Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/zalloc.h>
14
15 #include "../perf.h"
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "time-utils.h"
37
38 #include "../arch/x86/include/uapi/asm/perf_regs.h"
39
40 #include "intel-pt-decoder/intel-pt-log.h"
41 #include "intel-pt-decoder/intel-pt-decoder.h"
42 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
43 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
44
45 #define MAX_TIMESTAMP (~0ULL)
46
47 struct range {
48         u64 start;
49         u64 end;
50 };
51
52 struct intel_pt {
53         struct auxtrace auxtrace;
54         struct auxtrace_queues queues;
55         struct auxtrace_heap heap;
56         u32 auxtrace_type;
57         struct perf_session *session;
58         struct machine *machine;
59         struct perf_evsel *switch_evsel;
60         struct thread *unknown_thread;
61         bool timeless_decoding;
62         bool sampling_mode;
63         bool snapshot_mode;
64         bool per_cpu_mmaps;
65         bool have_tsc;
66         bool data_queued;
67         bool est_tsc;
68         bool sync_switch;
69         bool mispred_all;
70         int have_sched_switch;
71         u32 pmu_type;
72         u64 kernel_start;
73         u64 switch_ip;
74         u64 ptss_ip;
75
76         struct perf_tsc_conversion tc;
77         bool cap_user_time_zero;
78
79         struct itrace_synth_opts synth_opts;
80
81         bool sample_instructions;
82         u64 instructions_sample_type;
83         u64 instructions_id;
84
85         bool sample_branches;
86         u32 branches_filter;
87         u64 branches_sample_type;
88         u64 branches_id;
89
90         bool sample_transactions;
91         u64 transactions_sample_type;
92         u64 transactions_id;
93
94         bool sample_ptwrites;
95         u64 ptwrites_sample_type;
96         u64 ptwrites_id;
97
98         bool sample_pwr_events;
99         u64 pwr_events_sample_type;
100         u64 mwait_id;
101         u64 pwre_id;
102         u64 exstop_id;
103         u64 pwrx_id;
104         u64 cbr_id;
105
106         bool sample_pebs;
107         struct perf_evsel *pebs_evsel;
108
109         u64 tsc_bit;
110         u64 mtc_bit;
111         u64 mtc_freq_bits;
112         u32 tsc_ctc_ratio_n;
113         u32 tsc_ctc_ratio_d;
114         u64 cyc_bit;
115         u64 noretcomp_bit;
116         unsigned max_non_turbo_ratio;
117         unsigned cbr2khz;
118
119         unsigned long num_events;
120
121         char *filter;
122         struct addr_filters filts;
123
124         struct range *time_ranges;
125         unsigned int range_cnt;
126 };
127
128 enum switch_state {
129         INTEL_PT_SS_NOT_TRACING,
130         INTEL_PT_SS_UNKNOWN,
131         INTEL_PT_SS_TRACING,
132         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
133         INTEL_PT_SS_EXPECTING_SWITCH_IP,
134 };
135
136 struct intel_pt_queue {
137         struct intel_pt *pt;
138         unsigned int queue_nr;
139         struct auxtrace_buffer *buffer;
140         struct auxtrace_buffer *old_buffer;
141         void *decoder;
142         const struct intel_pt_state *state;
143         struct ip_callchain *chain;
144         struct branch_stack *last_branch;
145         struct branch_stack *last_branch_rb;
146         size_t last_branch_pos;
147         union perf_event *event_buf;
148         bool on_heap;
149         bool stop;
150         bool step_through_buffers;
151         bool use_buffer_pid_tid;
152         bool sync_switch;
153         pid_t pid, tid;
154         int cpu;
155         int switch_state;
156         pid_t next_tid;
157         struct thread *thread;
158         bool exclude_kernel;
159         bool have_sample;
160         u64 time;
161         u64 timestamp;
162         u64 sel_timestamp;
163         bool sel_start;
164         unsigned int sel_idx;
165         u32 flags;
166         u16 insn_len;
167         u64 last_insn_cnt;
168         u64 ipc_insn_cnt;
169         u64 ipc_cyc_cnt;
170         u64 last_in_insn_cnt;
171         u64 last_in_cyc_cnt;
172         u64 last_br_insn_cnt;
173         u64 last_br_cyc_cnt;
174         unsigned int cbr_seen;
175         char insn[INTEL_PT_INSN_BUF_SZ];
176 };
177
178 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
179                           unsigned char *buf, size_t len)
180 {
181         struct intel_pt_pkt packet;
182         size_t pos = 0;
183         int ret, pkt_len, i;
184         char desc[INTEL_PT_PKT_DESC_MAX];
185         const char *color = PERF_COLOR_BLUE;
186         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
187
188         color_fprintf(stdout, color,
189                       ". ... Intel Processor Trace data: size %zu bytes\n",
190                       len);
191
192         while (len) {
193                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
194                 if (ret > 0)
195                         pkt_len = ret;
196                 else
197                         pkt_len = 1;
198                 printf(".");
199                 color_fprintf(stdout, color, "  %08x: ", pos);
200                 for (i = 0; i < pkt_len; i++)
201                         color_fprintf(stdout, color, " %02x", buf[i]);
202                 for (; i < 16; i++)
203                         color_fprintf(stdout, color, "   ");
204                 if (ret > 0) {
205                         ret = intel_pt_pkt_desc(&packet, desc,
206                                                 INTEL_PT_PKT_DESC_MAX);
207                         if (ret > 0)
208                                 color_fprintf(stdout, color, " %s\n", desc);
209                 } else {
210                         color_fprintf(stdout, color, " Bad packet!\n");
211                 }
212                 pos += pkt_len;
213                 buf += pkt_len;
214                 len -= pkt_len;
215         }
216 }
217
218 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
219                                 size_t len)
220 {
221         printf(".\n");
222         intel_pt_dump(pt, buf, len);
223 }
224
225 static void intel_pt_log_event(union perf_event *event)
226 {
227         FILE *f = intel_pt_log_fp();
228
229         if (!intel_pt_enable_logging || !f)
230                 return;
231
232         perf_event__fprintf(event, f);
233 }
234
235 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
236                                    struct auxtrace_buffer *b)
237 {
238         bool consecutive = false;
239         void *start;
240
241         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
242                                       pt->have_tsc, &consecutive);
243         if (!start)
244                 return -EINVAL;
245         b->use_size = b->data + b->size - start;
246         b->use_data = start;
247         if (b->use_size && consecutive)
248                 b->consecutive = true;
249         return 0;
250 }
251
252 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
253                                struct auxtrace_buffer *buffer,
254                                struct auxtrace_buffer *old_buffer,
255                                struct intel_pt_buffer *b)
256 {
257         bool might_overlap;
258
259         if (!buffer->data) {
260                 int fd = perf_data__fd(ptq->pt->session->data);
261
262                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
263                 if (!buffer->data)
264                         return -ENOMEM;
265         }
266
267         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
268         if (might_overlap && !buffer->consecutive && old_buffer &&
269             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
270                 return -ENOMEM;
271
272         if (buffer->use_data) {
273                 b->len = buffer->use_size;
274                 b->buf = buffer->use_data;
275         } else {
276                 b->len = buffer->size;
277                 b->buf = buffer->data;
278         }
279         b->ref_timestamp = buffer->reference;
280
281         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
282                 b->consecutive = false;
283                 b->trace_nr = buffer->buffer_nr + 1;
284         } else {
285                 b->consecutive = true;
286         }
287
288         return 0;
289 }
290
291 /* Do not drop buffers with references - refer intel_pt_get_trace() */
292 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
293                                            struct auxtrace_buffer *buffer)
294 {
295         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
296                 return;
297
298         auxtrace_buffer__drop_data(buffer);
299 }
300
301 /* Must be serialized with respect to intel_pt_get_trace() */
302 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
303                               void *cb_data)
304 {
305         struct intel_pt_queue *ptq = data;
306         struct auxtrace_buffer *buffer = ptq->buffer;
307         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
308         struct auxtrace_queue *queue;
309         int err = 0;
310
311         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
312
313         while (1) {
314                 struct intel_pt_buffer b = { .len = 0 };
315
316                 buffer = auxtrace_buffer__next(queue, buffer);
317                 if (!buffer)
318                         break;
319
320                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
321                 if (err)
322                         break;
323
324                 if (b.len) {
325                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
326                         old_buffer = buffer;
327                 } else {
328                         intel_pt_lookahead_drop_buffer(ptq, buffer);
329                         continue;
330                 }
331
332                 err = cb(&b, cb_data);
333                 if (err)
334                         break;
335         }
336
337         if (buffer != old_buffer)
338                 intel_pt_lookahead_drop_buffer(ptq, buffer);
339         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
340
341         return err;
342 }
343
344 /*
345  * This function assumes data is processed sequentially only.
346  * Must be serialized with respect to intel_pt_lookahead()
347  */
348 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
349 {
350         struct intel_pt_queue *ptq = data;
351         struct auxtrace_buffer *buffer = ptq->buffer;
352         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
353         struct auxtrace_queue *queue;
354         int err;
355
356         if (ptq->stop) {
357                 b->len = 0;
358                 return 0;
359         }
360
361         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
362
363         buffer = auxtrace_buffer__next(queue, buffer);
364         if (!buffer) {
365                 if (old_buffer)
366                         auxtrace_buffer__drop_data(old_buffer);
367                 b->len = 0;
368                 return 0;
369         }
370
371         ptq->buffer = buffer;
372
373         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
374         if (err)
375                 return err;
376
377         if (ptq->step_through_buffers)
378                 ptq->stop = true;
379
380         if (b->len) {
381                 if (old_buffer)
382                         auxtrace_buffer__drop_data(old_buffer);
383                 ptq->old_buffer = buffer;
384         } else {
385                 auxtrace_buffer__drop_data(buffer);
386                 return intel_pt_get_trace(b, data);
387         }
388
389         return 0;
390 }
391
392 struct intel_pt_cache_entry {
393         struct auxtrace_cache_entry     entry;
394         u64                             insn_cnt;
395         u64                             byte_cnt;
396         enum intel_pt_insn_op           op;
397         enum intel_pt_insn_branch       branch;
398         int                             length;
399         int32_t                         rel;
400         char                            insn[INTEL_PT_INSN_BUF_SZ];
401 };
402
403 static int intel_pt_config_div(const char *var, const char *value, void *data)
404 {
405         int *d = data;
406         long val;
407
408         if (!strcmp(var, "intel-pt.cache-divisor")) {
409                 val = strtol(value, NULL, 0);
410                 if (val > 0 && val <= INT_MAX)
411                         *d = val;
412         }
413
414         return 0;
415 }
416
417 static int intel_pt_cache_divisor(void)
418 {
419         static int d;
420
421         if (d)
422                 return d;
423
424         perf_config(intel_pt_config_div, &d);
425
426         if (!d)
427                 d = 64;
428
429         return d;
430 }
431
432 static unsigned int intel_pt_cache_size(struct dso *dso,
433                                         struct machine *machine)
434 {
435         off_t size;
436
437         size = dso__data_size(dso, machine);
438         size /= intel_pt_cache_divisor();
439         if (size < 1000)
440                 return 10;
441         if (size > (1 << 21))
442                 return 21;
443         return 32 - __builtin_clz(size);
444 }
445
446 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
447                                              struct machine *machine)
448 {
449         struct auxtrace_cache *c;
450         unsigned int bits;
451
452         if (dso->auxtrace_cache)
453                 return dso->auxtrace_cache;
454
455         bits = intel_pt_cache_size(dso, machine);
456
457         /* Ignoring cache creation failure */
458         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
459
460         dso->auxtrace_cache = c;
461
462         return c;
463 }
464
465 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
466                               u64 offset, u64 insn_cnt, u64 byte_cnt,
467                               struct intel_pt_insn *intel_pt_insn)
468 {
469         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
470         struct intel_pt_cache_entry *e;
471         int err;
472
473         if (!c)
474                 return -ENOMEM;
475
476         e = auxtrace_cache__alloc_entry(c);
477         if (!e)
478                 return -ENOMEM;
479
480         e->insn_cnt = insn_cnt;
481         e->byte_cnt = byte_cnt;
482         e->op = intel_pt_insn->op;
483         e->branch = intel_pt_insn->branch;
484         e->length = intel_pt_insn->length;
485         e->rel = intel_pt_insn->rel;
486         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
487
488         err = auxtrace_cache__add(c, offset, &e->entry);
489         if (err)
490                 auxtrace_cache__free_entry(c, e);
491
492         return err;
493 }
494
495 static struct intel_pt_cache_entry *
496 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
497 {
498         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
499
500         if (!c)
501                 return NULL;
502
503         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
504 }
505
506 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
507 {
508         return ip >= pt->kernel_start ?
509                PERF_RECORD_MISC_KERNEL :
510                PERF_RECORD_MISC_USER;
511 }
512
513 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
514                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
515                                    uint64_t to_ip, uint64_t max_insn_cnt,
516                                    void *data)
517 {
518         struct intel_pt_queue *ptq = data;
519         struct machine *machine = ptq->pt->machine;
520         struct thread *thread;
521         struct addr_location al;
522         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
523         ssize_t len;
524         int x86_64;
525         u8 cpumode;
526         u64 offset, start_offset, start_ip;
527         u64 insn_cnt = 0;
528         bool one_map = true;
529
530         intel_pt_insn->length = 0;
531
532         if (to_ip && *ip == to_ip)
533                 goto out_no_cache;
534
535         cpumode = intel_pt_cpumode(ptq->pt, *ip);
536
537         thread = ptq->thread;
538         if (!thread) {
539                 if (cpumode != PERF_RECORD_MISC_KERNEL)
540                         return -EINVAL;
541                 thread = ptq->pt->unknown_thread;
542         }
543
544         while (1) {
545                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
546                         return -EINVAL;
547
548                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
549                     dso__data_status_seen(al.map->dso,
550                                           DSO_DATA_STATUS_SEEN_ITRACE))
551                         return -ENOENT;
552
553                 offset = al.map->map_ip(al.map, *ip);
554
555                 if (!to_ip && one_map) {
556                         struct intel_pt_cache_entry *e;
557
558                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
559                         if (e &&
560                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
561                                 *insn_cnt_ptr = e->insn_cnt;
562                                 *ip += e->byte_cnt;
563                                 intel_pt_insn->op = e->op;
564                                 intel_pt_insn->branch = e->branch;
565                                 intel_pt_insn->length = e->length;
566                                 intel_pt_insn->rel = e->rel;
567                                 memcpy(intel_pt_insn->buf, e->insn,
568                                        INTEL_PT_INSN_BUF_SZ);
569                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
570                                 return 0;
571                         }
572                 }
573
574                 start_offset = offset;
575                 start_ip = *ip;
576
577                 /* Load maps to ensure dso->is_64_bit has been updated */
578                 map__load(al.map);
579
580                 x86_64 = al.map->dso->is_64_bit;
581
582                 while (1) {
583                         len = dso__data_read_offset(al.map->dso, machine,
584                                                     offset, buf,
585                                                     INTEL_PT_INSN_BUF_SZ);
586                         if (len <= 0)
587                                 return -EINVAL;
588
589                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
590                                 return -EINVAL;
591
592                         intel_pt_log_insn(intel_pt_insn, *ip);
593
594                         insn_cnt += 1;
595
596                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
597                                 goto out;
598
599                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
600                                 goto out_no_cache;
601
602                         *ip += intel_pt_insn->length;
603
604                         if (to_ip && *ip == to_ip)
605                                 goto out_no_cache;
606
607                         if (*ip >= al.map->end)
608                                 break;
609
610                         offset += intel_pt_insn->length;
611                 }
612                 one_map = false;
613         }
614 out:
615         *insn_cnt_ptr = insn_cnt;
616
617         if (!one_map)
618                 goto out_no_cache;
619
620         /*
621          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
622          * entries.
623          */
624         if (to_ip) {
625                 struct intel_pt_cache_entry *e;
626
627                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
628                 if (e)
629                         return 0;
630         }
631
632         /* Ignore cache errors */
633         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
634                            *ip - start_ip, intel_pt_insn);
635
636         return 0;
637
638 out_no_cache:
639         *insn_cnt_ptr = insn_cnt;
640         return 0;
641 }
642
643 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
644                                   uint64_t offset, const char *filename)
645 {
646         struct addr_filter *filt;
647         bool have_filter   = false;
648         bool hit_tracestop = false;
649         bool hit_filter    = false;
650
651         list_for_each_entry(filt, &pt->filts.head, list) {
652                 if (filt->start)
653                         have_filter = true;
654
655                 if ((filename && !filt->filename) ||
656                     (!filename && filt->filename) ||
657                     (filename && strcmp(filename, filt->filename)))
658                         continue;
659
660                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
661                         continue;
662
663                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
664                              ip, offset, filename ? filename : "[kernel]",
665                              filt->start ? "filter" : "stop",
666                              filt->addr, filt->size);
667
668                 if (filt->start)
669                         hit_filter = true;
670                 else
671                         hit_tracestop = true;
672         }
673
674         if (!hit_tracestop && !hit_filter)
675                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
676                              ip, offset, filename ? filename : "[kernel]");
677
678         return hit_tracestop || (have_filter && !hit_filter);
679 }
680
681 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
682 {
683         struct intel_pt_queue *ptq = data;
684         struct thread *thread;
685         struct addr_location al;
686         u8 cpumode;
687         u64 offset;
688
689         if (ip >= ptq->pt->kernel_start)
690                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
691
692         cpumode = PERF_RECORD_MISC_USER;
693
694         thread = ptq->thread;
695         if (!thread)
696                 return -EINVAL;
697
698         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
699                 return -EINVAL;
700
701         offset = al.map->map_ip(al.map, ip);
702
703         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
704                                      al.map->dso->long_name);
705 }
706
707 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
708 {
709         return __intel_pt_pgd_ip(ip, data) > 0;
710 }
711
712 static bool intel_pt_get_config(struct intel_pt *pt,
713                                 struct perf_event_attr *attr, u64 *config)
714 {
715         if (attr->type == pt->pmu_type) {
716                 if (config)
717                         *config = attr->config;
718                 return true;
719         }
720
721         return false;
722 }
723
724 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
725 {
726         struct perf_evsel *evsel;
727
728         evlist__for_each_entry(pt->session->evlist, evsel) {
729                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
730                     !evsel->attr.exclude_kernel)
731                         return false;
732         }
733         return true;
734 }
735
736 static bool intel_pt_return_compression(struct intel_pt *pt)
737 {
738         struct perf_evsel *evsel;
739         u64 config;
740
741         if (!pt->noretcomp_bit)
742                 return true;
743
744         evlist__for_each_entry(pt->session->evlist, evsel) {
745                 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
746                     (config & pt->noretcomp_bit))
747                         return false;
748         }
749         return true;
750 }
751
752 static bool intel_pt_branch_enable(struct intel_pt *pt)
753 {
754         struct perf_evsel *evsel;
755         u64 config;
756
757         evlist__for_each_entry(pt->session->evlist, evsel) {
758                 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
759                     (config & 1) && !(config & 0x2000))
760                         return false;
761         }
762         return true;
763 }
764
765 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
766 {
767         struct perf_evsel *evsel;
768         unsigned int shift;
769         u64 config;
770
771         if (!pt->mtc_freq_bits)
772                 return 0;
773
774         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
775                 config >>= 1;
776
777         evlist__for_each_entry(pt->session->evlist, evsel) {
778                 if (intel_pt_get_config(pt, &evsel->attr, &config))
779                         return (config & pt->mtc_freq_bits) >> shift;
780         }
781         return 0;
782 }
783
784 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
785 {
786         struct perf_evsel *evsel;
787         bool timeless_decoding = true;
788         u64 config;
789
790         if (!pt->tsc_bit || !pt->cap_user_time_zero)
791                 return true;
792
793         evlist__for_each_entry(pt->session->evlist, evsel) {
794                 if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
795                         return true;
796                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
797                         if (config & pt->tsc_bit)
798                                 timeless_decoding = false;
799                         else
800                                 return true;
801                 }
802         }
803         return timeless_decoding;
804 }
805
806 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
807 {
808         struct perf_evsel *evsel;
809
810         evlist__for_each_entry(pt->session->evlist, evsel) {
811                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
812                     !evsel->attr.exclude_kernel)
813                         return true;
814         }
815         return false;
816 }
817
818 static bool intel_pt_have_tsc(struct intel_pt *pt)
819 {
820         struct perf_evsel *evsel;
821         bool have_tsc = false;
822         u64 config;
823
824         if (!pt->tsc_bit)
825                 return false;
826
827         evlist__for_each_entry(pt->session->evlist, evsel) {
828                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
829                         if (config & pt->tsc_bit)
830                                 have_tsc = true;
831                         else
832                                 return false;
833                 }
834         }
835         return have_tsc;
836 }
837
838 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
839 {
840         u64 quot, rem;
841
842         quot = ns / pt->tc.time_mult;
843         rem  = ns % pt->tc.time_mult;
844         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
845                 pt->tc.time_mult;
846 }
847
848 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
849                                                    unsigned int queue_nr)
850 {
851         struct intel_pt_params params = { .get_trace = 0, };
852         struct perf_env *env = pt->machine->env;
853         struct intel_pt_queue *ptq;
854
855         ptq = zalloc(sizeof(struct intel_pt_queue));
856         if (!ptq)
857                 return NULL;
858
859         if (pt->synth_opts.callchain) {
860                 size_t sz = sizeof(struct ip_callchain);
861
862                 /* Add 1 to callchain_sz for callchain context */
863                 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
864                 ptq->chain = zalloc(sz);
865                 if (!ptq->chain)
866                         goto out_free;
867         }
868
869         if (pt->synth_opts.last_branch) {
870                 size_t sz = sizeof(struct branch_stack);
871
872                 sz += pt->synth_opts.last_branch_sz *
873                       sizeof(struct branch_entry);
874                 ptq->last_branch = zalloc(sz);
875                 if (!ptq->last_branch)
876                         goto out_free;
877                 ptq->last_branch_rb = zalloc(sz);
878                 if (!ptq->last_branch_rb)
879                         goto out_free;
880         }
881
882         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
883         if (!ptq->event_buf)
884                 goto out_free;
885
886         ptq->pt = pt;
887         ptq->queue_nr = queue_nr;
888         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
889         ptq->pid = -1;
890         ptq->tid = -1;
891         ptq->cpu = -1;
892         ptq->next_tid = -1;
893
894         params.get_trace = intel_pt_get_trace;
895         params.walk_insn = intel_pt_walk_next_insn;
896         params.lookahead = intel_pt_lookahead;
897         params.data = ptq;
898         params.return_compression = intel_pt_return_compression(pt);
899         params.branch_enable = intel_pt_branch_enable(pt);
900         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
901         params.mtc_period = intel_pt_mtc_period(pt);
902         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
903         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
904
905         if (pt->filts.cnt > 0)
906                 params.pgd_ip = intel_pt_pgd_ip;
907
908         if (pt->synth_opts.instructions) {
909                 if (pt->synth_opts.period) {
910                         switch (pt->synth_opts.period_type) {
911                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
912                                 params.period_type =
913                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
914                                 params.period = pt->synth_opts.period;
915                                 break;
916                         case PERF_ITRACE_PERIOD_TICKS:
917                                 params.period_type = INTEL_PT_PERIOD_TICKS;
918                                 params.period = pt->synth_opts.period;
919                                 break;
920                         case PERF_ITRACE_PERIOD_NANOSECS:
921                                 params.period_type = INTEL_PT_PERIOD_TICKS;
922                                 params.period = intel_pt_ns_to_ticks(pt,
923                                                         pt->synth_opts.period);
924                                 break;
925                         default:
926                                 break;
927                         }
928                 }
929
930                 if (!params.period) {
931                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
932                         params.period = 1;
933                 }
934         }
935
936         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
937                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
938
939         ptq->decoder = intel_pt_decoder_new(&params);
940         if (!ptq->decoder)
941                 goto out_free;
942
943         return ptq;
944
945 out_free:
946         zfree(&ptq->event_buf);
947         zfree(&ptq->last_branch);
948         zfree(&ptq->last_branch_rb);
949         zfree(&ptq->chain);
950         free(ptq);
951         return NULL;
952 }
953
954 static void intel_pt_free_queue(void *priv)
955 {
956         struct intel_pt_queue *ptq = priv;
957
958         if (!ptq)
959                 return;
960         thread__zput(ptq->thread);
961         intel_pt_decoder_free(ptq->decoder);
962         zfree(&ptq->event_buf);
963         zfree(&ptq->last_branch);
964         zfree(&ptq->last_branch_rb);
965         zfree(&ptq->chain);
966         free(ptq);
967 }
968
969 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
970                                      struct auxtrace_queue *queue)
971 {
972         struct intel_pt_queue *ptq = queue->priv;
973
974         if (queue->tid == -1 || pt->have_sched_switch) {
975                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
976                 thread__zput(ptq->thread);
977         }
978
979         if (!ptq->thread && ptq->tid != -1)
980                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
981
982         if (ptq->thread) {
983                 ptq->pid = ptq->thread->pid_;
984                 if (queue->cpu == -1)
985                         ptq->cpu = ptq->thread->cpu;
986         }
987 }
988
989 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
990 {
991         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
992                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
993         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
994                 if (ptq->state->to_ip)
995                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
996                                      PERF_IP_FLAG_ASYNC |
997                                      PERF_IP_FLAG_INTERRUPT;
998                 else
999                         ptq->flags = PERF_IP_FLAG_BRANCH |
1000                                      PERF_IP_FLAG_TRACE_END;
1001                 ptq->insn_len = 0;
1002         } else {
1003                 if (ptq->state->from_ip)
1004                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1005                 else
1006                         ptq->flags = PERF_IP_FLAG_BRANCH |
1007                                      PERF_IP_FLAG_TRACE_BEGIN;
1008                 if (ptq->state->flags & INTEL_PT_IN_TX)
1009                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1010                 ptq->insn_len = ptq->state->insn_len;
1011                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1012         }
1013
1014         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1015                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1016         if (ptq->state->type & INTEL_PT_TRACE_END)
1017                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1018 }
1019
1020 static void intel_pt_setup_time_range(struct intel_pt *pt,
1021                                       struct intel_pt_queue *ptq)
1022 {
1023         if (!pt->range_cnt)
1024                 return;
1025
1026         ptq->sel_timestamp = pt->time_ranges[0].start;
1027         ptq->sel_idx = 0;
1028
1029         if (ptq->sel_timestamp) {
1030                 ptq->sel_start = true;
1031         } else {
1032                 ptq->sel_timestamp = pt->time_ranges[0].end;
1033                 ptq->sel_start = false;
1034         }
1035 }
1036
1037 static int intel_pt_setup_queue(struct intel_pt *pt,
1038                                 struct auxtrace_queue *queue,
1039                                 unsigned int queue_nr)
1040 {
1041         struct intel_pt_queue *ptq = queue->priv;
1042
1043         if (list_empty(&queue->head))
1044                 return 0;
1045
1046         if (!ptq) {
1047                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1048                 if (!ptq)
1049                         return -ENOMEM;
1050                 queue->priv = ptq;
1051
1052                 if (queue->cpu != -1)
1053                         ptq->cpu = queue->cpu;
1054                 ptq->tid = queue->tid;
1055
1056                 ptq->cbr_seen = UINT_MAX;
1057
1058                 if (pt->sampling_mode && !pt->snapshot_mode &&
1059                     pt->timeless_decoding)
1060                         ptq->step_through_buffers = true;
1061
1062                 ptq->sync_switch = pt->sync_switch;
1063
1064                 intel_pt_setup_time_range(pt, ptq);
1065         }
1066
1067         if (!ptq->on_heap &&
1068             (!ptq->sync_switch ||
1069              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1070                 const struct intel_pt_state *state;
1071                 int ret;
1072
1073                 if (pt->timeless_decoding)
1074                         return 0;
1075
1076                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1077                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1078                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1079
1080                 if (ptq->sel_start && ptq->sel_timestamp) {
1081                         ret = intel_pt_fast_forward(ptq->decoder,
1082                                                     ptq->sel_timestamp);
1083                         if (ret)
1084                                 return ret;
1085                 }
1086
1087                 while (1) {
1088                         state = intel_pt_decode(ptq->decoder);
1089                         if (state->err) {
1090                                 if (state->err == INTEL_PT_ERR_NODATA) {
1091                                         intel_pt_log("queue %u has no timestamp\n",
1092                                                      queue_nr);
1093                                         return 0;
1094                                 }
1095                                 continue;
1096                         }
1097                         if (state->timestamp)
1098                                 break;
1099                 }
1100
1101                 ptq->timestamp = state->timestamp;
1102                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1103                              queue_nr, ptq->timestamp);
1104                 ptq->state = state;
1105                 ptq->have_sample = true;
1106                 if (ptq->sel_start && ptq->sel_timestamp &&
1107                     ptq->timestamp < ptq->sel_timestamp)
1108                         ptq->have_sample = false;
1109                 intel_pt_sample_flags(ptq);
1110                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1111                 if (ret)
1112                         return ret;
1113                 ptq->on_heap = true;
1114         }
1115
1116         return 0;
1117 }
1118
1119 static int intel_pt_setup_queues(struct intel_pt *pt)
1120 {
1121         unsigned int i;
1122         int ret;
1123
1124         for (i = 0; i < pt->queues.nr_queues; i++) {
1125                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1126                 if (ret)
1127                         return ret;
1128         }
1129         return 0;
1130 }
1131
1132 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1133 {
1134         struct branch_stack *bs_src = ptq->last_branch_rb;
1135         struct branch_stack *bs_dst = ptq->last_branch;
1136         size_t nr = 0;
1137
1138         bs_dst->nr = bs_src->nr;
1139
1140         if (!bs_src->nr)
1141                 return;
1142
1143         nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1144         memcpy(&bs_dst->entries[0],
1145                &bs_src->entries[ptq->last_branch_pos],
1146                sizeof(struct branch_entry) * nr);
1147
1148         if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1149                 memcpy(&bs_dst->entries[nr],
1150                        &bs_src->entries[0],
1151                        sizeof(struct branch_entry) * ptq->last_branch_pos);
1152         }
1153 }
1154
1155 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1156 {
1157         ptq->last_branch_pos = 0;
1158         ptq->last_branch_rb->nr = 0;
1159 }
1160
1161 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1162 {
1163         const struct intel_pt_state *state = ptq->state;
1164         struct branch_stack *bs = ptq->last_branch_rb;
1165         struct branch_entry *be;
1166
1167         if (!ptq->last_branch_pos)
1168                 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1169
1170         ptq->last_branch_pos -= 1;
1171
1172         be              = &bs->entries[ptq->last_branch_pos];
1173         be->from        = state->from_ip;
1174         be->to          = state->to_ip;
1175         be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1176         be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1177         /* No support for mispredict */
1178         be->flags.mispred = ptq->pt->mispred_all;
1179
1180         if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1181                 bs->nr += 1;
1182 }
1183
1184 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1185 {
1186         return pt->synth_opts.initial_skip &&
1187                pt->num_events++ < pt->synth_opts.initial_skip;
1188 }
1189
1190 /*
1191  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1192  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1193  * from this decoder state.
1194  */
1195 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1196 {
1197         return pt->synth_opts.initial_skip &&
1198                pt->num_events + 4 < pt->synth_opts.initial_skip;
1199 }
1200
1201 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1202                                    union perf_event *event,
1203                                    struct perf_sample *sample)
1204 {
1205         event->sample.header.type = PERF_RECORD_SAMPLE;
1206         event->sample.header.size = sizeof(struct perf_event_header);
1207
1208         sample->pid = ptq->pid;
1209         sample->tid = ptq->tid;
1210         sample->cpu = ptq->cpu;
1211         sample->insn_len = ptq->insn_len;
1212         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1213 }
1214
1215 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1216                                    struct intel_pt_queue *ptq,
1217                                    union perf_event *event,
1218                                    struct perf_sample *sample)
1219 {
1220         intel_pt_prep_a_sample(ptq, event, sample);
1221
1222         if (!pt->timeless_decoding)
1223                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1224
1225         sample->ip = ptq->state->from_ip;
1226         sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1227         sample->addr = ptq->state->to_ip;
1228         sample->period = 1;
1229         sample->flags = ptq->flags;
1230
1231         event->sample.header.misc = sample->cpumode;
1232 }
1233
1234 static int intel_pt_inject_event(union perf_event *event,
1235                                  struct perf_sample *sample, u64 type)
1236 {
1237         event->header.size = perf_event__sample_event_size(sample, type, 0);
1238         return perf_event__synthesize_sample(event, type, 0, sample);
1239 }
1240
1241 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1242                                       union perf_event *event,
1243                                       struct perf_sample *sample, u64 type)
1244 {
1245         if (!pt->synth_opts.inject)
1246                 return 0;
1247
1248         return intel_pt_inject_event(event, sample, type);
1249 }
1250
1251 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1252                                           union perf_event *event,
1253                                           struct perf_sample *sample, u64 type)
1254 {
1255         int ret;
1256
1257         ret = intel_pt_opt_inject(pt, event, sample, type);
1258         if (ret)
1259                 return ret;
1260
1261         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1262         if (ret)
1263                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1264
1265         return ret;
1266 }
1267
1268 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1269 {
1270         struct intel_pt *pt = ptq->pt;
1271         union perf_event *event = ptq->event_buf;
1272         struct perf_sample sample = { .ip = 0, };
1273         struct dummy_branch_stack {
1274                 u64                     nr;
1275                 struct branch_entry     entries;
1276         } dummy_bs;
1277
1278         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1279                 return 0;
1280
1281         if (intel_pt_skip_event(pt))
1282                 return 0;
1283
1284         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1285
1286         sample.id = ptq->pt->branches_id;
1287         sample.stream_id = ptq->pt->branches_id;
1288
1289         /*
1290          * perf report cannot handle events without a branch stack when using
1291          * SORT_MODE__BRANCH so make a dummy one.
1292          */
1293         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1294                 dummy_bs = (struct dummy_branch_stack){
1295                         .nr = 1,
1296                         .entries = {
1297                                 .from = sample.ip,
1298                                 .to = sample.addr,
1299                         },
1300                 };
1301                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1302         }
1303
1304         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1305         if (sample.cyc_cnt) {
1306                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1307                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1308                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1309         }
1310
1311         return intel_pt_deliver_synth_b_event(pt, event, &sample,
1312                                               pt->branches_sample_type);
1313 }
1314
1315 static void intel_pt_prep_sample(struct intel_pt *pt,
1316                                  struct intel_pt_queue *ptq,
1317                                  union perf_event *event,
1318                                  struct perf_sample *sample)
1319 {
1320         intel_pt_prep_b_sample(pt, ptq, event, sample);
1321
1322         if (pt->synth_opts.callchain) {
1323                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1324                                      pt->synth_opts.callchain_sz + 1,
1325                                      sample->ip, pt->kernel_start);
1326                 sample->callchain = ptq->chain;
1327         }
1328
1329         if (pt->synth_opts.last_branch) {
1330                 intel_pt_copy_last_branch_rb(ptq);
1331                 sample->branch_stack = ptq->last_branch;
1332         }
1333 }
1334
1335 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1336                                                struct intel_pt_queue *ptq,
1337                                                union perf_event *event,
1338                                                struct perf_sample *sample,
1339                                                u64 type)
1340 {
1341         int ret;
1342
1343         ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1344
1345         if (pt->synth_opts.last_branch)
1346                 intel_pt_reset_last_branch_rb(ptq);
1347
1348         return ret;
1349 }
1350
1351 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1352 {
1353         struct intel_pt *pt = ptq->pt;
1354         union perf_event *event = ptq->event_buf;
1355         struct perf_sample sample = { .ip = 0, };
1356
1357         if (intel_pt_skip_event(pt))
1358                 return 0;
1359
1360         intel_pt_prep_sample(pt, ptq, event, &sample);
1361
1362         sample.id = ptq->pt->instructions_id;
1363         sample.stream_id = ptq->pt->instructions_id;
1364         sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1365
1366         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1367         if (sample.cyc_cnt) {
1368                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1369                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1370                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1371         }
1372
1373         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1374
1375         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1376                                             pt->instructions_sample_type);
1377 }
1378
1379 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1380 {
1381         struct intel_pt *pt = ptq->pt;
1382         union perf_event *event = ptq->event_buf;
1383         struct perf_sample sample = { .ip = 0, };
1384
1385         if (intel_pt_skip_event(pt))
1386                 return 0;
1387
1388         intel_pt_prep_sample(pt, ptq, event, &sample);
1389
1390         sample.id = ptq->pt->transactions_id;
1391         sample.stream_id = ptq->pt->transactions_id;
1392
1393         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1394                                             pt->transactions_sample_type);
1395 }
1396
1397 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1398                                    struct intel_pt_queue *ptq,
1399                                    union perf_event *event,
1400                                    struct perf_sample *sample)
1401 {
1402         intel_pt_prep_sample(pt, ptq, event, sample);
1403
1404         /*
1405          * Zero IP is used to mean "trace start" but that is not the case for
1406          * power or PTWRITE events with no IP, so clear the flags.
1407          */
1408         if (!sample->ip)
1409                 sample->flags = 0;
1410 }
1411
1412 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1413 {
1414         struct intel_pt *pt = ptq->pt;
1415         union perf_event *event = ptq->event_buf;
1416         struct perf_sample sample = { .ip = 0, };
1417         struct perf_synth_intel_ptwrite raw;
1418
1419         if (intel_pt_skip_event(pt))
1420                 return 0;
1421
1422         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1423
1424         sample.id = ptq->pt->ptwrites_id;
1425         sample.stream_id = ptq->pt->ptwrites_id;
1426
1427         raw.flags = 0;
1428         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1429         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1430
1431         sample.raw_size = perf_synth__raw_size(raw);
1432         sample.raw_data = perf_synth__raw_data(&raw);
1433
1434         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1435                                             pt->ptwrites_sample_type);
1436 }
1437
1438 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1439 {
1440         struct intel_pt *pt = ptq->pt;
1441         union perf_event *event = ptq->event_buf;
1442         struct perf_sample sample = { .ip = 0, };
1443         struct perf_synth_intel_cbr raw;
1444         u32 flags;
1445
1446         if (intel_pt_skip_cbr_event(pt))
1447                 return 0;
1448
1449         ptq->cbr_seen = ptq->state->cbr;
1450
1451         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1452
1453         sample.id = ptq->pt->cbr_id;
1454         sample.stream_id = ptq->pt->cbr_id;
1455
1456         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1457         raw.flags = cpu_to_le32(flags);
1458         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1459         raw.reserved3 = 0;
1460
1461         sample.raw_size = perf_synth__raw_size(raw);
1462         sample.raw_data = perf_synth__raw_data(&raw);
1463
1464         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1465                                             pt->pwr_events_sample_type);
1466 }
1467
1468 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1469 {
1470         struct intel_pt *pt = ptq->pt;
1471         union perf_event *event = ptq->event_buf;
1472         struct perf_sample sample = { .ip = 0, };
1473         struct perf_synth_intel_mwait raw;
1474
1475         if (intel_pt_skip_event(pt))
1476                 return 0;
1477
1478         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1479
1480         sample.id = ptq->pt->mwait_id;
1481         sample.stream_id = ptq->pt->mwait_id;
1482
1483         raw.reserved = 0;
1484         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1485
1486         sample.raw_size = perf_synth__raw_size(raw);
1487         sample.raw_data = perf_synth__raw_data(&raw);
1488
1489         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1490                                             pt->pwr_events_sample_type);
1491 }
1492
1493 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1494 {
1495         struct intel_pt *pt = ptq->pt;
1496         union perf_event *event = ptq->event_buf;
1497         struct perf_sample sample = { .ip = 0, };
1498         struct perf_synth_intel_pwre raw;
1499
1500         if (intel_pt_skip_event(pt))
1501                 return 0;
1502
1503         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1504
1505         sample.id = ptq->pt->pwre_id;
1506         sample.stream_id = ptq->pt->pwre_id;
1507
1508         raw.reserved = 0;
1509         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1510
1511         sample.raw_size = perf_synth__raw_size(raw);
1512         sample.raw_data = perf_synth__raw_data(&raw);
1513
1514         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1515                                             pt->pwr_events_sample_type);
1516 }
1517
1518 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1519 {
1520         struct intel_pt *pt = ptq->pt;
1521         union perf_event *event = ptq->event_buf;
1522         struct perf_sample sample = { .ip = 0, };
1523         struct perf_synth_intel_exstop raw;
1524
1525         if (intel_pt_skip_event(pt))
1526                 return 0;
1527
1528         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1529
1530         sample.id = ptq->pt->exstop_id;
1531         sample.stream_id = ptq->pt->exstop_id;
1532
1533         raw.flags = 0;
1534         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1535
1536         sample.raw_size = perf_synth__raw_size(raw);
1537         sample.raw_data = perf_synth__raw_data(&raw);
1538
1539         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1540                                             pt->pwr_events_sample_type);
1541 }
1542
1543 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1544 {
1545         struct intel_pt *pt = ptq->pt;
1546         union perf_event *event = ptq->event_buf;
1547         struct perf_sample sample = { .ip = 0, };
1548         struct perf_synth_intel_pwrx raw;
1549
1550         if (intel_pt_skip_event(pt))
1551                 return 0;
1552
1553         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1554
1555         sample.id = ptq->pt->pwrx_id;
1556         sample.stream_id = ptq->pt->pwrx_id;
1557
1558         raw.reserved = 0;
1559         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1560
1561         sample.raw_size = perf_synth__raw_size(raw);
1562         sample.raw_data = perf_synth__raw_data(&raw);
1563
1564         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1565                                             pt->pwr_events_sample_type);
1566 }
1567
1568 /*
1569  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1570  * intel_pt_add_gp_regs().
1571  */
1572 static const int pebs_gp_regs[] = {
1573         [PERF_REG_X86_FLAGS]    = 1,
1574         [PERF_REG_X86_IP]       = 2,
1575         [PERF_REG_X86_AX]       = 3,
1576         [PERF_REG_X86_CX]       = 4,
1577         [PERF_REG_X86_DX]       = 5,
1578         [PERF_REG_X86_BX]       = 6,
1579         [PERF_REG_X86_SP]       = 7,
1580         [PERF_REG_X86_BP]       = 8,
1581         [PERF_REG_X86_SI]       = 9,
1582         [PERF_REG_X86_DI]       = 10,
1583         [PERF_REG_X86_R8]       = 11,
1584         [PERF_REG_X86_R9]       = 12,
1585         [PERF_REG_X86_R10]      = 13,
1586         [PERF_REG_X86_R11]      = 14,
1587         [PERF_REG_X86_R12]      = 15,
1588         [PERF_REG_X86_R13]      = 16,
1589         [PERF_REG_X86_R14]      = 17,
1590         [PERF_REG_X86_R15]      = 18,
1591 };
1592
1593 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1594                                  const struct intel_pt_blk_items *items,
1595                                  u64 regs_mask)
1596 {
1597         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1598         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1599         u32 bit;
1600         int i;
1601
1602         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1603                 /* Get the PEBS gp_regs array index */
1604                 int n = pebs_gp_regs[i] - 1;
1605
1606                 if (n < 0)
1607                         continue;
1608                 /*
1609                  * Add only registers that were requested (i.e. 'regs_mask') and
1610                  * that were provided (i.e. 'mask'), and update the resulting
1611                  * mask (i.e. 'intr_regs->mask') accordingly.
1612                  */
1613                 if (mask & 1 << n && regs_mask & bit) {
1614                         intr_regs->mask |= bit;
1615                         *pos++ = gp_regs[n];
1616                 }
1617         }
1618
1619         return pos;
1620 }
1621
1622 #ifndef PERF_REG_X86_XMM0
1623 #define PERF_REG_X86_XMM0 32
1624 #endif
1625
1626 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1627                              const struct intel_pt_blk_items *items,
1628                              u64 regs_mask)
1629 {
1630         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1631         const u64 *xmm = items->xmm;
1632
1633         /*
1634          * If there are any XMM registers, then there should be all of them.
1635          * Nevertheless, follow the logic to add only registers that were
1636          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1637          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1638          */
1639         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1640
1641         for (; mask; mask >>= 1, xmm++) {
1642                 if (mask & 1)
1643                         *pos++ = *xmm;
1644         }
1645 }
1646
1647 #define LBR_INFO_MISPRED        (1ULL << 63)
1648 #define LBR_INFO_IN_TX          (1ULL << 62)
1649 #define LBR_INFO_ABORT          (1ULL << 61)
1650 #define LBR_INFO_CYCLES         0xffff
1651
1652 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1653 static u64 intel_pt_lbr_flags(u64 info)
1654 {
1655         union {
1656                 struct branch_flags flags;
1657                 u64 result;
1658         } u = {
1659                 .flags = {
1660                         .mispred        = !!(info & LBR_INFO_MISPRED),
1661                         .predicted      = !(info & LBR_INFO_MISPRED),
1662                         .in_tx          = !!(info & LBR_INFO_IN_TX),
1663                         .abort          = !!(info & LBR_INFO_ABORT),
1664                         .cycles         = info & LBR_INFO_CYCLES,
1665                 }
1666         };
1667
1668         return u.result;
1669 }
1670
1671 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1672                               const struct intel_pt_blk_items *items)
1673 {
1674         u64 *to;
1675         int i;
1676
1677         br_stack->nr = 0;
1678
1679         to = &br_stack->entries[0].from;
1680
1681         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1682                 u32 mask = items->mask[i];
1683                 const u64 *from = items->val[i];
1684
1685                 for (; mask; mask >>= 3, from += 3) {
1686                         if ((mask & 7) == 7) {
1687                                 *to++ = from[0];
1688                                 *to++ = from[1];
1689                                 *to++ = intel_pt_lbr_flags(from[2]);
1690                                 br_stack->nr += 1;
1691                         }
1692                 }
1693         }
1694 }
1695
1696 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1697 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1698
1699 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1700 {
1701         const struct intel_pt_blk_items *items = &ptq->state->items;
1702         struct perf_sample sample = { .ip = 0, };
1703         union perf_event *event = ptq->event_buf;
1704         struct intel_pt *pt = ptq->pt;
1705         struct perf_evsel *evsel = pt->pebs_evsel;
1706         u64 sample_type = evsel->attr.sample_type;
1707         u64 id = evsel->id[0];
1708         u8 cpumode;
1709
1710         if (intel_pt_skip_event(pt))
1711                 return 0;
1712
1713         intel_pt_prep_a_sample(ptq, event, &sample);
1714
1715         sample.id = id;
1716         sample.stream_id = id;
1717
1718         if (!evsel->attr.freq)
1719                 sample.period = evsel->attr.sample_period;
1720
1721         /* No support for non-zero CS base */
1722         if (items->has_ip)
1723                 sample.ip = items->ip;
1724         else if (items->has_rip)
1725                 sample.ip = items->rip;
1726         else
1727                 sample.ip = ptq->state->from_ip;
1728
1729         /* No support for guest mode at this time */
1730         cpumode = sample.ip < ptq->pt->kernel_start ?
1731                   PERF_RECORD_MISC_USER :
1732                   PERF_RECORD_MISC_KERNEL;
1733
1734         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1735
1736         sample.cpumode = cpumode;
1737
1738         if (sample_type & PERF_SAMPLE_TIME) {
1739                 u64 timestamp = 0;
1740
1741                 if (items->has_timestamp)
1742                         timestamp = items->timestamp;
1743                 else if (!pt->timeless_decoding)
1744                         timestamp = ptq->timestamp;
1745                 if (timestamp)
1746                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1747         }
1748
1749         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1750             pt->synth_opts.callchain) {
1751                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1752                                      pt->synth_opts.callchain_sz, sample.ip,
1753                                      pt->kernel_start);
1754                 sample.callchain = ptq->chain;
1755         }
1756
1757         if (sample_type & PERF_SAMPLE_REGS_INTR &&
1758             items->mask[INTEL_PT_GP_REGS_POS]) {
1759                 u64 regs[sizeof(sample.intr_regs.mask)];
1760                 u64 regs_mask = evsel->attr.sample_regs_intr;
1761                 u64 *pos;
1762
1763                 sample.intr_regs.abi = items->is_32_bit ?
1764                                        PERF_SAMPLE_REGS_ABI_32 :
1765                                        PERF_SAMPLE_REGS_ABI_64;
1766                 sample.intr_regs.regs = regs;
1767
1768                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1769
1770                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1771         }
1772
1773         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1774                 struct {
1775                         struct branch_stack br_stack;
1776                         struct branch_entry entries[LBRS_MAX];
1777                 } br;
1778
1779                 if (items->mask[INTEL_PT_LBR_0_POS] ||
1780                     items->mask[INTEL_PT_LBR_1_POS] ||
1781                     items->mask[INTEL_PT_LBR_2_POS]) {
1782                         intel_pt_add_lbrs(&br.br_stack, items);
1783                         sample.branch_stack = &br.br_stack;
1784                 } else if (pt->synth_opts.last_branch) {
1785                         intel_pt_copy_last_branch_rb(ptq);
1786                         sample.branch_stack = ptq->last_branch;
1787                 } else {
1788                         br.br_stack.nr = 0;
1789                         sample.branch_stack = &br.br_stack;
1790                 }
1791         }
1792
1793         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1794                 sample.addr = items->mem_access_address;
1795
1796         if (sample_type & PERF_SAMPLE_WEIGHT) {
1797                 /*
1798                  * Refer kernel's setup_pebs_adaptive_sample_data() and
1799                  * intel_hsw_weight().
1800                  */
1801                 if (items->has_mem_access_latency)
1802                         sample.weight = items->mem_access_latency;
1803                 if (!sample.weight && items->has_tsx_aux_info) {
1804                         /* Cycles last block */
1805                         sample.weight = (u32)items->tsx_aux_info;
1806                 }
1807         }
1808
1809         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1810                 u64 ax = items->has_rax ? items->rax : 0;
1811                 /* Refer kernel's intel_hsw_transaction() */
1812                 u64 txn = (u8)(items->tsx_aux_info >> 32);
1813
1814                 /* For RTM XABORTs also log the abort code from AX */
1815                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1816                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1817                 sample.transaction = txn;
1818         }
1819
1820         return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
1821 }
1822
1823 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1824                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1825 {
1826         union perf_event event;
1827         char msg[MAX_AUXTRACE_ERROR_MSG];
1828         int err;
1829
1830         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1831
1832         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1833                              code, cpu, pid, tid, ip, msg, timestamp);
1834
1835         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1836         if (err)
1837                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1838                        err);
1839
1840         return err;
1841 }
1842
1843 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1844                                  const struct intel_pt_state *state)
1845 {
1846         struct intel_pt *pt = ptq->pt;
1847         u64 tm = ptq->timestamp;
1848
1849         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1850
1851         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1852                                     ptq->tid, state->from_ip, tm);
1853 }
1854
1855 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1856 {
1857         struct auxtrace_queue *queue;
1858         pid_t tid = ptq->next_tid;
1859         int err;
1860
1861         if (tid == -1)
1862                 return 0;
1863
1864         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1865
1866         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1867
1868         queue = &pt->queues.queue_array[ptq->queue_nr];
1869         intel_pt_set_pid_tid_cpu(pt, queue);
1870
1871         ptq->next_tid = -1;
1872
1873         return err;
1874 }
1875
1876 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1877 {
1878         struct intel_pt *pt = ptq->pt;
1879
1880         return ip == pt->switch_ip &&
1881                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1882                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1883                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1884 }
1885
1886 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1887                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1888
1889 static int intel_pt_sample(struct intel_pt_queue *ptq)
1890 {
1891         const struct intel_pt_state *state = ptq->state;
1892         struct intel_pt *pt = ptq->pt;
1893         int err;
1894
1895         if (!ptq->have_sample)
1896                 return 0;
1897
1898         ptq->have_sample = false;
1899
1900         if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1901                 /*
1902                  * Cycle count and instruction count only go together to create
1903                  * a valid IPC ratio when the cycle count changes.
1904                  */
1905                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1906                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1907         }
1908
1909         /*
1910          * Do PEBS first to allow for the possibility that the PEBS timestamp
1911          * precedes the current timestamp.
1912          */
1913         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1914                 err = intel_pt_synth_pebs_sample(ptq);
1915                 if (err)
1916                         return err;
1917         }
1918
1919         if (pt->sample_pwr_events) {
1920                 if (ptq->state->cbr != ptq->cbr_seen) {
1921                         err = intel_pt_synth_cbr_sample(ptq);
1922                         if (err)
1923                                 return err;
1924                 }
1925                 if (state->type & INTEL_PT_PWR_EVT) {
1926                         if (state->type & INTEL_PT_MWAIT_OP) {
1927                                 err = intel_pt_synth_mwait_sample(ptq);
1928                                 if (err)
1929                                         return err;
1930                         }
1931                         if (state->type & INTEL_PT_PWR_ENTRY) {
1932                                 err = intel_pt_synth_pwre_sample(ptq);
1933                                 if (err)
1934                                         return err;
1935                         }
1936                         if (state->type & INTEL_PT_EX_STOP) {
1937                                 err = intel_pt_synth_exstop_sample(ptq);
1938                                 if (err)
1939                                         return err;
1940                         }
1941                         if (state->type & INTEL_PT_PWR_EXIT) {
1942                                 err = intel_pt_synth_pwrx_sample(ptq);
1943                                 if (err)
1944                                         return err;
1945                         }
1946                 }
1947         }
1948
1949         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1950                 err = intel_pt_synth_instruction_sample(ptq);
1951                 if (err)
1952                         return err;
1953         }
1954
1955         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1956                 err = intel_pt_synth_transaction_sample(ptq);
1957                 if (err)
1958                         return err;
1959         }
1960
1961         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1962                 err = intel_pt_synth_ptwrite_sample(ptq);
1963                 if (err)
1964                         return err;
1965         }
1966
1967         if (!(state->type & INTEL_PT_BRANCH))
1968                 return 0;
1969
1970         if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1971                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1972                                     state->to_ip, ptq->insn_len,
1973                                     state->trace_nr);
1974         else
1975                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
1976
1977         if (pt->sample_branches) {
1978                 err = intel_pt_synth_branch_sample(ptq);
1979                 if (err)
1980                         return err;
1981         }
1982
1983         if (pt->synth_opts.last_branch)
1984                 intel_pt_update_last_branch_rb(ptq);
1985
1986         if (!ptq->sync_switch)
1987                 return 0;
1988
1989         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1990                 switch (ptq->switch_state) {
1991                 case INTEL_PT_SS_NOT_TRACING:
1992                 case INTEL_PT_SS_UNKNOWN:
1993                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1994                         err = intel_pt_next_tid(pt, ptq);
1995                         if (err)
1996                                 return err;
1997                         ptq->switch_state = INTEL_PT_SS_TRACING;
1998                         break;
1999                 default:
2000                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2001                         return 1;
2002                 }
2003         } else if (!state->to_ip) {
2004                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2005         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2006                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2007         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2008                    state->to_ip == pt->ptss_ip &&
2009                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2010                 ptq->switch_state = INTEL_PT_SS_TRACING;
2011         }
2012
2013         return 0;
2014 }
2015
2016 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2017 {
2018         struct machine *machine = pt->machine;
2019         struct map *map;
2020         struct symbol *sym, *start;
2021         u64 ip, switch_ip = 0;
2022         const char *ptss;
2023
2024         if (ptss_ip)
2025                 *ptss_ip = 0;
2026
2027         map = machine__kernel_map(machine);
2028         if (!map)
2029                 return 0;
2030
2031         if (map__load(map))
2032                 return 0;
2033
2034         start = dso__first_symbol(map->dso);
2035
2036         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2037                 if (sym->binding == STB_GLOBAL &&
2038                     !strcmp(sym->name, "__switch_to")) {
2039                         ip = map->unmap_ip(map, sym->start);
2040                         if (ip >= map->start && ip < map->end) {
2041                                 switch_ip = ip;
2042                                 break;
2043                         }
2044                 }
2045         }
2046
2047         if (!switch_ip || !ptss_ip)
2048                 return 0;
2049
2050         if (pt->have_sched_switch == 1)
2051                 ptss = "perf_trace_sched_switch";
2052         else
2053                 ptss = "__perf_event_task_sched_out";
2054
2055         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2056                 if (!strcmp(sym->name, ptss)) {
2057                         ip = map->unmap_ip(map, sym->start);
2058                         if (ip >= map->start && ip < map->end) {
2059                                 *ptss_ip = ip;
2060                                 break;
2061                         }
2062                 }
2063         }
2064
2065         return switch_ip;
2066 }
2067
2068 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2069 {
2070         unsigned int i;
2071
2072         pt->sync_switch = true;
2073
2074         for (i = 0; i < pt->queues.nr_queues; i++) {
2075                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2076                 struct intel_pt_queue *ptq = queue->priv;
2077
2078                 if (ptq)
2079                         ptq->sync_switch = true;
2080         }
2081 }
2082
2083 /*
2084  * To filter against time ranges, it is only necessary to look at the next start
2085  * or end time.
2086  */
2087 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2088 {
2089         struct intel_pt *pt = ptq->pt;
2090
2091         if (ptq->sel_start) {
2092                 /* Next time is an end time */
2093                 ptq->sel_start = false;
2094                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2095                 return true;
2096         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2097                 /* Next time is a start time */
2098                 ptq->sel_start = true;
2099                 ptq->sel_idx += 1;
2100                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2101                 return true;
2102         }
2103
2104         /* No next time */
2105         return false;
2106 }
2107
2108 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2109 {
2110         int err;
2111
2112         while (1) {
2113                 if (ptq->sel_start) {
2114                         if (ptq->timestamp >= ptq->sel_timestamp) {
2115                                 /* After start time, so consider next time */
2116                                 intel_pt_next_time(ptq);
2117                                 if (!ptq->sel_timestamp) {
2118                                         /* No end time */
2119                                         return 0;
2120                                 }
2121                                 /* Check against end time */
2122                                 continue;
2123                         }
2124                         /* Before start time, so fast forward */
2125                         ptq->have_sample = false;
2126                         if (ptq->sel_timestamp > *ff_timestamp) {
2127                                 if (ptq->sync_switch) {
2128                                         intel_pt_next_tid(ptq->pt, ptq);
2129                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2130                                 }
2131                                 *ff_timestamp = ptq->sel_timestamp;
2132                                 err = intel_pt_fast_forward(ptq->decoder,
2133                                                             ptq->sel_timestamp);
2134                                 if (err)
2135                                         return err;
2136                         }
2137                         return 0;
2138                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2139                         /* After end time, so consider next time */
2140                         if (!intel_pt_next_time(ptq)) {
2141                                 /* No next time range, so stop decoding */
2142                                 ptq->have_sample = false;
2143                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2144                                 return 1;
2145                         }
2146                         /* Check against next start time */
2147                         continue;
2148                 } else {
2149                         /* Before end time */
2150                         return 0;
2151                 }
2152         }
2153 }
2154
2155 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2156 {
2157         const struct intel_pt_state *state = ptq->state;
2158         struct intel_pt *pt = ptq->pt;
2159         u64 ff_timestamp = 0;
2160         int err;
2161
2162         if (!pt->kernel_start) {
2163                 pt->kernel_start = machine__kernel_start(pt->machine);
2164                 if (pt->per_cpu_mmaps &&
2165                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2166                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2167                     !pt->sampling_mode) {
2168                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2169                         if (pt->switch_ip) {
2170                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2171                                              pt->switch_ip, pt->ptss_ip);
2172                                 intel_pt_enable_sync_switch(pt);
2173                         }
2174                 }
2175         }
2176
2177         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2178                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2179         while (1) {
2180                 err = intel_pt_sample(ptq);
2181                 if (err)
2182                         return err;
2183
2184                 state = intel_pt_decode(ptq->decoder);
2185                 if (state->err) {
2186                         if (state->err == INTEL_PT_ERR_NODATA)
2187                                 return 1;
2188                         if (ptq->sync_switch &&
2189                             state->from_ip >= pt->kernel_start) {
2190                                 ptq->sync_switch = false;
2191                                 intel_pt_next_tid(pt, ptq);
2192                         }
2193                         if (pt->synth_opts.errors) {
2194                                 err = intel_ptq_synth_error(ptq, state);
2195                                 if (err)
2196                                         return err;
2197                         }
2198                         continue;
2199                 }
2200
2201                 ptq->state = state;
2202                 ptq->have_sample = true;
2203                 intel_pt_sample_flags(ptq);
2204
2205                 /* Use estimated TSC upon return to user space */
2206                 if (pt->est_tsc &&
2207                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2208                     state->to_ip && state->to_ip < pt->kernel_start) {
2209                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2210                                      state->timestamp, state->est_timestamp);
2211                         ptq->timestamp = state->est_timestamp;
2212                 /* Use estimated TSC in unknown switch state */
2213                 } else if (ptq->sync_switch &&
2214                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2215                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2216                            ptq->next_tid == -1) {
2217                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2218                                      state->timestamp, state->est_timestamp);
2219                         ptq->timestamp = state->est_timestamp;
2220                 } else if (state->timestamp > ptq->timestamp) {
2221                         ptq->timestamp = state->timestamp;
2222                 }
2223
2224                 if (ptq->sel_timestamp) {
2225                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2226                         if (err)
2227                                 return err;
2228                 }
2229
2230                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2231                         *timestamp = ptq->timestamp;
2232                         return 0;
2233                 }
2234         }
2235         return 0;
2236 }
2237
2238 static inline int intel_pt_update_queues(struct intel_pt *pt)
2239 {
2240         if (pt->queues.new_data) {
2241                 pt->queues.new_data = false;
2242                 return intel_pt_setup_queues(pt);
2243         }
2244         return 0;
2245 }
2246
2247 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2248 {
2249         unsigned int queue_nr;
2250         u64 ts;
2251         int ret;
2252
2253         while (1) {
2254                 struct auxtrace_queue *queue;
2255                 struct intel_pt_queue *ptq;
2256
2257                 if (!pt->heap.heap_cnt)
2258                         return 0;
2259
2260                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2261                         return 0;
2262
2263                 queue_nr = pt->heap.heap_array[0].queue_nr;
2264                 queue = &pt->queues.queue_array[queue_nr];
2265                 ptq = queue->priv;
2266
2267                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2268                              queue_nr, pt->heap.heap_array[0].ordinal,
2269                              timestamp);
2270
2271                 auxtrace_heap__pop(&pt->heap);
2272
2273                 if (pt->heap.heap_cnt) {
2274                         ts = pt->heap.heap_array[0].ordinal + 1;
2275                         if (ts > timestamp)
2276                                 ts = timestamp;
2277                 } else {
2278                         ts = timestamp;
2279                 }
2280
2281                 intel_pt_set_pid_tid_cpu(pt, queue);
2282
2283                 ret = intel_pt_run_decoder(ptq, &ts);
2284
2285                 if (ret < 0) {
2286                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2287                         return ret;
2288                 }
2289
2290                 if (!ret) {
2291                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2292                         if (ret < 0)
2293                                 return ret;
2294                 } else {
2295                         ptq->on_heap = false;
2296                 }
2297         }
2298
2299         return 0;
2300 }
2301
2302 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2303                                             u64 time_)
2304 {
2305         struct auxtrace_queues *queues = &pt->queues;
2306         unsigned int i;
2307         u64 ts = 0;
2308
2309         for (i = 0; i < queues->nr_queues; i++) {
2310                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2311                 struct intel_pt_queue *ptq = queue->priv;
2312
2313                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2314                         ptq->time = time_;
2315                         intel_pt_set_pid_tid_cpu(pt, queue);
2316                         intel_pt_run_decoder(ptq, &ts);
2317                 }
2318         }
2319         return 0;
2320 }
2321
2322 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2323 {
2324         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2325                                     sample->pid, sample->tid, 0, sample->time);
2326 }
2327
2328 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2329 {
2330         unsigned i, j;
2331
2332         if (cpu < 0 || !pt->queues.nr_queues)
2333                 return NULL;
2334
2335         if ((unsigned)cpu >= pt->queues.nr_queues)
2336                 i = pt->queues.nr_queues - 1;
2337         else
2338                 i = cpu;
2339
2340         if (pt->queues.queue_array[i].cpu == cpu)
2341                 return pt->queues.queue_array[i].priv;
2342
2343         for (j = 0; i > 0; j++) {
2344                 if (pt->queues.queue_array[--i].cpu == cpu)
2345                         return pt->queues.queue_array[i].priv;
2346         }
2347
2348         for (; j < pt->queues.nr_queues; j++) {
2349                 if (pt->queues.queue_array[j].cpu == cpu)
2350                         return pt->queues.queue_array[j].priv;
2351         }
2352
2353         return NULL;
2354 }
2355
2356 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2357                                 u64 timestamp)
2358 {
2359         struct intel_pt_queue *ptq;
2360         int err;
2361
2362         if (!pt->sync_switch)
2363                 return 1;
2364
2365         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2366         if (!ptq || !ptq->sync_switch)
2367                 return 1;
2368
2369         switch (ptq->switch_state) {
2370         case INTEL_PT_SS_NOT_TRACING:
2371                 break;
2372         case INTEL_PT_SS_UNKNOWN:
2373         case INTEL_PT_SS_TRACING:
2374                 ptq->next_tid = tid;
2375                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2376                 return 0;
2377         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2378                 if (!ptq->on_heap) {
2379                         ptq->timestamp = perf_time_to_tsc(timestamp,
2380                                                           &pt->tc);
2381                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2382                                                  ptq->timestamp);
2383                         if (err)
2384                                 return err;
2385                         ptq->on_heap = true;
2386                 }
2387                 ptq->switch_state = INTEL_PT_SS_TRACING;
2388                 break;
2389         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2390                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2391                 break;
2392         default:
2393                 break;
2394         }
2395
2396         ptq->next_tid = -1;
2397
2398         return 1;
2399 }
2400
2401 static int intel_pt_process_switch(struct intel_pt *pt,
2402                                    struct perf_sample *sample)
2403 {
2404         struct perf_evsel *evsel;
2405         pid_t tid;
2406         int cpu, ret;
2407
2408         evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2409         if (evsel != pt->switch_evsel)
2410                 return 0;
2411
2412         tid = perf_evsel__intval(evsel, sample, "next_pid");
2413         cpu = sample->cpu;
2414
2415         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2416                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2417                      &pt->tc));
2418
2419         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2420         if (ret <= 0)
2421                 return ret;
2422
2423         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2424 }
2425
2426 static int intel_pt_context_switch_in(struct intel_pt *pt,
2427                                       struct perf_sample *sample)
2428 {
2429         pid_t pid = sample->pid;
2430         pid_t tid = sample->tid;
2431         int cpu = sample->cpu;
2432
2433         if (pt->sync_switch) {
2434                 struct intel_pt_queue *ptq;
2435
2436                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2437                 if (ptq && ptq->sync_switch) {
2438                         ptq->next_tid = -1;
2439                         switch (ptq->switch_state) {
2440                         case INTEL_PT_SS_NOT_TRACING:
2441                         case INTEL_PT_SS_UNKNOWN:
2442                         case INTEL_PT_SS_TRACING:
2443                                 break;
2444                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2445                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2446                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2447                                 break;
2448                         default:
2449                                 break;
2450                         }
2451                 }
2452         }
2453
2454         /*
2455          * If the current tid has not been updated yet, ensure it is now that
2456          * a "switch in" event has occurred.
2457          */
2458         if (machine__get_current_tid(pt->machine, cpu) == tid)
2459                 return 0;
2460
2461         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2462 }
2463
2464 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2465                                    struct perf_sample *sample)
2466 {
2467         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2468         pid_t pid, tid;
2469         int cpu, ret;
2470
2471         cpu = sample->cpu;
2472
2473         if (pt->have_sched_switch == 3) {
2474                 if (!out)
2475                         return intel_pt_context_switch_in(pt, sample);
2476                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2477                         pr_err("Expecting CPU-wide context switch event\n");
2478                         return -EINVAL;
2479                 }
2480                 pid = event->context_switch.next_prev_pid;
2481                 tid = event->context_switch.next_prev_tid;
2482         } else {
2483                 if (out)
2484                         return 0;
2485                 pid = sample->pid;
2486                 tid = sample->tid;
2487         }
2488
2489         if (tid == -1) {
2490                 pr_err("context_switch event has no tid\n");
2491                 return -EINVAL;
2492         }
2493
2494         intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2495                      cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2496                      &pt->tc));
2497
2498         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2499         if (ret <= 0)
2500                 return ret;
2501
2502         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2503 }
2504
2505 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2506                                          union perf_event *event,
2507                                          struct perf_sample *sample)
2508 {
2509         if (!pt->per_cpu_mmaps)
2510                 return 0;
2511
2512         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2513                      sample->cpu, event->itrace_start.pid,
2514                      event->itrace_start.tid, sample->time,
2515                      perf_time_to_tsc(sample->time, &pt->tc));
2516
2517         return machine__set_current_tid(pt->machine, sample->cpu,
2518                                         event->itrace_start.pid,
2519                                         event->itrace_start.tid);
2520 }
2521
2522 static int intel_pt_process_event(struct perf_session *session,
2523                                   union perf_event *event,
2524                                   struct perf_sample *sample,
2525                                   struct perf_tool *tool)
2526 {
2527         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2528                                            auxtrace);
2529         u64 timestamp;
2530         int err = 0;
2531
2532         if (dump_trace)
2533                 return 0;
2534
2535         if (!tool->ordered_events) {
2536                 pr_err("Intel Processor Trace requires ordered events\n");
2537                 return -EINVAL;
2538         }
2539
2540         if (sample->time && sample->time != (u64)-1)
2541                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2542         else
2543                 timestamp = 0;
2544
2545         if (timestamp || pt->timeless_decoding) {
2546                 err = intel_pt_update_queues(pt);
2547                 if (err)
2548                         return err;
2549         }
2550
2551         if (pt->timeless_decoding) {
2552                 if (event->header.type == PERF_RECORD_EXIT) {
2553                         err = intel_pt_process_timeless_queues(pt,
2554                                                                event->fork.tid,
2555                                                                sample->time);
2556                 }
2557         } else if (timestamp) {
2558                 err = intel_pt_process_queues(pt, timestamp);
2559         }
2560         if (err)
2561                 return err;
2562
2563         if (event->header.type == PERF_RECORD_AUX &&
2564             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2565             pt->synth_opts.errors) {
2566                 err = intel_pt_lost(pt, sample);
2567                 if (err)
2568                         return err;
2569         }
2570
2571         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2572                 err = intel_pt_process_switch(pt, sample);
2573         else if (event->header.type == PERF_RECORD_ITRACE_START)
2574                 err = intel_pt_process_itrace_start(pt, event, sample);
2575         else if (event->header.type == PERF_RECORD_SWITCH ||
2576                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2577                 err = intel_pt_context_switch(pt, event, sample);
2578
2579         intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2580                      event->header.type, sample->cpu, sample->time, timestamp);
2581         intel_pt_log_event(event);
2582
2583         return err;
2584 }
2585
2586 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2587 {
2588         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2589                                            auxtrace);
2590         int ret;
2591
2592         if (dump_trace)
2593                 return 0;
2594
2595         if (!tool->ordered_events)
2596                 return -EINVAL;
2597
2598         ret = intel_pt_update_queues(pt);
2599         if (ret < 0)
2600                 return ret;
2601
2602         if (pt->timeless_decoding)
2603                 return intel_pt_process_timeless_queues(pt, -1,
2604                                                         MAX_TIMESTAMP - 1);
2605
2606         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2607 }
2608
2609 static void intel_pt_free_events(struct perf_session *session)
2610 {
2611         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2612                                            auxtrace);
2613         struct auxtrace_queues *queues = &pt->queues;
2614         unsigned int i;
2615
2616         for (i = 0; i < queues->nr_queues; i++) {
2617                 intel_pt_free_queue(queues->queue_array[i].priv);
2618                 queues->queue_array[i].priv = NULL;
2619         }
2620         intel_pt_log_disable();
2621         auxtrace_queues__free(queues);
2622 }
2623
2624 static void intel_pt_free(struct perf_session *session)
2625 {
2626         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2627                                            auxtrace);
2628
2629         auxtrace_heap__free(&pt->heap);
2630         intel_pt_free_events(session);
2631         session->auxtrace = NULL;
2632         thread__put(pt->unknown_thread);
2633         addr_filters__exit(&pt->filts);
2634         zfree(&pt->filter);
2635         zfree(&pt->time_ranges);
2636         free(pt);
2637 }
2638
2639 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2640                                            union perf_event *event,
2641                                            struct perf_tool *tool __maybe_unused)
2642 {
2643         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2644                                            auxtrace);
2645
2646         if (!pt->data_queued) {
2647                 struct auxtrace_buffer *buffer;
2648                 off_t data_offset;
2649                 int fd = perf_data__fd(session->data);
2650                 int err;
2651
2652                 if (perf_data__is_pipe(session->data)) {
2653                         data_offset = 0;
2654                 } else {
2655                         data_offset = lseek(fd, 0, SEEK_CUR);
2656                         if (data_offset == -1)
2657                                 return -errno;
2658                 }
2659
2660                 err = auxtrace_queues__add_event(&pt->queues, session, event,
2661                                                  data_offset, &buffer);
2662                 if (err)
2663                         return err;
2664
2665                 /* Dump here now we have copied a piped trace out of the pipe */
2666                 if (dump_trace) {
2667                         if (auxtrace_buffer__get_data(buffer, fd)) {
2668                                 intel_pt_dump_event(pt, buffer->data,
2669                                                     buffer->size);
2670                                 auxtrace_buffer__put_data(buffer);
2671                         }
2672                 }
2673         }
2674
2675         return 0;
2676 }
2677
2678 struct intel_pt_synth {
2679         struct perf_tool dummy_tool;
2680         struct perf_session *session;
2681 };
2682
2683 static int intel_pt_event_synth(struct perf_tool *tool,
2684                                 union perf_event *event,
2685                                 struct perf_sample *sample __maybe_unused,
2686                                 struct machine *machine __maybe_unused)
2687 {
2688         struct intel_pt_synth *intel_pt_synth =
2689                         container_of(tool, struct intel_pt_synth, dummy_tool);
2690
2691         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2692                                                  NULL);
2693 }
2694
2695 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2696                                 struct perf_event_attr *attr, u64 id)
2697 {
2698         struct intel_pt_synth intel_pt_synth;
2699         int err;
2700
2701         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2702                  name, id, (u64)attr->sample_type);
2703
2704         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2705         intel_pt_synth.session = session;
2706
2707         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2708                                           &id, intel_pt_event_synth);
2709         if (err)
2710                 pr_err("%s: failed to synthesize '%s' event type\n",
2711                        __func__, name);
2712
2713         return err;
2714 }
2715
2716 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id,
2717                                     const char *name)
2718 {
2719         struct perf_evsel *evsel;
2720
2721         evlist__for_each_entry(evlist, evsel) {
2722                 if (evsel->id && evsel->id[0] == id) {
2723                         if (evsel->name)
2724                                 zfree(&evsel->name);
2725                         evsel->name = strdup(name);
2726                         break;
2727                 }
2728         }
2729 }
2730
2731 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt,
2732                                          struct perf_evlist *evlist)
2733 {
2734         struct perf_evsel *evsel;
2735
2736         evlist__for_each_entry(evlist, evsel) {
2737                 if (evsel->attr.type == pt->pmu_type && evsel->ids)
2738                         return evsel;
2739         }
2740
2741         return NULL;
2742 }
2743
2744 static int intel_pt_synth_events(struct intel_pt *pt,
2745                                  struct perf_session *session)
2746 {
2747         struct perf_evlist *evlist = session->evlist;
2748         struct perf_evsel *evsel = intel_pt_evsel(pt, evlist);
2749         struct perf_event_attr attr;
2750         u64 id;
2751         int err;
2752
2753         if (!evsel) {
2754                 pr_debug("There are no selected events with Intel Processor Trace data\n");
2755                 return 0;
2756         }
2757
2758         memset(&attr, 0, sizeof(struct perf_event_attr));
2759         attr.size = sizeof(struct perf_event_attr);
2760         attr.type = PERF_TYPE_HARDWARE;
2761         attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
2762         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2763                             PERF_SAMPLE_PERIOD;
2764         if (pt->timeless_decoding)
2765                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2766         else
2767                 attr.sample_type |= PERF_SAMPLE_TIME;
2768         if (!pt->per_cpu_mmaps)
2769                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2770         attr.exclude_user = evsel->attr.exclude_user;
2771         attr.exclude_kernel = evsel->attr.exclude_kernel;
2772         attr.exclude_hv = evsel->attr.exclude_hv;
2773         attr.exclude_host = evsel->attr.exclude_host;
2774         attr.exclude_guest = evsel->attr.exclude_guest;
2775         attr.sample_id_all = evsel->attr.sample_id_all;
2776         attr.read_format = evsel->attr.read_format;
2777
2778         id = evsel->id[0] + 1000000000;
2779         if (!id)
2780                 id = 1;
2781
2782         if (pt->synth_opts.branches) {
2783                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2784                 attr.sample_period = 1;
2785                 attr.sample_type |= PERF_SAMPLE_ADDR;
2786                 err = intel_pt_synth_event(session, "branches", &attr, id);
2787                 if (err)
2788                         return err;
2789                 pt->sample_branches = true;
2790                 pt->branches_sample_type = attr.sample_type;
2791                 pt->branches_id = id;
2792                 id += 1;
2793                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2794         }
2795
2796         if (pt->synth_opts.callchain)
2797                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2798         if (pt->synth_opts.last_branch)
2799                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2800
2801         if (pt->synth_opts.instructions) {
2802                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2803                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2804                         attr.sample_period =
2805                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2806                 else
2807                         attr.sample_period = pt->synth_opts.period;
2808                 err = intel_pt_synth_event(session, "instructions", &attr, id);
2809                 if (err)
2810                         return err;
2811                 pt->sample_instructions = true;
2812                 pt->instructions_sample_type = attr.sample_type;
2813                 pt->instructions_id = id;
2814                 id += 1;
2815         }
2816
2817         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2818         attr.sample_period = 1;
2819
2820         if (pt->synth_opts.transactions) {
2821                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2822                 err = intel_pt_synth_event(session, "transactions", &attr, id);
2823                 if (err)
2824                         return err;
2825                 pt->sample_transactions = true;
2826                 pt->transactions_sample_type = attr.sample_type;
2827                 pt->transactions_id = id;
2828                 intel_pt_set_event_name(evlist, id, "transactions");
2829                 id += 1;
2830         }
2831
2832         attr.type = PERF_TYPE_SYNTH;
2833         attr.sample_type |= PERF_SAMPLE_RAW;
2834
2835         if (pt->synth_opts.ptwrites) {
2836                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
2837                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2838                 if (err)
2839                         return err;
2840                 pt->sample_ptwrites = true;
2841                 pt->ptwrites_sample_type = attr.sample_type;
2842                 pt->ptwrites_id = id;
2843                 intel_pt_set_event_name(evlist, id, "ptwrite");
2844                 id += 1;
2845         }
2846
2847         if (pt->synth_opts.pwr_events) {
2848                 pt->sample_pwr_events = true;
2849                 pt->pwr_events_sample_type = attr.sample_type;
2850
2851                 attr.config = PERF_SYNTH_INTEL_CBR;
2852                 err = intel_pt_synth_event(session, "cbr", &attr, id);
2853                 if (err)
2854                         return err;
2855                 pt->cbr_id = id;
2856                 intel_pt_set_event_name(evlist, id, "cbr");
2857                 id += 1;
2858         }
2859
2860         if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) {
2861                 attr.config = PERF_SYNTH_INTEL_MWAIT;
2862                 err = intel_pt_synth_event(session, "mwait", &attr, id);
2863                 if (err)
2864                         return err;
2865                 pt->mwait_id = id;
2866                 intel_pt_set_event_name(evlist, id, "mwait");
2867                 id += 1;
2868
2869                 attr.config = PERF_SYNTH_INTEL_PWRE;
2870                 err = intel_pt_synth_event(session, "pwre", &attr, id);
2871                 if (err)
2872                         return err;
2873                 pt->pwre_id = id;
2874                 intel_pt_set_event_name(evlist, id, "pwre");
2875                 id += 1;
2876
2877                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
2878                 err = intel_pt_synth_event(session, "exstop", &attr, id);
2879                 if (err)
2880                         return err;
2881                 pt->exstop_id = id;
2882                 intel_pt_set_event_name(evlist, id, "exstop");
2883                 id += 1;
2884
2885                 attr.config = PERF_SYNTH_INTEL_PWRX;
2886                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
2887                 if (err)
2888                         return err;
2889                 pt->pwrx_id = id;
2890                 intel_pt_set_event_name(evlist, id, "pwrx");
2891                 id += 1;
2892         }
2893
2894         return 0;
2895 }
2896
2897 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2898 {
2899         struct perf_evsel *evsel;
2900
2901         evlist__for_each_entry_reverse(evlist, evsel) {
2902                 const char *name = perf_evsel__name(evsel);
2903
2904                 if (!strcmp(name, "sched:sched_switch"))
2905                         return evsel;
2906         }
2907
2908         return NULL;
2909 }
2910
2911 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2912 {
2913         struct perf_evsel *evsel;
2914
2915         evlist__for_each_entry(evlist, evsel) {
2916                 if (evsel->attr.context_switch)
2917                         return true;
2918         }
2919
2920         return false;
2921 }
2922
2923 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2924 {
2925         struct intel_pt *pt = data;
2926
2927         if (!strcmp(var, "intel-pt.mispred-all"))
2928                 pt->mispred_all = perf_config_bool(var, value);
2929
2930         return 0;
2931 }
2932
2933 /* Find least TSC which converts to ns or later */
2934 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
2935 {
2936         u64 tsc, tm;
2937
2938         tsc = perf_time_to_tsc(ns, &pt->tc);
2939
2940         while (1) {
2941                 tm = tsc_to_perf_time(tsc, &pt->tc);
2942                 if (tm < ns)
2943                         break;
2944                 tsc -= 1;
2945         }
2946
2947         while (tm < ns)
2948                 tm = tsc_to_perf_time(++tsc, &pt->tc);
2949
2950         return tsc;
2951 }
2952
2953 /* Find greatest TSC which converts to ns or earlier */
2954 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
2955 {
2956         u64 tsc, tm;
2957
2958         tsc = perf_time_to_tsc(ns, &pt->tc);
2959
2960         while (1) {
2961                 tm = tsc_to_perf_time(tsc, &pt->tc);
2962                 if (tm > ns)
2963                         break;
2964                 tsc += 1;
2965         }
2966
2967         while (tm > ns)
2968                 tm = tsc_to_perf_time(--tsc, &pt->tc);
2969
2970         return tsc;
2971 }
2972
2973 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
2974                                       struct itrace_synth_opts *opts)
2975 {
2976         struct perf_time_interval *p = opts->ptime_range;
2977         int n = opts->range_num;
2978         int i;
2979
2980         if (!n || !p || pt->timeless_decoding)
2981                 return 0;
2982
2983         pt->time_ranges = calloc(n, sizeof(struct range));
2984         if (!pt->time_ranges)
2985                 return -ENOMEM;
2986
2987         pt->range_cnt = n;
2988
2989         intel_pt_log("%s: %u range(s)\n", __func__, n);
2990
2991         for (i = 0; i < n; i++) {
2992                 struct range *r = &pt->time_ranges[i];
2993                 u64 ts = p[i].start;
2994                 u64 te = p[i].end;
2995
2996                 /*
2997                  * Take care to ensure the TSC range matches the perf-time range
2998                  * when converted back to perf-time.
2999                  */
3000                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3001                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3002
3003                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3004                              i, ts, te);
3005                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3006                              i, r->start, r->end);
3007         }
3008
3009         return 0;
3010 }
3011
3012 static const char * const intel_pt_info_fmts[] = {
3013         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3014         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3015         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3016         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3017         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3018         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3019         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3020         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3021         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3022         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3023         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3024         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3025         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3026         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3027         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3028         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3029 };
3030
3031 static void intel_pt_print_info(u64 *arr, int start, int finish)
3032 {
3033         int i;
3034
3035         if (!dump_trace)
3036                 return;
3037
3038         for (i = start; i <= finish; i++)
3039                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3040 }
3041
3042 static void intel_pt_print_info_str(const char *name, const char *str)
3043 {
3044         if (!dump_trace)
3045                 return;
3046
3047         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3048 }
3049
3050 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
3051 {
3052         return auxtrace_info->header.size >=
3053                 sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
3054 }
3055
3056 int intel_pt_process_auxtrace_info(union perf_event *event,
3057                                    struct perf_session *session)
3058 {
3059         struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
3060         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3061         struct intel_pt *pt;
3062         void *info_end;
3063         u64 *info;
3064         int err;
3065
3066         if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
3067                                         min_sz)
3068                 return -EINVAL;
3069
3070         pt = zalloc(sizeof(struct intel_pt));
3071         if (!pt)
3072                 return -ENOMEM;
3073
3074         addr_filters__init(&pt->filts);
3075
3076         err = perf_config(intel_pt_perf_config, pt);
3077         if (err)
3078                 goto err_free;
3079
3080         err = auxtrace_queues__init(&pt->queues);
3081         if (err)
3082                 goto err_free;
3083
3084         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3085
3086         pt->session = session;
3087         pt->machine = &session->machines.host; /* No kvm support */
3088         pt->auxtrace_type = auxtrace_info->type;
3089         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3090         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3091         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3092         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3093         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3094         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3095         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3096         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3097         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3098         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3099         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3100                             INTEL_PT_PER_CPU_MMAPS);
3101
3102         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3103                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3104                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3105                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3106                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3107                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3108                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3109                                     INTEL_PT_CYC_BIT);
3110         }
3111
3112         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3113                 pt->max_non_turbo_ratio =
3114                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3115                 intel_pt_print_info(&auxtrace_info->priv[0],
3116                                     INTEL_PT_MAX_NONTURBO_RATIO,
3117                                     INTEL_PT_MAX_NONTURBO_RATIO);
3118         }
3119
3120         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3121         info_end = (void *)info + auxtrace_info->header.size;
3122
3123         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3124                 size_t len;
3125
3126                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3127                 intel_pt_print_info(&auxtrace_info->priv[0],
3128                                     INTEL_PT_FILTER_STR_LEN,
3129                                     INTEL_PT_FILTER_STR_LEN);
3130                 if (len) {
3131                         const char *filter = (const char *)info;
3132
3133                         len = roundup(len + 1, 8);
3134                         info += len >> 3;
3135                         if ((void *)info > info_end) {
3136                                 pr_err("%s: bad filter string length\n", __func__);
3137                                 err = -EINVAL;
3138                                 goto err_free_queues;
3139                         }
3140                         pt->filter = memdup(filter, len);
3141                         if (!pt->filter) {
3142                                 err = -ENOMEM;
3143                                 goto err_free_queues;
3144                         }
3145                         if (session->header.needs_swap)
3146                                 mem_bswap_64(pt->filter, len);
3147                         if (pt->filter[len - 1]) {
3148                                 pr_err("%s: filter string not null terminated\n", __func__);
3149                                 err = -EINVAL;
3150                                 goto err_free_queues;
3151                         }
3152                         err = addr_filters__parse_bare_filter(&pt->filts,
3153                                                               filter);
3154                         if (err)
3155                                 goto err_free_queues;
3156                 }
3157                 intel_pt_print_info_str("Filter string", pt->filter);
3158         }
3159
3160         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3161         if (pt->timeless_decoding && !pt->tc.time_mult)
3162                 pt->tc.time_mult = 1;
3163         pt->have_tsc = intel_pt_have_tsc(pt);
3164         pt->sampling_mode = false;
3165         pt->est_tsc = !pt->timeless_decoding;
3166
3167         pt->unknown_thread = thread__new(999999999, 999999999);
3168         if (!pt->unknown_thread) {
3169                 err = -ENOMEM;
3170                 goto err_free_queues;
3171         }
3172
3173         /*
3174          * Since this thread will not be kept in any rbtree not in a
3175          * list, initialize its list node so that at thread__put() the
3176          * current thread lifetime assuption is kept and we don't segfault
3177          * at list_del_init().
3178          */
3179         INIT_LIST_HEAD(&pt->unknown_thread->node);
3180
3181         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3182         if (err)
3183                 goto err_delete_thread;
3184         if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
3185                 err = -ENOMEM;
3186                 goto err_delete_thread;
3187         }
3188
3189         pt->auxtrace.process_event = intel_pt_process_event;
3190         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3191         pt->auxtrace.flush_events = intel_pt_flush;
3192         pt->auxtrace.free_events = intel_pt_free_events;
3193         pt->auxtrace.free = intel_pt_free;
3194         session->auxtrace = &pt->auxtrace;
3195
3196         if (dump_trace)
3197                 return 0;
3198
3199         if (pt->have_sched_switch == 1) {
3200                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3201                 if (!pt->switch_evsel) {
3202                         pr_err("%s: missing sched_switch event\n", __func__);
3203                         err = -EINVAL;
3204                         goto err_delete_thread;
3205                 }
3206         } else if (pt->have_sched_switch == 2 &&
3207                    !intel_pt_find_switch(session->evlist)) {
3208                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3209                 err = -EINVAL;
3210                 goto err_delete_thread;
3211         }
3212
3213         if (session->itrace_synth_opts->set) {
3214                 pt->synth_opts = *session->itrace_synth_opts;
3215         } else {
3216                 itrace_synth_opts__set_default(&pt->synth_opts,
3217                                 session->itrace_synth_opts->default_no_sample);
3218                 if (!session->itrace_synth_opts->default_no_sample &&
3219                     !session->itrace_synth_opts->inject) {
3220                         pt->synth_opts.branches = false;
3221                         pt->synth_opts.callchain = true;
3222                 }
3223                 pt->synth_opts.thread_stack =
3224                                 session->itrace_synth_opts->thread_stack;
3225         }
3226
3227         if (pt->synth_opts.log)
3228                 intel_pt_log_enable();
3229
3230         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3231         if (pt->tc.time_mult) {
3232                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3233
3234                 if (!pt->max_non_turbo_ratio)
3235                         pt->max_non_turbo_ratio =
3236                                         (tsc_freq + 50000000) / 100000000;
3237                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3238                 intel_pt_log("Maximum non-turbo ratio %u\n",
3239                              pt->max_non_turbo_ratio);
3240                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3241         }
3242
3243         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3244         if (err)
3245                 goto err_delete_thread;
3246
3247         if (pt->synth_opts.calls)
3248                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3249                                        PERF_IP_FLAG_TRACE_END;
3250         if (pt->synth_opts.returns)
3251                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3252                                        PERF_IP_FLAG_TRACE_BEGIN;
3253
3254         if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
3255                 symbol_conf.use_callchain = true;
3256                 if (callchain_register_param(&callchain_param) < 0) {
3257                         symbol_conf.use_callchain = false;
3258                         pt->synth_opts.callchain = false;
3259                 }
3260         }
3261
3262         err = intel_pt_synth_events(pt, session);
3263         if (err)
3264                 goto err_delete_thread;
3265
3266         err = auxtrace_queues__process_index(&pt->queues, session);
3267         if (err)
3268                 goto err_delete_thread;
3269
3270         if (pt->queues.populated)
3271                 pt->data_queued = true;
3272
3273         if (pt->timeless_decoding)
3274                 pr_debug2("Intel PT decoding without timestamps\n");
3275
3276         return 0;
3277
3278 err_delete_thread:
3279         thread__zput(pt->unknown_thread);
3280 err_free_queues:
3281         intel_pt_log_disable();
3282         auxtrace_queues__free(&pt->queues);
3283         session->auxtrace = NULL;
3284 err_free:
3285         addr_filters__exit(&pt->filts);
3286         zfree(&pt->filter);
3287         zfree(&pt->time_ranges);
3288         free(pt);
3289         return err;
3290 }