73210b8e0ecc49f6b625d43a33825aac507b427d
[oweals/openwrt.git] /
1 From 232e0f6ddeaee104d64675fe7d0cc142cf955f35 Mon Sep 17 00:00:00 2001
2 From: Tomasz Duszynski <tduszyns@gmail.com>
3 Date: Fri, 14 Dec 2018 19:28:02 +0100
4 Subject: [PATCH] iio: chemical: add support for Sensirion SPS30 sensor
5
6 Add support for Sensirion SPS30 particulate matter sensor.
7
8 Signed-off-by: Tomasz Duszynski <tduszyns@gmail.com>
9 Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
10 ---
11  drivers/iio/chemical/Kconfig  |  11 +
12  drivers/iio/chemical/Makefile |   1 +
13  drivers/iio/chemical/sps30.c  | 407 ++++++++++++++++++++++++++++++++++
14  3 files changed, 419 insertions(+)
15  create mode 100644 drivers/iio/chemical/sps30.c
16
17 diff --git a/drivers/iio/chemical/Kconfig b/drivers/iio/chemical/Kconfig
18 index b8e005be4f87..57832b4360e9 100644
19 --- a/drivers/iio/chemical/Kconfig
20 +++ b/drivers/iio/chemical/Kconfig
21 @@ -61,6 +61,17 @@ config IAQCORE
22           iAQ-Core Continuous/Pulsed VOC (Volatile Organic Compounds)
23           sensors
24  
25 +config SPS30
26 +       tristate "SPS30 particulate matter sensor"
27 +       depends on I2C
28 +       select CRC8
29 +       help
30 +         Say Y here to build support for the Sensirion SPS30 particulate
31 +         matter sensor.
32 +
33 +         To compile this driver as a module, choose M here: the module will
34 +         be called sps30.
35 +
36  config VZ89X
37         tristate "SGX Sensortech MiCS VZ89X VOC sensor"
38         depends on I2C
39 diff --git a/drivers/iio/chemical/Makefile b/drivers/iio/chemical/Makefile
40 index 2f4c4ba4d781..9f42f4252151 100644
41 --- a/drivers/iio/chemical/Makefile
42 +++ b/drivers/iio/chemical/Makefile
43 @@ -9,4 +9,5 @@ obj-$(CONFIG_BME680_I2C) += bme680_i2c.o
44  obj-$(CONFIG_BME680_SPI) += bme680_spi.o
45  obj-$(CONFIG_CCS811)           += ccs811.o
46  obj-$(CONFIG_IAQCORE)          += ams-iaq-core.o
47 +obj-$(CONFIG_SPS30) += sps30.o
48  obj-$(CONFIG_VZ89X)            += vz89x.o
49 diff --git a/drivers/iio/chemical/sps30.c b/drivers/iio/chemical/sps30.c
50 new file mode 100644
51 index 000000000000..fa3cd409b90b
52 --- /dev/null
53 +++ b/drivers/iio/chemical/sps30.c
54 @@ -0,0 +1,407 @@
55 +// SPDX-License-Identifier: GPL-2.0
56 +/*
57 + * Sensirion SPS30 particulate matter sensor driver
58 + *
59 + * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
60 + *
61 + * I2C slave address: 0x69
62 + *
63 + * TODO:
64 + *  - support for turning on fan cleaning
65 + *  - support for reading/setting auto cleaning interval
66 + */
67 +
68 +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 +
70 +#include <asm/unaligned.h>
71 +#include <linux/crc8.h>
72 +#include <linux/delay.h>
73 +#include <linux/i2c.h>
74 +#include <linux/iio/buffer.h>
75 +#include <linux/iio/iio.h>
76 +#include <linux/iio/sysfs.h>
77 +#include <linux/iio/trigger_consumer.h>
78 +#include <linux/iio/triggered_buffer.h>
79 +#include <linux/module.h>
80 +
81 +#define SPS30_CRC8_POLYNOMIAL 0x31
82 +/* max number of bytes needed to store PM measurements or serial string */
83 +#define SPS30_MAX_READ_SIZE 48
84 +/* sensor measures reliably up to 3000 ug / m3 */
85 +#define SPS30_MAX_PM 3000
86 +
87 +/* SPS30 commands */
88 +#define SPS30_START_MEAS 0x0010
89 +#define SPS30_STOP_MEAS 0x0104
90 +#define SPS30_RESET 0xd304
91 +#define SPS30_READ_DATA_READY_FLAG 0x0202
92 +#define SPS30_READ_DATA 0x0300
93 +#define SPS30_READ_SERIAL 0xd033
94 +
95 +enum {
96 +       PM1,
97 +       PM2P5,
98 +       PM4,
99 +       PM10,
100 +};
101 +
102 +struct sps30_state {
103 +       struct i2c_client *client;
104 +       /*
105 +        * Guards against concurrent access to sensor registers.
106 +        * Must be held whenever sequence of commands is to be executed.
107 +        */
108 +       struct mutex lock;
109 +};
110 +
111 +DECLARE_CRC8_TABLE(sps30_crc8_table);
112 +
113 +static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf,
114 +                                int txsize, u8 *rxbuf, int rxsize)
115 +{
116 +       int ret;
117 +
118 +       /*
119 +        * Sensor does not support repeated start so instead of
120 +        * sending two i2c messages in a row we just send one by one.
121 +        */
122 +       ret = i2c_master_send(state->client, txbuf, txsize);
123 +       if (ret != txsize)
124 +               return ret < 0 ? ret : -EIO;
125 +
126 +       if (!rxbuf)
127 +               return 0;
128 +
129 +       ret = i2c_master_recv(state->client, rxbuf, rxsize);
130 +       if (ret != rxsize)
131 +               return ret < 0 ? ret : -EIO;
132 +
133 +       return 0;
134 +}
135 +
136 +static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size)
137 +{
138 +       /*
139 +        * Internally sensor stores measurements in a following manner:
140 +        *
141 +        * PM1: upper two bytes, crc8, lower two bytes, crc8
142 +        * PM2P5: upper two bytes, crc8, lower two bytes, crc8
143 +        * PM4: upper two bytes, crc8, lower two bytes, crc8
144 +        * PM10: upper two bytes, crc8, lower two bytes, crc8
145 +        *
146 +        * What follows next are number concentration measurements and
147 +        * typical particle size measurement which we omit.
148 +        */
149 +       u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd };
150 +       int i, ret = 0;
151 +
152 +       switch (cmd) {
153 +       case SPS30_START_MEAS:
154 +               buf[2] = 0x03;
155 +               buf[3] = 0x00;
156 +               buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
157 +               ret = sps30_write_then_read(state, buf, 5, NULL, 0);
158 +               break;
159 +       case SPS30_STOP_MEAS:
160 +       case SPS30_RESET:
161 +               ret = sps30_write_then_read(state, buf, 2, NULL, 0);
162 +               break;
163 +       case SPS30_READ_DATA_READY_FLAG:
164 +       case SPS30_READ_DATA:
165 +       case SPS30_READ_SERIAL:
166 +               /* every two data bytes are checksummed */
167 +               size += size / 2;
168 +               ret = sps30_write_then_read(state, buf, 2, buf, size);
169 +               break;
170 +       }
171 +
172 +       if (ret)
173 +               return ret;
174 +
175 +       /* validate received data and strip off crc bytes */
176 +       for (i = 0; i < size; i += 3) {
177 +               u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE);
178 +
179 +               if (crc != buf[i + 2]) {
180 +                       dev_err(&state->client->dev,
181 +                               "data integrity check failed\n");
182 +                       return -EIO;
183 +               }
184 +
185 +               *data++ = buf[i];
186 +               *data++ = buf[i + 1];
187 +       }
188 +
189 +       return 0;
190 +}
191 +
192 +static s32 sps30_float_to_int_clamped(const u8 *fp)
193 +{
194 +       int val = get_unaligned_be32(fp);
195 +       int mantissa = val & GENMASK(22, 0);
196 +       /* this is fine since passed float is always non-negative */
197 +       int exp = val >> 23;
198 +       int fraction, shift;
199 +
200 +       /* special case 0 */
201 +       if (!exp && !mantissa)
202 +               return 0;
203 +
204 +       exp -= 127;
205 +       if (exp < 0) {
206 +               /* return values ranging from 1 to 99 */
207 +               return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
208 +       }
209 +
210 +       /* return values ranging from 100 to 300000 */
211 +       shift = 23 - exp;
212 +       val = (1 << exp) + (mantissa >> shift);
213 +       if (val >= SPS30_MAX_PM)
214 +               return SPS30_MAX_PM * 100;
215 +
216 +       fraction = mantissa & GENMASK(shift - 1, 0);
217 +
218 +       return val * 100 + ((fraction * 100) >> shift);
219 +}
220 +
221 +static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
222 +{
223 +       int i, ret, tries = 5;
224 +       u8 tmp[16];
225 +
226 +       while (tries--) {
227 +               ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2);
228 +               if (ret)
229 +                       return -EIO;
230 +
231 +               /* new measurements ready to be read */
232 +               if (tmp[1] == 1)
233 +                       break;
234 +
235 +               msleep_interruptible(300);
236 +       }
237 +
238 +       if (!tries)
239 +               return -ETIMEDOUT;
240 +
241 +       ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size);
242 +       if (ret)
243 +               return ret;
244 +
245 +       for (i = 0; i < size; i++)
246 +               data[i] = sps30_float_to_int_clamped(&tmp[4 * i]);
247 +
248 +       return 0;
249 +}
250 +
251 +static irqreturn_t sps30_trigger_handler(int irq, void *p)
252 +{
253 +       struct iio_poll_func *pf = p;
254 +       struct iio_dev *indio_dev = pf->indio_dev;
255 +       struct sps30_state *state = iio_priv(indio_dev);
256 +       int ret;
257 +       s32 data[4 + 2]; /* PM1, PM2P5, PM4, PM10, timestamp */
258 +
259 +       mutex_lock(&state->lock);
260 +       ret = sps30_do_meas(state, data, 4);
261 +       mutex_unlock(&state->lock);
262 +       if (ret)
263 +               goto err;
264 +
265 +       iio_push_to_buffers_with_timestamp(indio_dev, data,
266 +                                          iio_get_time_ns(indio_dev));
267 +err:
268 +       iio_trigger_notify_done(indio_dev->trig);
269 +
270 +       return IRQ_HANDLED;
271 +}
272 +
273 +static int sps30_read_raw(struct iio_dev *indio_dev,
274 +                         struct iio_chan_spec const *chan,
275 +                         int *val, int *val2, long mask)
276 +{
277 +       struct sps30_state *state = iio_priv(indio_dev);
278 +       int data[4], ret = -EINVAL;
279 +
280 +       switch (mask) {
281 +       case IIO_CHAN_INFO_PROCESSED:
282 +               switch (chan->type) {
283 +               case IIO_MASSCONCENTRATION:
284 +                       mutex_lock(&state->lock);
285 +                       /* read up to the number of bytes actually needed */
286 +                       switch (chan->channel2) {
287 +                       case IIO_MOD_PM1:
288 +                               ret = sps30_do_meas(state, data, 1);
289 +                               break;
290 +                       case IIO_MOD_PM2P5:
291 +                               ret = sps30_do_meas(state, data, 2);
292 +                               break;
293 +                       case IIO_MOD_PM4:
294 +                               ret = sps30_do_meas(state, data, 3);
295 +                               break;
296 +                       case IIO_MOD_PM10:
297 +                               ret = sps30_do_meas(state, data, 4);
298 +                               break;
299 +                       }
300 +                       mutex_unlock(&state->lock);
301 +                       if (ret)
302 +                               return ret;
303 +
304 +                       *val = data[chan->address] / 100;
305 +                       *val2 = (data[chan->address] % 100) * 10000;
306 +
307 +                       return IIO_VAL_INT_PLUS_MICRO;
308 +               default:
309 +                       return -EINVAL;
310 +               }
311 +       case IIO_CHAN_INFO_SCALE:
312 +               switch (chan->type) {
313 +               case IIO_MASSCONCENTRATION:
314 +                       switch (chan->channel2) {
315 +                       case IIO_MOD_PM1:
316 +                       case IIO_MOD_PM2P5:
317 +                       case IIO_MOD_PM4:
318 +                       case IIO_MOD_PM10:
319 +                               *val = 0;
320 +                               *val2 = 10000;
321 +
322 +                               return IIO_VAL_INT_PLUS_MICRO;
323 +                       }
324 +               default:
325 +                       return -EINVAL;
326 +               }
327 +       }
328 +
329 +       return -EINVAL;
330 +}
331 +
332 +static const struct iio_info sps30_info = {
333 +       .read_raw = sps30_read_raw,
334 +};
335 +
336 +#define SPS30_CHAN(_index, _mod) { \
337 +       .type = IIO_MASSCONCENTRATION, \
338 +       .modified = 1, \
339 +       .channel2 = IIO_MOD_ ## _mod, \
340 +       .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
341 +       .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
342 +       .address = _mod, \
343 +       .scan_index = _index, \
344 +       .scan_type = { \
345 +               .sign = 'u', \
346 +               .realbits = 19, \
347 +               .storagebits = 32, \
348 +               .endianness = IIO_CPU, \
349 +       }, \
350 +}
351 +
352 +static const struct iio_chan_spec sps30_channels[] = {
353 +       SPS30_CHAN(0, PM1),
354 +       SPS30_CHAN(1, PM2P5),
355 +       SPS30_CHAN(2, PM4),
356 +       SPS30_CHAN(3, PM10),
357 +       IIO_CHAN_SOFT_TIMESTAMP(4),
358 +};
359 +
360 +static void sps30_stop_meas(void *data)
361 +{
362 +       struct sps30_state *state = data;
363 +
364 +       sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
365 +}
366 +
367 +static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
368 +
369 +static int sps30_probe(struct i2c_client *client)
370 +{
371 +       struct iio_dev *indio_dev;
372 +       struct sps30_state *state;
373 +       u8 buf[32];
374 +       int ret;
375 +
376 +       if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
377 +               return -EOPNOTSUPP;
378 +
379 +       indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
380 +       if (!indio_dev)
381 +               return -ENOMEM;
382 +
383 +       state = iio_priv(indio_dev);
384 +       i2c_set_clientdata(client, indio_dev);
385 +       state->client = client;
386 +       indio_dev->dev.parent = &client->dev;
387 +       indio_dev->info = &sps30_info;
388 +       indio_dev->name = client->name;
389 +       indio_dev->channels = sps30_channels;
390 +       indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
391 +       indio_dev->modes = INDIO_DIRECT_MODE;
392 +       indio_dev->available_scan_masks = sps30_scan_masks;
393 +
394 +       mutex_init(&state->lock);
395 +       crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL);
396 +
397 +       ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0);
398 +       if (ret) {
399 +               dev_err(&client->dev, "failed to reset device\n");
400 +               return ret;
401 +       }
402 +       msleep(300);
403 +       /*
404 +        * Power-on-reset causes sensor to produce some glitch on i2c bus and
405 +        * some controllers end up in error state. Recover simply by placing
406 +        * some data on the bus, for example STOP_MEAS command, which
407 +        * is NOP in this case.
408 +        */
409 +       sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
410 +
411 +       ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf));
412 +       if (ret) {
413 +               dev_err(&client->dev, "failed to read serial number\n");
414 +               return ret;
415 +       }
416 +       /* returned serial number is already NUL terminated */
417 +       dev_info(&client->dev, "serial number: %s\n", buf);
418 +
419 +       ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0);
420 +       if (ret) {
421 +               dev_err(&client->dev, "failed to start measurement\n");
422 +               return ret;
423 +       }
424 +
425 +       ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state);
426 +       if (ret)
427 +               return ret;
428 +
429 +       ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
430 +                                             sps30_trigger_handler, NULL);
431 +       if (ret)
432 +               return ret;
433 +
434 +       return devm_iio_device_register(&client->dev, indio_dev);
435 +}
436 +
437 +static const struct i2c_device_id sps30_id[] = {
438 +       { "sps30" },
439 +       { }
440 +};
441 +MODULE_DEVICE_TABLE(i2c, sps30_id);
442 +
443 +static const struct of_device_id sps30_of_match[] = {
444 +       { .compatible = "sensirion,sps30" },
445 +       { }
446 +};
447 +MODULE_DEVICE_TABLE(of, sps30_of_match);
448 +
449 +static struct i2c_driver sps30_driver = {
450 +       .driver = {
451 +               .name = "sps30",
452 +               .of_match_table = sps30_of_match,
453 +       },
454 +       .id_table = sps30_id,
455 +       .probe_new = sps30_probe,
456 +};
457 +module_i2c_driver(sps30_driver);
458 +
459 +MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
460 +MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
461 +MODULE_LICENSE("GPL v2");