); - - mpz_clear (a); - mpz_clear (b); - return (0 == mpz_cmp_ui (g, 1)); + } } /** @@ -358,71 +399,71 @@ test_gcd (mpz_t g, mpz_t xa, mpz_t xb) * @param hc the HC to use for PRNG (modified!) */ static void -generate_kblock_key (KBlock_secret_key * sk, - unsigned int nbits, GNUNET_HashCode * hc) +generate_kblock_key (KBlock_secret_key *sk, unsigned int nbits, + GNUNET_HashCode * hc) { - mpz_t t1, t2; - mpz_t phi; /* helper: (p-1)(q-1) */ - mpz_t g; - mpz_t f; + gcry_mpi_t t1, t2; + gcry_mpi_t phi; /* helper: (p-1)(q-1) */ + gcry_mpi_t g; + gcry_mpi_t f; /* make sure that nbits is even so that we generate p, q of equal size */ if ((nbits & 1)) nbits++; - mpz_init_set_ui (sk->e, 257); - mpz_init (sk->n); - mpz_init (sk->p); - mpz_init (sk->q); - mpz_init (sk->d); - mpz_init (sk->u); + sk->e = gcry_mpi_set_ui (NULL, 257); + sk->n = gcry_mpi_new (0); + sk->p = gcry_mpi_new (0); + sk->q = gcry_mpi_new (0); + sk->d = gcry_mpi_new (0); + sk->u = gcry_mpi_new (0); - mpz_init (t1); - mpz_init (t2); - mpz_init (phi); - mpz_init (g); - mpz_init (f); + t1 = gcry_mpi_new (0); + t2 = gcry_mpi_new (0); + phi = gcry_mpi_new (0); + g = gcry_mpi_new (0); + f = gcry_mpi_new (0); do + { + do { - do - { - mpz_clear (sk->p); - mpz_clear (sk->q); - gen_prime (sk->p, nbits / 2, hc); - gen_prime (sk->q, nbits / 2, hc); - - if (mpz_cmp (sk->p, sk->q) > 0) /* p shall be smaller than q (for calc of u) */ - mpz_swap (sk->p, sk->q); - /* calculate the modulus */ - mpz_mul (sk->n, sk->p, sk->q); - } - while (get_nbits (sk->n) != nbits); - - /* calculate Euler totient: phi = (p-1)(q-1) */ - mpz_sub_ui (t1, sk->p, 1); - mpz_sub_ui (t2, sk->q, 1); - mpz_mul (phi, t1, t2); - mpz_gcd (g, t1, t2); - mpz_fdiv_q (f, phi, g); - - while (0 == test_gcd (t1, sk->e, phi)) - { /* (while gcd is not 1) */ - mpz_add_ui (sk->e, sk->e, 2); - } - - /* calculate the secret key d = e^1 mod phi */ + gcry_mpi_release (sk->p); + gcry_mpi_release (sk->q); + gen_prime (&sk->p, nbits / 2, hc); + gen_prime (&sk->q, nbits / 2, hc); + + if (gcry_mpi_cmp (sk->p, sk->q) > 0) /* p shall be smaller than q (for calc of u) */ + gcry_mpi_swap (sk->p, sk->q); + /* calculate the modulus */ + gcry_mpi_mul (sk->n, sk->p, sk->q); } - while ((0 == mpz_invert (sk->d, sk->e, f)) || - (0 == mpz_invert (sk->u, sk->p, sk->q))); - - mpz_clear (t1); - mpz_clear (t2); - mpz_clear (phi); - mpz_clear (f); - mpz_clear (g); + while (gcry_mpi_get_nbits (sk->n) != nbits); + + /* calculate Euler totient: phi = (p-1)(q-1) */ + gcry_mpi_sub_ui (t1, sk->p, 1); + gcry_mpi_sub_ui (t2, sk->q, 1); + gcry_mpi_mul (phi, t1, t2); + gcry_mpi_gcd (g, t1, t2); + gcry_mpi_div (f, NULL, phi, g, 0); + while (0 == gcry_mpi_gcd (t1, sk->e, phi)) + { /* (while gcd is not 1) */ + gcry_mpi_add_ui (sk->e, sk->e, 2); + } + + /* calculate the secret key d = e^1 mod phi */ + } + while ((0 == gcry_mpi_invm (sk->d, sk->e, f)) || + (0 == gcry_mpi_invm (sk->u, sk->p, sk->q))); + + gcry_mpi_release (t1); + gcry_mpi_release (t2); + gcry_mpi_release (phi); + gcry_mpi_release (f); + gcry_mpi_release (g); } +GNUNET_NETWORK_STRUCT_BEGIN /** * Internal representation of the private key. @@ -442,7 +483,7 @@ struct KskRsaPrivateKeyBinaryEncoded uint16_t sizedmq1 GNUNET_PACKED; /* in big-endian! */ /* followed by the actual values */ }; - +GNUNET_NETWORK_STRUCT_END /** * Deterministically (!) create a hostkey using only the @@ -453,8 +494,8 @@ makeKblockKeyInternal (const GNUNET_HashCode * hc) { KBlock_secret_key sk; GNUNET_HashCode hx; - void *pbu[6]; - mpz_t *pkv[6]; + unsigned char *pbu[6]; + gcry_mpi_t *pkv[6]; size_t sizes[6]; struct KskRsaPrivateKeyBinaryEncoded *retval; int i; @@ -462,14 +503,14 @@ makeKblockKeyInternal (const GNUNET_HashCode * hc) hx = *hc; generate_kblock_key (&sk, 1024, /* at least 10x as fast than 2048 bits - -- we simply cannot afford 2048 bits - even on modern hardware, and especially - not since clearly a dictionary attack - will still be much cheaper - than breaking a 1024 bit RSA key. - If an adversary can spend the time to - break a 1024 bit RSA key just to forge - a signature -- SO BE IT. [ CG, 6/2005 ] */ + * -- we simply cannot afford 2048 bits + * even on modern hardware, and especially + * not since clearly a dictionary attack + * will still be much cheaper + * than breaking a 1024 bit RSA key. + * If an adversary can spend the time to + * break a 1024 bit RSA key just to forge + * a signature -- SO BE IT. [ CG, 6/2005 ] */ &hx); pkv[0] = &sk.n; pkv[1] = &sk.e; @@ -479,14 +520,10 @@ makeKblockKeyInternal (const GNUNET_HashCode * hc) pkv[5] = &sk.u; size = sizeof (struct KskRsaPrivateKeyBinaryEncoded); for (i = 0; i < 6; i++) - { - pbu[i] = mpz_export (NULL, &sizes[i], 1, /* most significant word first */ - 1, /* unit is bytes */ - 1, /* big endian */ - 0, /* nails */ - *pkv[i]); - size += sizes[i]; - } + { + gcry_mpi_aprint (GCRYMPI_FMT_STD, &pbu[i], &sizes[i], *pkv[i]); + size += sizes[i]; + } GNUNET_assert (size < 65536); retval = GNUNET_malloc (size); retval->len = htons (size); @@ -511,227 +548,83 @@ makeKblockKeyInternal (const GNUNET_HashCode * hc) retval->sizedmq1 = htons (0); memcpy (&((char *) &retval[1])[i], pbu[5], sizes[5]); for (i = 0; i < 6; i++) - { - mpz_clear (*pkv[i]); - free (pbu[i]); - } + { + gcry_mpi_release (*pkv[i]); + free (pbu[i]); + } return retval; } /** - * Decode the internal format into the format used - * by libgcrypt. + * Entry in the KSK cache. */ -static struct GNUNET_CRYPTO_RsaPrivateKey * -ksk_decode_key (const struct KskRsaPrivateKeyBinaryEncoded *encoding) +struct KBlockKeyCacheLine { - struct GNUNET_CRYPTO_RsaPrivateKey *ret; - gcry_sexp_t res; - gcry_mpi_t n, e, d, p, q, u; - int rc; - size_t size; - int pos; - - pos = 0; - size = ntohs (encoding->sizen); - rc = gcry_mpi_scan (&n, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizen); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - return NULL; - } - size = ntohs (encoding->sizee); - rc = gcry_mpi_scan (&e, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizee); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - return NULL; - } - size = ntohs (encoding->sized); - rc = gcry_mpi_scan (&d, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sized); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - return NULL; - } - /* swap p and q! */ - size = ntohs (encoding->sizep); - if (size > 0) - { - rc = gcry_mpi_scan (&q, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizep); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - return NULL; - } - } - else - q = NULL; - size = ntohs (encoding->sizeq); - if (size > 0) - { - rc = gcry_mpi_scan (&p, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - pos += ntohs (encoding->sizeq); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - if (q != NULL) - gcry_mpi_release (q); - return NULL; - } - } - else - p = NULL; - pos += ntohs (encoding->sizedmp1); - pos += ntohs (encoding->sizedmq1); - size = - ntohs (encoding->len) - sizeof (struct KskRsaPrivateKeyBinaryEncoded) - - pos; - if (size > 0) - { - rc = gcry_mpi_scan (&u, - GCRYMPI_FMT_USG, - &((const unsigned char *) (&encoding[1]))[pos], - size, &size); - if (rc) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_mpi_scan", rc); - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - if (p != NULL) - gcry_mpi_release (p); - if (q != NULL) - gcry_mpi_release (q); - return NULL; - } - } - else - u = NULL; + /** + * Hash from which the key was generated. + */ + GNUNET_HashCode hc; - if ((p != NULL) && (q != NULL) && (u != NULL)) - { - rc = gcry_sexp_build (&res, &size, /* erroff */ - "(private-key(rsa(n %m)(e %m)(d %m)(p %m)(q %m)(u %m)))", - n, e, d, p, q, u); - } - else - { - if ((p != NULL) && (q != NULL)) - { - rc = gcry_sexp_build (&res, &size, /* erroff */ - "(private-key(rsa(n %m)(e %m)(d %m)(p %m)(q %m)))", - n, e, d, p, q); - } - else - { - rc = gcry_sexp_build (&res, &size, /* erroff */ - "(private-key(rsa(n %m)(e %m)(d %m)))", - n, e, d); - } - } - gcry_mpi_release (n); - gcry_mpi_release (e); - gcry_mpi_release (d); - if (p != NULL) - gcry_mpi_release (p); - if (q != NULL) - gcry_mpi_release (q); - if (u != NULL) - gcry_mpi_release (u); - - if (rc) - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_sexp_build", rc); -#if EXTRA_CHECKS - if (gcry_pk_testkey (res)) - { - LOG_GCRY (GNUNET_ERROR_TYPE_ERROR, "gcry_pk_testkey", rc); - return NULL; - } -#endif - ret = GNUNET_malloc (sizeof (struct GNUNET_CRYPTO_RsaPrivateKey)); - ret->sexp = res; - return ret; -} + /** + * The encoded key. + */ + struct KskRsaPrivateKeyBinaryEncoded *pke; +}; -typedef struct -{ - GNUNET_HashCode hc; - struct KskRsaPrivateKeyBinaryEncoded *pke; -} KBlockKeyCacheLine; +/** + * Cached KSK keys so that we don't have to recompute them + * all the time. + */ +static struct KBlockKeyCacheLine **cache; -static KBlockKeyCacheLine **cache; +/** + * Size of the 'cache' array. + */ static unsigned int cacheSize; + /** * Deterministically (!) create a hostkey using only the * given HashCode as input to the PRNG. + * + * @param hc hash code to generate the key from + * @return corresponding private key; must not be freed! */ struct GNUNET_CRYPTO_RsaPrivateKey * GNUNET_CRYPTO_rsa_key_create_from_hash (const GNUNET_HashCode * hc) { - struct GNUNET_CRYPTO_RsaPrivateKey *ret; - KBlockKeyCacheLine *line; - int i; - - for (i = 0; i < cacheSize; i++) - { - if (0 == memcmp (hc, &cache[i]->hc, sizeof (GNUNET_HashCode))) - { - ret = ksk_decode_key (cache[i]->pke); - return ret; - } - } - - line = GNUNET_malloc (sizeof (KBlockKeyCacheLine)); + struct KBlockKeyCacheLine *line; + unsigned int i; + + for (i = 0; i < cacheSize; i++) + if (0 == memcmp (hc, &cache[i]->hc, sizeof (GNUNET_HashCode))) + return GNUNET_CRYPTO_rsa_decode_key ((const char*) cache[i]->pke, + ntohs (cache[i]->pke->len)); + line = GNUNET_malloc (sizeof (struct KBlockKeyCacheLine)); line->hc = *hc; line->pke = makeKblockKeyInternal (hc); GNUNET_array_grow (cache, cacheSize, cacheSize + 1); cache[cacheSize - 1] = line; - return ksk_decode_key (line->pke); + return GNUNET_CRYPTO_rsa_decode_key ((const char*) line->pke, + ntohs (line->pke->len)); } +/** + * Destructor that frees the KSK cache. + */ void __attribute__ ((destructor)) GNUNET_CRYPTO_ksk_fini () { - int i; + unsigned int i; for (i = 0; i < cacheSize; i++) - { - GNUNET_free (cache[i]->pke); - GNUNET_free (cache[i]); - } + { + GNUNET_free (cache[i]->pke); + GNUNET_free (cache[i]); + } GNUNET_array_grow (cache, cacheSize, 0); }