Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16 #include "util/stat.h"
17 #include "util/string2.h"
18 #include "util/callchain.h"
19 #include "util/time-utils.h"
20
21 #include <subcmd/parse-options.h>
22 #include "util/trace-event.h"
23
24 #include "util/debug.h"
25
26 #include <linux/kernel.h>
27 #include <linux/log2.h>
28 #include <linux/zalloc.h>
29 #include <sys/prctl.h>
30 #include <sys/resource.h>
31 #include <inttypes.h>
32
33 #include <errno.h>
34 #include <semaphore.h>
35 #include <pthread.h>
36 #include <math.h>
37 #include <api/fs/fs.h>
38 #include <linux/time64.h>
39
40 #include <linux/ctype.h>
41
42 #define PR_SET_NAME             15               /* Set process name */
43 #define MAX_CPUS                4096
44 #define COMM_LEN                20
45 #define SYM_LEN                 129
46 #define MAX_PID                 1024000
47
48 struct sched_atom;
49
50 struct task_desc {
51         unsigned long           nr;
52         unsigned long           pid;
53         char                    comm[COMM_LEN];
54
55         unsigned long           nr_events;
56         unsigned long           curr_event;
57         struct sched_atom       **atoms;
58
59         pthread_t               thread;
60         sem_t                   sleep_sem;
61
62         sem_t                   ready_for_work;
63         sem_t                   work_done_sem;
64
65         u64                     cpu_usage;
66 };
67
68 enum sched_event_type {
69         SCHED_EVENT_RUN,
70         SCHED_EVENT_SLEEP,
71         SCHED_EVENT_WAKEUP,
72         SCHED_EVENT_MIGRATION,
73 };
74
75 struct sched_atom {
76         enum sched_event_type   type;
77         int                     specific_wait;
78         u64                     timestamp;
79         u64                     duration;
80         unsigned long           nr;
81         sem_t                   *wait_sem;
82         struct task_desc        *wakee;
83 };
84
85 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
86
87 /* task state bitmask, copied from include/linux/sched.h */
88 #define TASK_RUNNING            0
89 #define TASK_INTERRUPTIBLE      1
90 #define TASK_UNINTERRUPTIBLE    2
91 #define __TASK_STOPPED          4
92 #define __TASK_TRACED           8
93 /* in tsk->exit_state */
94 #define EXIT_DEAD               16
95 #define EXIT_ZOMBIE             32
96 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
97 /* in tsk->state again */
98 #define TASK_DEAD               64
99 #define TASK_WAKEKILL           128
100 #define TASK_WAKING             256
101 #define TASK_PARKED             512
102
103 enum thread_state {
104         THREAD_SLEEPING = 0,
105         THREAD_WAIT_CPU,
106         THREAD_SCHED_IN,
107         THREAD_IGNORE
108 };
109
110 struct work_atom {
111         struct list_head        list;
112         enum thread_state       state;
113         u64                     sched_out_time;
114         u64                     wake_up_time;
115         u64                     sched_in_time;
116         u64                     runtime;
117 };
118
119 struct work_atoms {
120         struct list_head        work_list;
121         struct thread           *thread;
122         struct rb_node          node;
123         u64                     max_lat;
124         u64                     max_lat_at;
125         u64                     total_lat;
126         u64                     nb_atoms;
127         u64                     total_runtime;
128         int                     num_merged;
129 };
130
131 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
132
133 struct perf_sched;
134
135 struct trace_sched_handler {
136         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
137                             struct perf_sample *sample, struct machine *machine);
138
139         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
140                              struct perf_sample *sample, struct machine *machine);
141
142         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
143                             struct perf_sample *sample, struct machine *machine);
144
145         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
146         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
147                           struct machine *machine);
148
149         int (*migrate_task_event)(struct perf_sched *sched,
150                                   struct perf_evsel *evsel,
151                                   struct perf_sample *sample,
152                                   struct machine *machine);
153 };
154
155 #define COLOR_PIDS PERF_COLOR_BLUE
156 #define COLOR_CPUS PERF_COLOR_BG_RED
157
158 struct perf_sched_map {
159         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
160         int                     *comp_cpus;
161         bool                     comp;
162         struct thread_map       *color_pids;
163         const char              *color_pids_str;
164         struct cpu_map          *color_cpus;
165         const char              *color_cpus_str;
166         struct cpu_map          *cpus;
167         const char              *cpus_str;
168 };
169
170 struct perf_sched {
171         struct perf_tool tool;
172         const char       *sort_order;
173         unsigned long    nr_tasks;
174         struct task_desc **pid_to_task;
175         struct task_desc **tasks;
176         const struct trace_sched_handler *tp_handler;
177         pthread_mutex_t  start_work_mutex;
178         pthread_mutex_t  work_done_wait_mutex;
179         int              profile_cpu;
180 /*
181  * Track the current task - that way we can know whether there's any
182  * weird events, such as a task being switched away that is not current.
183  */
184         int              max_cpu;
185         u32              curr_pid[MAX_CPUS];
186         struct thread    *curr_thread[MAX_CPUS];
187         char             next_shortname1;
188         char             next_shortname2;
189         unsigned int     replay_repeat;
190         unsigned long    nr_run_events;
191         unsigned long    nr_sleep_events;
192         unsigned long    nr_wakeup_events;
193         unsigned long    nr_sleep_corrections;
194         unsigned long    nr_run_events_optimized;
195         unsigned long    targetless_wakeups;
196         unsigned long    multitarget_wakeups;
197         unsigned long    nr_runs;
198         unsigned long    nr_timestamps;
199         unsigned long    nr_unordered_timestamps;
200         unsigned long    nr_context_switch_bugs;
201         unsigned long    nr_events;
202         unsigned long    nr_lost_chunks;
203         unsigned long    nr_lost_events;
204         u64              run_measurement_overhead;
205         u64              sleep_measurement_overhead;
206         u64              start_time;
207         u64              cpu_usage;
208         u64              runavg_cpu_usage;
209         u64              parent_cpu_usage;
210         u64              runavg_parent_cpu_usage;
211         u64              sum_runtime;
212         u64              sum_fluct;
213         u64              run_avg;
214         u64              all_runtime;
215         u64              all_count;
216         u64              cpu_last_switched[MAX_CPUS];
217         struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
218         struct list_head sort_list, cmp_pid;
219         bool force;
220         bool skip_merge;
221         struct perf_sched_map map;
222
223         /* options for timehist command */
224         bool            summary;
225         bool            summary_only;
226         bool            idle_hist;
227         bool            show_callchain;
228         unsigned int    max_stack;
229         bool            show_cpu_visual;
230         bool            show_wakeups;
231         bool            show_next;
232         bool            show_migrations;
233         bool            show_state;
234         u64             skipped_samples;
235         const char      *time_str;
236         struct perf_time_interval ptime;
237         struct perf_time_interval hist_time;
238 };
239
240 /* per thread run time data */
241 struct thread_runtime {
242         u64 last_time;      /* time of previous sched in/out event */
243         u64 dt_run;         /* run time */
244         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
245         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
246         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
247         u64 dt_delay;       /* time between wakeup and sched-in */
248         u64 ready_to_run;   /* time of wakeup */
249
250         struct stats run_stats;
251         u64 total_run_time;
252         u64 total_sleep_time;
253         u64 total_iowait_time;
254         u64 total_preempt_time;
255         u64 total_delay_time;
256
257         int last_state;
258
259         char shortname[3];
260         bool comm_changed;
261
262         u64 migrations;
263 };
264
265 /* per event run time data */
266 struct evsel_runtime {
267         u64 *last_time; /* time this event was last seen per cpu */
268         u32 ncpu;       /* highest cpu slot allocated */
269 };
270
271 /* per cpu idle time data */
272 struct idle_thread_runtime {
273         struct thread_runtime   tr;
274         struct thread           *last_thread;
275         struct rb_root_cached   sorted_root;
276         struct callchain_root   callchain;
277         struct callchain_cursor cursor;
278 };
279
280 /* track idle times per cpu */
281 static struct thread **idle_threads;
282 static int idle_max_cpu;
283 static char idle_comm[] = "<idle>";
284
285 static u64 get_nsecs(void)
286 {
287         struct timespec ts;
288
289         clock_gettime(CLOCK_MONOTONIC, &ts);
290
291         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
292 }
293
294 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
295 {
296         u64 T0 = get_nsecs(), T1;
297
298         do {
299                 T1 = get_nsecs();
300         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
301 }
302
303 static void sleep_nsecs(u64 nsecs)
304 {
305         struct timespec ts;
306
307         ts.tv_nsec = nsecs % 999999999;
308         ts.tv_sec = nsecs / 999999999;
309
310         nanosleep(&ts, NULL);
311 }
312
313 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
314 {
315         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
316         int i;
317
318         for (i = 0; i < 10; i++) {
319                 T0 = get_nsecs();
320                 burn_nsecs(sched, 0);
321                 T1 = get_nsecs();
322                 delta = T1-T0;
323                 min_delta = min(min_delta, delta);
324         }
325         sched->run_measurement_overhead = min_delta;
326
327         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
328 }
329
330 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
331 {
332         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
333         int i;
334
335         for (i = 0; i < 10; i++) {
336                 T0 = get_nsecs();
337                 sleep_nsecs(10000);
338                 T1 = get_nsecs();
339                 delta = T1-T0;
340                 min_delta = min(min_delta, delta);
341         }
342         min_delta -= 10000;
343         sched->sleep_measurement_overhead = min_delta;
344
345         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
346 }
347
348 static struct sched_atom *
349 get_new_event(struct task_desc *task, u64 timestamp)
350 {
351         struct sched_atom *event = zalloc(sizeof(*event));
352         unsigned long idx = task->nr_events;
353         size_t size;
354
355         event->timestamp = timestamp;
356         event->nr = idx;
357
358         task->nr_events++;
359         size = sizeof(struct sched_atom *) * task->nr_events;
360         task->atoms = realloc(task->atoms, size);
361         BUG_ON(!task->atoms);
362
363         task->atoms[idx] = event;
364
365         return event;
366 }
367
368 static struct sched_atom *last_event(struct task_desc *task)
369 {
370         if (!task->nr_events)
371                 return NULL;
372
373         return task->atoms[task->nr_events - 1];
374 }
375
376 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
377                                 u64 timestamp, u64 duration)
378 {
379         struct sched_atom *event, *curr_event = last_event(task);
380
381         /*
382          * optimize an existing RUN event by merging this one
383          * to it:
384          */
385         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
386                 sched->nr_run_events_optimized++;
387                 curr_event->duration += duration;
388                 return;
389         }
390
391         event = get_new_event(task, timestamp);
392
393         event->type = SCHED_EVENT_RUN;
394         event->duration = duration;
395
396         sched->nr_run_events++;
397 }
398
399 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
400                                    u64 timestamp, struct task_desc *wakee)
401 {
402         struct sched_atom *event, *wakee_event;
403
404         event = get_new_event(task, timestamp);
405         event->type = SCHED_EVENT_WAKEUP;
406         event->wakee = wakee;
407
408         wakee_event = last_event(wakee);
409         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
410                 sched->targetless_wakeups++;
411                 return;
412         }
413         if (wakee_event->wait_sem) {
414                 sched->multitarget_wakeups++;
415                 return;
416         }
417
418         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
419         sem_init(wakee_event->wait_sem, 0, 0);
420         wakee_event->specific_wait = 1;
421         event->wait_sem = wakee_event->wait_sem;
422
423         sched->nr_wakeup_events++;
424 }
425
426 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
427                                   u64 timestamp, u64 task_state __maybe_unused)
428 {
429         struct sched_atom *event = get_new_event(task, timestamp);
430
431         event->type = SCHED_EVENT_SLEEP;
432
433         sched->nr_sleep_events++;
434 }
435
436 static struct task_desc *register_pid(struct perf_sched *sched,
437                                       unsigned long pid, const char *comm)
438 {
439         struct task_desc *task;
440         static int pid_max;
441
442         if (sched->pid_to_task == NULL) {
443                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
444                         pid_max = MAX_PID;
445                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
446         }
447         if (pid >= (unsigned long)pid_max) {
448                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
449                         sizeof(struct task_desc *))) == NULL);
450                 while (pid >= (unsigned long)pid_max)
451                         sched->pid_to_task[pid_max++] = NULL;
452         }
453
454         task = sched->pid_to_task[pid];
455
456         if (task)
457                 return task;
458
459         task = zalloc(sizeof(*task));
460         task->pid = pid;
461         task->nr = sched->nr_tasks;
462         strcpy(task->comm, comm);
463         /*
464          * every task starts in sleeping state - this gets ignored
465          * if there's no wakeup pointing to this sleep state:
466          */
467         add_sched_event_sleep(sched, task, 0, 0);
468
469         sched->pid_to_task[pid] = task;
470         sched->nr_tasks++;
471         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
472         BUG_ON(!sched->tasks);
473         sched->tasks[task->nr] = task;
474
475         if (verbose > 0)
476                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
477
478         return task;
479 }
480
481
482 static void print_task_traces(struct perf_sched *sched)
483 {
484         struct task_desc *task;
485         unsigned long i;
486
487         for (i = 0; i < sched->nr_tasks; i++) {
488                 task = sched->tasks[i];
489                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
490                         task->nr, task->comm, task->pid, task->nr_events);
491         }
492 }
493
494 static void add_cross_task_wakeups(struct perf_sched *sched)
495 {
496         struct task_desc *task1, *task2;
497         unsigned long i, j;
498
499         for (i = 0; i < sched->nr_tasks; i++) {
500                 task1 = sched->tasks[i];
501                 j = i + 1;
502                 if (j == sched->nr_tasks)
503                         j = 0;
504                 task2 = sched->tasks[j];
505                 add_sched_event_wakeup(sched, task1, 0, task2);
506         }
507 }
508
509 static void perf_sched__process_event(struct perf_sched *sched,
510                                       struct sched_atom *atom)
511 {
512         int ret = 0;
513
514         switch (atom->type) {
515                 case SCHED_EVENT_RUN:
516                         burn_nsecs(sched, atom->duration);
517                         break;
518                 case SCHED_EVENT_SLEEP:
519                         if (atom->wait_sem)
520                                 ret = sem_wait(atom->wait_sem);
521                         BUG_ON(ret);
522                         break;
523                 case SCHED_EVENT_WAKEUP:
524                         if (atom->wait_sem)
525                                 ret = sem_post(atom->wait_sem);
526                         BUG_ON(ret);
527                         break;
528                 case SCHED_EVENT_MIGRATION:
529                         break;
530                 default:
531                         BUG_ON(1);
532         }
533 }
534
535 static u64 get_cpu_usage_nsec_parent(void)
536 {
537         struct rusage ru;
538         u64 sum;
539         int err;
540
541         err = getrusage(RUSAGE_SELF, &ru);
542         BUG_ON(err);
543
544         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
545         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
546
547         return sum;
548 }
549
550 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
551 {
552         struct perf_event_attr attr;
553         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
554         int fd;
555         struct rlimit limit;
556         bool need_privilege = false;
557
558         memset(&attr, 0, sizeof(attr));
559
560         attr.type = PERF_TYPE_SOFTWARE;
561         attr.config = PERF_COUNT_SW_TASK_CLOCK;
562
563 force_again:
564         fd = sys_perf_event_open(&attr, 0, -1, -1,
565                                  perf_event_open_cloexec_flag());
566
567         if (fd < 0) {
568                 if (errno == EMFILE) {
569                         if (sched->force) {
570                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
571                                 limit.rlim_cur += sched->nr_tasks - cur_task;
572                                 if (limit.rlim_cur > limit.rlim_max) {
573                                         limit.rlim_max = limit.rlim_cur;
574                                         need_privilege = true;
575                                 }
576                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
577                                         if (need_privilege && errno == EPERM)
578                                                 strcpy(info, "Need privilege\n");
579                                 } else
580                                         goto force_again;
581                         } else
582                                 strcpy(info, "Have a try with -f option\n");
583                 }
584                 pr_err("Error: sys_perf_event_open() syscall returned "
585                        "with %d (%s)\n%s", fd,
586                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
587                 exit(EXIT_FAILURE);
588         }
589         return fd;
590 }
591
592 static u64 get_cpu_usage_nsec_self(int fd)
593 {
594         u64 runtime;
595         int ret;
596
597         ret = read(fd, &runtime, sizeof(runtime));
598         BUG_ON(ret != sizeof(runtime));
599
600         return runtime;
601 }
602
603 struct sched_thread_parms {
604         struct task_desc  *task;
605         struct perf_sched *sched;
606         int fd;
607 };
608
609 static void *thread_func(void *ctx)
610 {
611         struct sched_thread_parms *parms = ctx;
612         struct task_desc *this_task = parms->task;
613         struct perf_sched *sched = parms->sched;
614         u64 cpu_usage_0, cpu_usage_1;
615         unsigned long i, ret;
616         char comm2[22];
617         int fd = parms->fd;
618
619         zfree(&parms);
620
621         sprintf(comm2, ":%s", this_task->comm);
622         prctl(PR_SET_NAME, comm2);
623         if (fd < 0)
624                 return NULL;
625 again:
626         ret = sem_post(&this_task->ready_for_work);
627         BUG_ON(ret);
628         ret = pthread_mutex_lock(&sched->start_work_mutex);
629         BUG_ON(ret);
630         ret = pthread_mutex_unlock(&sched->start_work_mutex);
631         BUG_ON(ret);
632
633         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
634
635         for (i = 0; i < this_task->nr_events; i++) {
636                 this_task->curr_event = i;
637                 perf_sched__process_event(sched, this_task->atoms[i]);
638         }
639
640         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
641         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
642         ret = sem_post(&this_task->work_done_sem);
643         BUG_ON(ret);
644
645         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
646         BUG_ON(ret);
647         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
648         BUG_ON(ret);
649
650         goto again;
651 }
652
653 static void create_tasks(struct perf_sched *sched)
654 {
655         struct task_desc *task;
656         pthread_attr_t attr;
657         unsigned long i;
658         int err;
659
660         err = pthread_attr_init(&attr);
661         BUG_ON(err);
662         err = pthread_attr_setstacksize(&attr,
663                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
664         BUG_ON(err);
665         err = pthread_mutex_lock(&sched->start_work_mutex);
666         BUG_ON(err);
667         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
668         BUG_ON(err);
669         for (i = 0; i < sched->nr_tasks; i++) {
670                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
671                 BUG_ON(parms == NULL);
672                 parms->task = task = sched->tasks[i];
673                 parms->sched = sched;
674                 parms->fd = self_open_counters(sched, i);
675                 sem_init(&task->sleep_sem, 0, 0);
676                 sem_init(&task->ready_for_work, 0, 0);
677                 sem_init(&task->work_done_sem, 0, 0);
678                 task->curr_event = 0;
679                 err = pthread_create(&task->thread, &attr, thread_func, parms);
680                 BUG_ON(err);
681         }
682 }
683
684 static void wait_for_tasks(struct perf_sched *sched)
685 {
686         u64 cpu_usage_0, cpu_usage_1;
687         struct task_desc *task;
688         unsigned long i, ret;
689
690         sched->start_time = get_nsecs();
691         sched->cpu_usage = 0;
692         pthread_mutex_unlock(&sched->work_done_wait_mutex);
693
694         for (i = 0; i < sched->nr_tasks; i++) {
695                 task = sched->tasks[i];
696                 ret = sem_wait(&task->ready_for_work);
697                 BUG_ON(ret);
698                 sem_init(&task->ready_for_work, 0, 0);
699         }
700         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
701         BUG_ON(ret);
702
703         cpu_usage_0 = get_cpu_usage_nsec_parent();
704
705         pthread_mutex_unlock(&sched->start_work_mutex);
706
707         for (i = 0; i < sched->nr_tasks; i++) {
708                 task = sched->tasks[i];
709                 ret = sem_wait(&task->work_done_sem);
710                 BUG_ON(ret);
711                 sem_init(&task->work_done_sem, 0, 0);
712                 sched->cpu_usage += task->cpu_usage;
713                 task->cpu_usage = 0;
714         }
715
716         cpu_usage_1 = get_cpu_usage_nsec_parent();
717         if (!sched->runavg_cpu_usage)
718                 sched->runavg_cpu_usage = sched->cpu_usage;
719         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
720
721         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
722         if (!sched->runavg_parent_cpu_usage)
723                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
724         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
725                                          sched->parent_cpu_usage)/sched->replay_repeat;
726
727         ret = pthread_mutex_lock(&sched->start_work_mutex);
728         BUG_ON(ret);
729
730         for (i = 0; i < sched->nr_tasks; i++) {
731                 task = sched->tasks[i];
732                 sem_init(&task->sleep_sem, 0, 0);
733                 task->curr_event = 0;
734         }
735 }
736
737 static void run_one_test(struct perf_sched *sched)
738 {
739         u64 T0, T1, delta, avg_delta, fluct;
740
741         T0 = get_nsecs();
742         wait_for_tasks(sched);
743         T1 = get_nsecs();
744
745         delta = T1 - T0;
746         sched->sum_runtime += delta;
747         sched->nr_runs++;
748
749         avg_delta = sched->sum_runtime / sched->nr_runs;
750         if (delta < avg_delta)
751                 fluct = avg_delta - delta;
752         else
753                 fluct = delta - avg_delta;
754         sched->sum_fluct += fluct;
755         if (!sched->run_avg)
756                 sched->run_avg = delta;
757         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
758
759         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
760
761         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
762
763         printf("cpu: %0.2f / %0.2f",
764                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
765
766 #if 0
767         /*
768          * rusage statistics done by the parent, these are less
769          * accurate than the sched->sum_exec_runtime based statistics:
770          */
771         printf(" [%0.2f / %0.2f]",
772                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
773                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
774 #endif
775
776         printf("\n");
777
778         if (sched->nr_sleep_corrections)
779                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
780         sched->nr_sleep_corrections = 0;
781 }
782
783 static void test_calibrations(struct perf_sched *sched)
784 {
785         u64 T0, T1;
786
787         T0 = get_nsecs();
788         burn_nsecs(sched, NSEC_PER_MSEC);
789         T1 = get_nsecs();
790
791         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
792
793         T0 = get_nsecs();
794         sleep_nsecs(NSEC_PER_MSEC);
795         T1 = get_nsecs();
796
797         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
798 }
799
800 static int
801 replay_wakeup_event(struct perf_sched *sched,
802                     struct perf_evsel *evsel, struct perf_sample *sample,
803                     struct machine *machine __maybe_unused)
804 {
805         const char *comm = perf_evsel__strval(evsel, sample, "comm");
806         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
807         struct task_desc *waker, *wakee;
808
809         if (verbose > 0) {
810                 printf("sched_wakeup event %p\n", evsel);
811
812                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
813         }
814
815         waker = register_pid(sched, sample->tid, "<unknown>");
816         wakee = register_pid(sched, pid, comm);
817
818         add_sched_event_wakeup(sched, waker, sample->time, wakee);
819         return 0;
820 }
821
822 static int replay_switch_event(struct perf_sched *sched,
823                                struct perf_evsel *evsel,
824                                struct perf_sample *sample,
825                                struct machine *machine __maybe_unused)
826 {
827         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
828                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
829         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
830                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
831         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
832         struct task_desc *prev, __maybe_unused *next;
833         u64 timestamp0, timestamp = sample->time;
834         int cpu = sample->cpu;
835         s64 delta;
836
837         if (verbose > 0)
838                 printf("sched_switch event %p\n", evsel);
839
840         if (cpu >= MAX_CPUS || cpu < 0)
841                 return 0;
842
843         timestamp0 = sched->cpu_last_switched[cpu];
844         if (timestamp0)
845                 delta = timestamp - timestamp0;
846         else
847                 delta = 0;
848
849         if (delta < 0) {
850                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
851                 return -1;
852         }
853
854         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
855                  prev_comm, prev_pid, next_comm, next_pid, delta);
856
857         prev = register_pid(sched, prev_pid, prev_comm);
858         next = register_pid(sched, next_pid, next_comm);
859
860         sched->cpu_last_switched[cpu] = timestamp;
861
862         add_sched_event_run(sched, prev, timestamp, delta);
863         add_sched_event_sleep(sched, prev, timestamp, prev_state);
864
865         return 0;
866 }
867
868 static int replay_fork_event(struct perf_sched *sched,
869                              union perf_event *event,
870                              struct machine *machine)
871 {
872         struct thread *child, *parent;
873
874         child = machine__findnew_thread(machine, event->fork.pid,
875                                         event->fork.tid);
876         parent = machine__findnew_thread(machine, event->fork.ppid,
877                                          event->fork.ptid);
878
879         if (child == NULL || parent == NULL) {
880                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
881                                  child, parent);
882                 goto out_put;
883         }
884
885         if (verbose > 0) {
886                 printf("fork event\n");
887                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
888                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
889         }
890
891         register_pid(sched, parent->tid, thread__comm_str(parent));
892         register_pid(sched, child->tid, thread__comm_str(child));
893 out_put:
894         thread__put(child);
895         thread__put(parent);
896         return 0;
897 }
898
899 struct sort_dimension {
900         const char              *name;
901         sort_fn_t               cmp;
902         struct list_head        list;
903 };
904
905 /*
906  * handle runtime stats saved per thread
907  */
908 static struct thread_runtime *thread__init_runtime(struct thread *thread)
909 {
910         struct thread_runtime *r;
911
912         r = zalloc(sizeof(struct thread_runtime));
913         if (!r)
914                 return NULL;
915
916         init_stats(&r->run_stats);
917         thread__set_priv(thread, r);
918
919         return r;
920 }
921
922 static struct thread_runtime *thread__get_runtime(struct thread *thread)
923 {
924         struct thread_runtime *tr;
925
926         tr = thread__priv(thread);
927         if (tr == NULL) {
928                 tr = thread__init_runtime(thread);
929                 if (tr == NULL)
930                         pr_debug("Failed to malloc memory for runtime data.\n");
931         }
932
933         return tr;
934 }
935
936 static int
937 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
938 {
939         struct sort_dimension *sort;
940         int ret = 0;
941
942         BUG_ON(list_empty(list));
943
944         list_for_each_entry(sort, list, list) {
945                 ret = sort->cmp(l, r);
946                 if (ret)
947                         return ret;
948         }
949
950         return ret;
951 }
952
953 static struct work_atoms *
954 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
955                          struct list_head *sort_list)
956 {
957         struct rb_node *node = root->rb_root.rb_node;
958         struct work_atoms key = { .thread = thread };
959
960         while (node) {
961                 struct work_atoms *atoms;
962                 int cmp;
963
964                 atoms = container_of(node, struct work_atoms, node);
965
966                 cmp = thread_lat_cmp(sort_list, &key, atoms);
967                 if (cmp > 0)
968                         node = node->rb_left;
969                 else if (cmp < 0)
970                         node = node->rb_right;
971                 else {
972                         BUG_ON(thread != atoms->thread);
973                         return atoms;
974                 }
975         }
976         return NULL;
977 }
978
979 static void
980 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
981                          struct list_head *sort_list)
982 {
983         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
984         bool leftmost = true;
985
986         while (*new) {
987                 struct work_atoms *this;
988                 int cmp;
989
990                 this = container_of(*new, struct work_atoms, node);
991                 parent = *new;
992
993                 cmp = thread_lat_cmp(sort_list, data, this);
994
995                 if (cmp > 0)
996                         new = &((*new)->rb_left);
997                 else {
998                         new = &((*new)->rb_right);
999                         leftmost = false;
1000                 }
1001         }
1002
1003         rb_link_node(&data->node, parent, new);
1004         rb_insert_color_cached(&data->node, root, leftmost);
1005 }
1006
1007 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1008 {
1009         struct work_atoms *atoms = zalloc(sizeof(*atoms));
1010         if (!atoms) {
1011                 pr_err("No memory at %s\n", __func__);
1012                 return -1;
1013         }
1014
1015         atoms->thread = thread__get(thread);
1016         INIT_LIST_HEAD(&atoms->work_list);
1017         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1018         return 0;
1019 }
1020
1021 static char sched_out_state(u64 prev_state)
1022 {
1023         const char *str = TASK_STATE_TO_CHAR_STR;
1024
1025         return str[prev_state];
1026 }
1027
1028 static int
1029 add_sched_out_event(struct work_atoms *atoms,
1030                     char run_state,
1031                     u64 timestamp)
1032 {
1033         struct work_atom *atom = zalloc(sizeof(*atom));
1034         if (!atom) {
1035                 pr_err("Non memory at %s", __func__);
1036                 return -1;
1037         }
1038
1039         atom->sched_out_time = timestamp;
1040
1041         if (run_state == 'R') {
1042                 atom->state = THREAD_WAIT_CPU;
1043                 atom->wake_up_time = atom->sched_out_time;
1044         }
1045
1046         list_add_tail(&atom->list, &atoms->work_list);
1047         return 0;
1048 }
1049
1050 static void
1051 add_runtime_event(struct work_atoms *atoms, u64 delta,
1052                   u64 timestamp __maybe_unused)
1053 {
1054         struct work_atom *atom;
1055
1056         BUG_ON(list_empty(&atoms->work_list));
1057
1058         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1059
1060         atom->runtime += delta;
1061         atoms->total_runtime += delta;
1062 }
1063
1064 static void
1065 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1066 {
1067         struct work_atom *atom;
1068         u64 delta;
1069
1070         if (list_empty(&atoms->work_list))
1071                 return;
1072
1073         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1074
1075         if (atom->state != THREAD_WAIT_CPU)
1076                 return;
1077
1078         if (timestamp < atom->wake_up_time) {
1079                 atom->state = THREAD_IGNORE;
1080                 return;
1081         }
1082
1083         atom->state = THREAD_SCHED_IN;
1084         atom->sched_in_time = timestamp;
1085
1086         delta = atom->sched_in_time - atom->wake_up_time;
1087         atoms->total_lat += delta;
1088         if (delta > atoms->max_lat) {
1089                 atoms->max_lat = delta;
1090                 atoms->max_lat_at = timestamp;
1091         }
1092         atoms->nb_atoms++;
1093 }
1094
1095 static int latency_switch_event(struct perf_sched *sched,
1096                                 struct perf_evsel *evsel,
1097                                 struct perf_sample *sample,
1098                                 struct machine *machine)
1099 {
1100         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1101                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1102         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1103         struct work_atoms *out_events, *in_events;
1104         struct thread *sched_out, *sched_in;
1105         u64 timestamp0, timestamp = sample->time;
1106         int cpu = sample->cpu, err = -1;
1107         s64 delta;
1108
1109         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1110
1111         timestamp0 = sched->cpu_last_switched[cpu];
1112         sched->cpu_last_switched[cpu] = timestamp;
1113         if (timestamp0)
1114                 delta = timestamp - timestamp0;
1115         else
1116                 delta = 0;
1117
1118         if (delta < 0) {
1119                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1120                 return -1;
1121         }
1122
1123         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1124         sched_in = machine__findnew_thread(machine, -1, next_pid);
1125         if (sched_out == NULL || sched_in == NULL)
1126                 goto out_put;
1127
1128         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1129         if (!out_events) {
1130                 if (thread_atoms_insert(sched, sched_out))
1131                         goto out_put;
1132                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1133                 if (!out_events) {
1134                         pr_err("out-event: Internal tree error");
1135                         goto out_put;
1136                 }
1137         }
1138         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1139                 return -1;
1140
1141         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1142         if (!in_events) {
1143                 if (thread_atoms_insert(sched, sched_in))
1144                         goto out_put;
1145                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1146                 if (!in_events) {
1147                         pr_err("in-event: Internal tree error");
1148                         goto out_put;
1149                 }
1150                 /*
1151                  * Take came in we have not heard about yet,
1152                  * add in an initial atom in runnable state:
1153                  */
1154                 if (add_sched_out_event(in_events, 'R', timestamp))
1155                         goto out_put;
1156         }
1157         add_sched_in_event(in_events, timestamp);
1158         err = 0;
1159 out_put:
1160         thread__put(sched_out);
1161         thread__put(sched_in);
1162         return err;
1163 }
1164
1165 static int latency_runtime_event(struct perf_sched *sched,
1166                                  struct perf_evsel *evsel,
1167                                  struct perf_sample *sample,
1168                                  struct machine *machine)
1169 {
1170         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1171         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1172         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1173         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1174         u64 timestamp = sample->time;
1175         int cpu = sample->cpu, err = -1;
1176
1177         if (thread == NULL)
1178                 return -1;
1179
1180         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1181         if (!atoms) {
1182                 if (thread_atoms_insert(sched, thread))
1183                         goto out_put;
1184                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1185                 if (!atoms) {
1186                         pr_err("in-event: Internal tree error");
1187                         goto out_put;
1188                 }
1189                 if (add_sched_out_event(atoms, 'R', timestamp))
1190                         goto out_put;
1191         }
1192
1193         add_runtime_event(atoms, runtime, timestamp);
1194         err = 0;
1195 out_put:
1196         thread__put(thread);
1197         return err;
1198 }
1199
1200 static int latency_wakeup_event(struct perf_sched *sched,
1201                                 struct perf_evsel *evsel,
1202                                 struct perf_sample *sample,
1203                                 struct machine *machine)
1204 {
1205         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1206         struct work_atoms *atoms;
1207         struct work_atom *atom;
1208         struct thread *wakee;
1209         u64 timestamp = sample->time;
1210         int err = -1;
1211
1212         wakee = machine__findnew_thread(machine, -1, pid);
1213         if (wakee == NULL)
1214                 return -1;
1215         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1216         if (!atoms) {
1217                 if (thread_atoms_insert(sched, wakee))
1218                         goto out_put;
1219                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1220                 if (!atoms) {
1221                         pr_err("wakeup-event: Internal tree error");
1222                         goto out_put;
1223                 }
1224                 if (add_sched_out_event(atoms, 'S', timestamp))
1225                         goto out_put;
1226         }
1227
1228         BUG_ON(list_empty(&atoms->work_list));
1229
1230         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1231
1232         /*
1233          * As we do not guarantee the wakeup event happens when
1234          * task is out of run queue, also may happen when task is
1235          * on run queue and wakeup only change ->state to TASK_RUNNING,
1236          * then we should not set the ->wake_up_time when wake up a
1237          * task which is on run queue.
1238          *
1239          * You WILL be missing events if you've recorded only
1240          * one CPU, or are only looking at only one, so don't
1241          * skip in this case.
1242          */
1243         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1244                 goto out_ok;
1245
1246         sched->nr_timestamps++;
1247         if (atom->sched_out_time > timestamp) {
1248                 sched->nr_unordered_timestamps++;
1249                 goto out_ok;
1250         }
1251
1252         atom->state = THREAD_WAIT_CPU;
1253         atom->wake_up_time = timestamp;
1254 out_ok:
1255         err = 0;
1256 out_put:
1257         thread__put(wakee);
1258         return err;
1259 }
1260
1261 static int latency_migrate_task_event(struct perf_sched *sched,
1262                                       struct perf_evsel *evsel,
1263                                       struct perf_sample *sample,
1264                                       struct machine *machine)
1265 {
1266         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1267         u64 timestamp = sample->time;
1268         struct work_atoms *atoms;
1269         struct work_atom *atom;
1270         struct thread *migrant;
1271         int err = -1;
1272
1273         /*
1274          * Only need to worry about migration when profiling one CPU.
1275          */
1276         if (sched->profile_cpu == -1)
1277                 return 0;
1278
1279         migrant = machine__findnew_thread(machine, -1, pid);
1280         if (migrant == NULL)
1281                 return -1;
1282         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1283         if (!atoms) {
1284                 if (thread_atoms_insert(sched, migrant))
1285                         goto out_put;
1286                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1287                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1288                 if (!atoms) {
1289                         pr_err("migration-event: Internal tree error");
1290                         goto out_put;
1291                 }
1292                 if (add_sched_out_event(atoms, 'R', timestamp))
1293                         goto out_put;
1294         }
1295
1296         BUG_ON(list_empty(&atoms->work_list));
1297
1298         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1299         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1300
1301         sched->nr_timestamps++;
1302
1303         if (atom->sched_out_time > timestamp)
1304                 sched->nr_unordered_timestamps++;
1305         err = 0;
1306 out_put:
1307         thread__put(migrant);
1308         return err;
1309 }
1310
1311 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1312 {
1313         int i;
1314         int ret;
1315         u64 avg;
1316         char max_lat_at[32];
1317
1318         if (!work_list->nb_atoms)
1319                 return;
1320         /*
1321          * Ignore idle threads:
1322          */
1323         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1324                 return;
1325
1326         sched->all_runtime += work_list->total_runtime;
1327         sched->all_count   += work_list->nb_atoms;
1328
1329         if (work_list->num_merged > 1)
1330                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1331         else
1332                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1333
1334         for (i = 0; i < 24 - ret; i++)
1335                 printf(" ");
1336
1337         avg = work_list->total_lat / work_list->nb_atoms;
1338         timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1339
1340         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1341               (double)work_list->total_runtime / NSEC_PER_MSEC,
1342                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1343                  (double)work_list->max_lat / NSEC_PER_MSEC,
1344                  max_lat_at);
1345 }
1346
1347 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1348 {
1349         if (l->thread == r->thread)
1350                 return 0;
1351         if (l->thread->tid < r->thread->tid)
1352                 return -1;
1353         if (l->thread->tid > r->thread->tid)
1354                 return 1;
1355         return (int)(l->thread - r->thread);
1356 }
1357
1358 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1359 {
1360         u64 avgl, avgr;
1361
1362         if (!l->nb_atoms)
1363                 return -1;
1364
1365         if (!r->nb_atoms)
1366                 return 1;
1367
1368         avgl = l->total_lat / l->nb_atoms;
1369         avgr = r->total_lat / r->nb_atoms;
1370
1371         if (avgl < avgr)
1372                 return -1;
1373         if (avgl > avgr)
1374                 return 1;
1375
1376         return 0;
1377 }
1378
1379 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1380 {
1381         if (l->max_lat < r->max_lat)
1382                 return -1;
1383         if (l->max_lat > r->max_lat)
1384                 return 1;
1385
1386         return 0;
1387 }
1388
1389 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1390 {
1391         if (l->nb_atoms < r->nb_atoms)
1392                 return -1;
1393         if (l->nb_atoms > r->nb_atoms)
1394                 return 1;
1395
1396         return 0;
1397 }
1398
1399 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1400 {
1401         if (l->total_runtime < r->total_runtime)
1402                 return -1;
1403         if (l->total_runtime > r->total_runtime)
1404                 return 1;
1405
1406         return 0;
1407 }
1408
1409 static int sort_dimension__add(const char *tok, struct list_head *list)
1410 {
1411         size_t i;
1412         static struct sort_dimension avg_sort_dimension = {
1413                 .name = "avg",
1414                 .cmp  = avg_cmp,
1415         };
1416         static struct sort_dimension max_sort_dimension = {
1417                 .name = "max",
1418                 .cmp  = max_cmp,
1419         };
1420         static struct sort_dimension pid_sort_dimension = {
1421                 .name = "pid",
1422                 .cmp  = pid_cmp,
1423         };
1424         static struct sort_dimension runtime_sort_dimension = {
1425                 .name = "runtime",
1426                 .cmp  = runtime_cmp,
1427         };
1428         static struct sort_dimension switch_sort_dimension = {
1429                 .name = "switch",
1430                 .cmp  = switch_cmp,
1431         };
1432         struct sort_dimension *available_sorts[] = {
1433                 &pid_sort_dimension,
1434                 &avg_sort_dimension,
1435                 &max_sort_dimension,
1436                 &switch_sort_dimension,
1437                 &runtime_sort_dimension,
1438         };
1439
1440         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1441                 if (!strcmp(available_sorts[i]->name, tok)) {
1442                         list_add_tail(&available_sorts[i]->list, list);
1443
1444                         return 0;
1445                 }
1446         }
1447
1448         return -1;
1449 }
1450
1451 static void perf_sched__sort_lat(struct perf_sched *sched)
1452 {
1453         struct rb_node *node;
1454         struct rb_root_cached *root = &sched->atom_root;
1455 again:
1456         for (;;) {
1457                 struct work_atoms *data;
1458                 node = rb_first_cached(root);
1459                 if (!node)
1460                         break;
1461
1462                 rb_erase_cached(node, root);
1463                 data = rb_entry(node, struct work_atoms, node);
1464                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1465         }
1466         if (root == &sched->atom_root) {
1467                 root = &sched->merged_atom_root;
1468                 goto again;
1469         }
1470 }
1471
1472 static int process_sched_wakeup_event(struct perf_tool *tool,
1473                                       struct perf_evsel *evsel,
1474                                       struct perf_sample *sample,
1475                                       struct machine *machine)
1476 {
1477         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1478
1479         if (sched->tp_handler->wakeup_event)
1480                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1481
1482         return 0;
1483 }
1484
1485 union map_priv {
1486         void    *ptr;
1487         bool     color;
1488 };
1489
1490 static bool thread__has_color(struct thread *thread)
1491 {
1492         union map_priv priv = {
1493                 .ptr = thread__priv(thread),
1494         };
1495
1496         return priv.color;
1497 }
1498
1499 static struct thread*
1500 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1501 {
1502         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1503         union map_priv priv = {
1504                 .color = false,
1505         };
1506
1507         if (!sched->map.color_pids || !thread || thread__priv(thread))
1508                 return thread;
1509
1510         if (thread_map__has(sched->map.color_pids, tid))
1511                 priv.color = true;
1512
1513         thread__set_priv(thread, priv.ptr);
1514         return thread;
1515 }
1516
1517 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1518                             struct perf_sample *sample, struct machine *machine)
1519 {
1520         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1521         struct thread *sched_in;
1522         struct thread_runtime *tr;
1523         int new_shortname;
1524         u64 timestamp0, timestamp = sample->time;
1525         s64 delta;
1526         int i, this_cpu = sample->cpu;
1527         int cpus_nr;
1528         bool new_cpu = false;
1529         const char *color = PERF_COLOR_NORMAL;
1530         char stimestamp[32];
1531
1532         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1533
1534         if (this_cpu > sched->max_cpu)
1535                 sched->max_cpu = this_cpu;
1536
1537         if (sched->map.comp) {
1538                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1539                 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1540                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1541                         new_cpu = true;
1542                 }
1543         } else
1544                 cpus_nr = sched->max_cpu;
1545
1546         timestamp0 = sched->cpu_last_switched[this_cpu];
1547         sched->cpu_last_switched[this_cpu] = timestamp;
1548         if (timestamp0)
1549                 delta = timestamp - timestamp0;
1550         else
1551                 delta = 0;
1552
1553         if (delta < 0) {
1554                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1555                 return -1;
1556         }
1557
1558         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1559         if (sched_in == NULL)
1560                 return -1;
1561
1562         tr = thread__get_runtime(sched_in);
1563         if (tr == NULL) {
1564                 thread__put(sched_in);
1565                 return -1;
1566         }
1567
1568         sched->curr_thread[this_cpu] = thread__get(sched_in);
1569
1570         printf("  ");
1571
1572         new_shortname = 0;
1573         if (!tr->shortname[0]) {
1574                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1575                         /*
1576                          * Don't allocate a letter-number for swapper:0
1577                          * as a shortname. Instead, we use '.' for it.
1578                          */
1579                         tr->shortname[0] = '.';
1580                         tr->shortname[1] = ' ';
1581                 } else {
1582                         tr->shortname[0] = sched->next_shortname1;
1583                         tr->shortname[1] = sched->next_shortname2;
1584
1585                         if (sched->next_shortname1 < 'Z') {
1586                                 sched->next_shortname1++;
1587                         } else {
1588                                 sched->next_shortname1 = 'A';
1589                                 if (sched->next_shortname2 < '9')
1590                                         sched->next_shortname2++;
1591                                 else
1592                                         sched->next_shortname2 = '0';
1593                         }
1594                 }
1595                 new_shortname = 1;
1596         }
1597
1598         for (i = 0; i < cpus_nr; i++) {
1599                 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1600                 struct thread *curr_thread = sched->curr_thread[cpu];
1601                 struct thread_runtime *curr_tr;
1602                 const char *pid_color = color;
1603                 const char *cpu_color = color;
1604
1605                 if (curr_thread && thread__has_color(curr_thread))
1606                         pid_color = COLOR_PIDS;
1607
1608                 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1609                         continue;
1610
1611                 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1612                         cpu_color = COLOR_CPUS;
1613
1614                 if (cpu != this_cpu)
1615                         color_fprintf(stdout, color, " ");
1616                 else
1617                         color_fprintf(stdout, cpu_color, "*");
1618
1619                 if (sched->curr_thread[cpu]) {
1620                         curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1621                         if (curr_tr == NULL) {
1622                                 thread__put(sched_in);
1623                                 return -1;
1624                         }
1625                         color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1626                 } else
1627                         color_fprintf(stdout, color, "   ");
1628         }
1629
1630         if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1631                 goto out;
1632
1633         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1634         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1635         if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1636                 const char *pid_color = color;
1637
1638                 if (thread__has_color(sched_in))
1639                         pid_color = COLOR_PIDS;
1640
1641                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1642                        tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1643                 tr->comm_changed = false;
1644         }
1645
1646         if (sched->map.comp && new_cpu)
1647                 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1648
1649 out:
1650         color_fprintf(stdout, color, "\n");
1651
1652         thread__put(sched_in);
1653
1654         return 0;
1655 }
1656
1657 static int process_sched_switch_event(struct perf_tool *tool,
1658                                       struct perf_evsel *evsel,
1659                                       struct perf_sample *sample,
1660                                       struct machine *machine)
1661 {
1662         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1663         int this_cpu = sample->cpu, err = 0;
1664         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1665             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1666
1667         if (sched->curr_pid[this_cpu] != (u32)-1) {
1668                 /*
1669                  * Are we trying to switch away a PID that is
1670                  * not current?
1671                  */
1672                 if (sched->curr_pid[this_cpu] != prev_pid)
1673                         sched->nr_context_switch_bugs++;
1674         }
1675
1676         if (sched->tp_handler->switch_event)
1677                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1678
1679         sched->curr_pid[this_cpu] = next_pid;
1680         return err;
1681 }
1682
1683 static int process_sched_runtime_event(struct perf_tool *tool,
1684                                        struct perf_evsel *evsel,
1685                                        struct perf_sample *sample,
1686                                        struct machine *machine)
1687 {
1688         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1689
1690         if (sched->tp_handler->runtime_event)
1691                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1692
1693         return 0;
1694 }
1695
1696 static int perf_sched__process_fork_event(struct perf_tool *tool,
1697                                           union perf_event *event,
1698                                           struct perf_sample *sample,
1699                                           struct machine *machine)
1700 {
1701         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1702
1703         /* run the fork event through the perf machineruy */
1704         perf_event__process_fork(tool, event, sample, machine);
1705
1706         /* and then run additional processing needed for this command */
1707         if (sched->tp_handler->fork_event)
1708                 return sched->tp_handler->fork_event(sched, event, machine);
1709
1710         return 0;
1711 }
1712
1713 static int process_sched_migrate_task_event(struct perf_tool *tool,
1714                                             struct perf_evsel *evsel,
1715                                             struct perf_sample *sample,
1716                                             struct machine *machine)
1717 {
1718         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1719
1720         if (sched->tp_handler->migrate_task_event)
1721                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1722
1723         return 0;
1724 }
1725
1726 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1727                                   struct perf_evsel *evsel,
1728                                   struct perf_sample *sample,
1729                                   struct machine *machine);
1730
1731 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1732                                                  union perf_event *event __maybe_unused,
1733                                                  struct perf_sample *sample,
1734                                                  struct perf_evsel *evsel,
1735                                                  struct machine *machine)
1736 {
1737         int err = 0;
1738
1739         if (evsel->handler != NULL) {
1740                 tracepoint_handler f = evsel->handler;
1741                 err = f(tool, evsel, sample, machine);
1742         }
1743
1744         return err;
1745 }
1746
1747 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1748                                     union perf_event *event,
1749                                     struct perf_sample *sample,
1750                                     struct machine *machine)
1751 {
1752         struct thread *thread;
1753         struct thread_runtime *tr;
1754         int err;
1755
1756         err = perf_event__process_comm(tool, event, sample, machine);
1757         if (err)
1758                 return err;
1759
1760         thread = machine__find_thread(machine, sample->pid, sample->tid);
1761         if (!thread) {
1762                 pr_err("Internal error: can't find thread\n");
1763                 return -1;
1764         }
1765
1766         tr = thread__get_runtime(thread);
1767         if (tr == NULL) {
1768                 thread__put(thread);
1769                 return -1;
1770         }
1771
1772         tr->comm_changed = true;
1773         thread__put(thread);
1774
1775         return 0;
1776 }
1777
1778 static int perf_sched__read_events(struct perf_sched *sched)
1779 {
1780         const struct perf_evsel_str_handler handlers[] = {
1781                 { "sched:sched_switch",       process_sched_switch_event, },
1782                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1783                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1784                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1785                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1786         };
1787         struct perf_session *session;
1788         struct perf_data data = {
1789                 .path  = input_name,
1790                 .mode  = PERF_DATA_MODE_READ,
1791                 .force = sched->force,
1792         };
1793         int rc = -1;
1794
1795         session = perf_session__new(&data, false, &sched->tool);
1796         if (session == NULL) {
1797                 pr_debug("No Memory for session\n");
1798                 return -1;
1799         }
1800
1801         symbol__init(&session->header.env);
1802
1803         if (perf_session__set_tracepoints_handlers(session, handlers))
1804                 goto out_delete;
1805
1806         if (perf_session__has_traces(session, "record -R")) {
1807                 int err = perf_session__process_events(session);
1808                 if (err) {
1809                         pr_err("Failed to process events, error %d", err);
1810                         goto out_delete;
1811                 }
1812
1813                 sched->nr_events      = session->evlist->stats.nr_events[0];
1814                 sched->nr_lost_events = session->evlist->stats.total_lost;
1815                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1816         }
1817
1818         rc = 0;
1819 out_delete:
1820         perf_session__delete(session);
1821         return rc;
1822 }
1823
1824 /*
1825  * scheduling times are printed as msec.usec
1826  */
1827 static inline void print_sched_time(unsigned long long nsecs, int width)
1828 {
1829         unsigned long msecs;
1830         unsigned long usecs;
1831
1832         msecs  = nsecs / NSEC_PER_MSEC;
1833         nsecs -= msecs * NSEC_PER_MSEC;
1834         usecs  = nsecs / NSEC_PER_USEC;
1835         printf("%*lu.%03lu ", width, msecs, usecs);
1836 }
1837
1838 /*
1839  * returns runtime data for event, allocating memory for it the
1840  * first time it is used.
1841  */
1842 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1843 {
1844         struct evsel_runtime *r = evsel->priv;
1845
1846         if (r == NULL) {
1847                 r = zalloc(sizeof(struct evsel_runtime));
1848                 evsel->priv = r;
1849         }
1850
1851         return r;
1852 }
1853
1854 /*
1855  * save last time event was seen per cpu
1856  */
1857 static void perf_evsel__save_time(struct perf_evsel *evsel,
1858                                   u64 timestamp, u32 cpu)
1859 {
1860         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1861
1862         if (r == NULL)
1863                 return;
1864
1865         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1866                 int i, n = __roundup_pow_of_two(cpu+1);
1867                 void *p = r->last_time;
1868
1869                 p = realloc(r->last_time, n * sizeof(u64));
1870                 if (!p)
1871                         return;
1872
1873                 r->last_time = p;
1874                 for (i = r->ncpu; i < n; ++i)
1875                         r->last_time[i] = (u64) 0;
1876
1877                 r->ncpu = n;
1878         }
1879
1880         r->last_time[cpu] = timestamp;
1881 }
1882
1883 /* returns last time this event was seen on the given cpu */
1884 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1885 {
1886         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1887
1888         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1889                 return 0;
1890
1891         return r->last_time[cpu];
1892 }
1893
1894 static int comm_width = 30;
1895
1896 static char *timehist_get_commstr(struct thread *thread)
1897 {
1898         static char str[32];
1899         const char *comm = thread__comm_str(thread);
1900         pid_t tid = thread->tid;
1901         pid_t pid = thread->pid_;
1902         int n;
1903
1904         if (pid == 0)
1905                 n = scnprintf(str, sizeof(str), "%s", comm);
1906
1907         else if (tid != pid)
1908                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1909
1910         else
1911                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1912
1913         if (n > comm_width)
1914                 comm_width = n;
1915
1916         return str;
1917 }
1918
1919 static void timehist_header(struct perf_sched *sched)
1920 {
1921         u32 ncpus = sched->max_cpu + 1;
1922         u32 i, j;
1923
1924         printf("%15s %6s ", "time", "cpu");
1925
1926         if (sched->show_cpu_visual) {
1927                 printf(" ");
1928                 for (i = 0, j = 0; i < ncpus; ++i) {
1929                         printf("%x", j++);
1930                         if (j > 15)
1931                                 j = 0;
1932                 }
1933                 printf(" ");
1934         }
1935
1936         printf(" %-*s  %9s  %9s  %9s", comm_width,
1937                 "task name", "wait time", "sch delay", "run time");
1938
1939         if (sched->show_state)
1940                 printf("  %s", "state");
1941
1942         printf("\n");
1943
1944         /*
1945          * units row
1946          */
1947         printf("%15s %-6s ", "", "");
1948
1949         if (sched->show_cpu_visual)
1950                 printf(" %*s ", ncpus, "");
1951
1952         printf(" %-*s  %9s  %9s  %9s", comm_width,
1953                "[tid/pid]", "(msec)", "(msec)", "(msec)");
1954
1955         if (sched->show_state)
1956                 printf("  %5s", "");
1957
1958         printf("\n");
1959
1960         /*
1961          * separator
1962          */
1963         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1964
1965         if (sched->show_cpu_visual)
1966                 printf(" %.*s ", ncpus, graph_dotted_line);
1967
1968         printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1969                 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1970                 graph_dotted_line);
1971
1972         if (sched->show_state)
1973                 printf("  %.5s", graph_dotted_line);
1974
1975         printf("\n");
1976 }
1977
1978 static char task_state_char(struct thread *thread, int state)
1979 {
1980         static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1981         unsigned bit = state ? ffs(state) : 0;
1982
1983         /* 'I' for idle */
1984         if (thread->tid == 0)
1985                 return 'I';
1986
1987         return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1988 }
1989
1990 static void timehist_print_sample(struct perf_sched *sched,
1991                                   struct perf_evsel *evsel,
1992                                   struct perf_sample *sample,
1993                                   struct addr_location *al,
1994                                   struct thread *thread,
1995                                   u64 t, int state)
1996 {
1997         struct thread_runtime *tr = thread__priv(thread);
1998         const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1999         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2000         u32 max_cpus = sched->max_cpu + 1;
2001         char tstr[64];
2002         char nstr[30];
2003         u64 wait_time;
2004
2005         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2006         printf("%15s [%04d] ", tstr, sample->cpu);
2007
2008         if (sched->show_cpu_visual) {
2009                 u32 i;
2010                 char c;
2011
2012                 printf(" ");
2013                 for (i = 0; i < max_cpus; ++i) {
2014                         /* flag idle times with 'i'; others are sched events */
2015                         if (i == sample->cpu)
2016                                 c = (thread->tid == 0) ? 'i' : 's';
2017                         else
2018                                 c = ' ';
2019                         printf("%c", c);
2020                 }
2021                 printf(" ");
2022         }
2023
2024         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2025
2026         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2027         print_sched_time(wait_time, 6);
2028
2029         print_sched_time(tr->dt_delay, 6);
2030         print_sched_time(tr->dt_run, 6);
2031
2032         if (sched->show_state)
2033                 printf(" %5c ", task_state_char(thread, state));
2034
2035         if (sched->show_next) {
2036                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2037                 printf(" %-*s", comm_width, nstr);
2038         }
2039
2040         if (sched->show_wakeups && !sched->show_next)
2041                 printf("  %-*s", comm_width, "");
2042
2043         if (thread->tid == 0)
2044                 goto out;
2045
2046         if (sched->show_callchain)
2047                 printf("  ");
2048
2049         sample__fprintf_sym(sample, al, 0,
2050                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2051                             EVSEL__PRINT_CALLCHAIN_ARROW |
2052                             EVSEL__PRINT_SKIP_IGNORED,
2053                             &callchain_cursor, stdout);
2054
2055 out:
2056         printf("\n");
2057 }
2058
2059 /*
2060  * Explanation of delta-time stats:
2061  *
2062  *            t = time of current schedule out event
2063  *        tprev = time of previous sched out event
2064  *                also time of schedule-in event for current task
2065  *    last_time = time of last sched change event for current task
2066  *                (i.e, time process was last scheduled out)
2067  * ready_to_run = time of wakeup for current task
2068  *
2069  * -----|------------|------------|------------|------
2070  *    last         ready        tprev          t
2071  *    time         to run
2072  *
2073  *      |-------- dt_wait --------|
2074  *                   |- dt_delay -|-- dt_run --|
2075  *
2076  *   dt_run = run time of current task
2077  *  dt_wait = time between last schedule out event for task and tprev
2078  *            represents time spent off the cpu
2079  * dt_delay = time between wakeup and schedule-in of task
2080  */
2081
2082 static void timehist_update_runtime_stats(struct thread_runtime *r,
2083                                          u64 t, u64 tprev)
2084 {
2085         r->dt_delay   = 0;
2086         r->dt_sleep   = 0;
2087         r->dt_iowait  = 0;
2088         r->dt_preempt = 0;
2089         r->dt_run     = 0;
2090
2091         if (tprev) {
2092                 r->dt_run = t - tprev;
2093                 if (r->ready_to_run) {
2094                         if (r->ready_to_run > tprev)
2095                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2096                         else
2097                                 r->dt_delay = tprev - r->ready_to_run;
2098                 }
2099
2100                 if (r->last_time > tprev)
2101                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2102                 else if (r->last_time) {
2103                         u64 dt_wait = tprev - r->last_time;
2104
2105                         if (r->last_state == TASK_RUNNING)
2106                                 r->dt_preempt = dt_wait;
2107                         else if (r->last_state == TASK_UNINTERRUPTIBLE)
2108                                 r->dt_iowait = dt_wait;
2109                         else
2110                                 r->dt_sleep = dt_wait;
2111                 }
2112         }
2113
2114         update_stats(&r->run_stats, r->dt_run);
2115
2116         r->total_run_time     += r->dt_run;
2117         r->total_delay_time   += r->dt_delay;
2118         r->total_sleep_time   += r->dt_sleep;
2119         r->total_iowait_time  += r->dt_iowait;
2120         r->total_preempt_time += r->dt_preempt;
2121 }
2122
2123 static bool is_idle_sample(struct perf_sample *sample,
2124                            struct perf_evsel *evsel)
2125 {
2126         /* pid 0 == swapper == idle task */
2127         if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2128                 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2129
2130         return sample->pid == 0;
2131 }
2132
2133 static void save_task_callchain(struct perf_sched *sched,
2134                                 struct perf_sample *sample,
2135                                 struct perf_evsel *evsel,
2136                                 struct machine *machine)
2137 {
2138         struct callchain_cursor *cursor = &callchain_cursor;
2139         struct thread *thread;
2140
2141         /* want main thread for process - has maps */
2142         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2143         if (thread == NULL) {
2144                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2145                 return;
2146         }
2147
2148         if (!sched->show_callchain || sample->callchain == NULL)
2149                 return;
2150
2151         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2152                                       NULL, NULL, sched->max_stack + 2) != 0) {
2153                 if (verbose > 0)
2154                         pr_err("Failed to resolve callchain. Skipping\n");
2155
2156                 return;
2157         }
2158
2159         callchain_cursor_commit(cursor);
2160
2161         while (true) {
2162                 struct callchain_cursor_node *node;
2163                 struct symbol *sym;
2164
2165                 node = callchain_cursor_current(cursor);
2166                 if (node == NULL)
2167                         break;
2168
2169                 sym = node->sym;
2170                 if (sym) {
2171                         if (!strcmp(sym->name, "schedule") ||
2172                             !strcmp(sym->name, "__schedule") ||
2173                             !strcmp(sym->name, "preempt_schedule"))
2174                                 sym->ignore = 1;
2175                 }
2176
2177                 callchain_cursor_advance(cursor);
2178         }
2179 }
2180
2181 static int init_idle_thread(struct thread *thread)
2182 {
2183         struct idle_thread_runtime *itr;
2184
2185         thread__set_comm(thread, idle_comm, 0);
2186
2187         itr = zalloc(sizeof(*itr));
2188         if (itr == NULL)
2189                 return -ENOMEM;
2190
2191         init_stats(&itr->tr.run_stats);
2192         callchain_init(&itr->callchain);
2193         callchain_cursor_reset(&itr->cursor);
2194         thread__set_priv(thread, itr);
2195
2196         return 0;
2197 }
2198
2199 /*
2200  * Track idle stats per cpu by maintaining a local thread
2201  * struct for the idle task on each cpu.
2202  */
2203 static int init_idle_threads(int ncpu)
2204 {
2205         int i, ret;
2206
2207         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2208         if (!idle_threads)
2209                 return -ENOMEM;
2210
2211         idle_max_cpu = ncpu;
2212
2213         /* allocate the actual thread struct if needed */
2214         for (i = 0; i < ncpu; ++i) {
2215                 idle_threads[i] = thread__new(0, 0);
2216                 if (idle_threads[i] == NULL)
2217                         return -ENOMEM;
2218
2219                 ret = init_idle_thread(idle_threads[i]);
2220                 if (ret < 0)
2221                         return ret;
2222         }
2223
2224         return 0;
2225 }
2226
2227 static void free_idle_threads(void)
2228 {
2229         int i;
2230
2231         if (idle_threads == NULL)
2232                 return;
2233
2234         for (i = 0; i < idle_max_cpu; ++i) {
2235                 if ((idle_threads[i]))
2236                         thread__delete(idle_threads[i]);
2237         }
2238
2239         free(idle_threads);
2240 }
2241
2242 static struct thread *get_idle_thread(int cpu)
2243 {
2244         /*
2245          * expand/allocate array of pointers to local thread
2246          * structs if needed
2247          */
2248         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2249                 int i, j = __roundup_pow_of_two(cpu+1);
2250                 void *p;
2251
2252                 p = realloc(idle_threads, j * sizeof(struct thread *));
2253                 if (!p)
2254                         return NULL;
2255
2256                 idle_threads = (struct thread **) p;
2257                 for (i = idle_max_cpu; i < j; ++i)
2258                         idle_threads[i] = NULL;
2259
2260                 idle_max_cpu = j;
2261         }
2262
2263         /* allocate a new thread struct if needed */
2264         if (idle_threads[cpu] == NULL) {
2265                 idle_threads[cpu] = thread__new(0, 0);
2266
2267                 if (idle_threads[cpu]) {
2268                         if (init_idle_thread(idle_threads[cpu]) < 0)
2269                                 return NULL;
2270                 }
2271         }
2272
2273         return idle_threads[cpu];
2274 }
2275
2276 static void save_idle_callchain(struct perf_sched *sched,
2277                                 struct idle_thread_runtime *itr,
2278                                 struct perf_sample *sample)
2279 {
2280         if (!sched->show_callchain || sample->callchain == NULL)
2281                 return;
2282
2283         callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2284 }
2285
2286 static struct thread *timehist_get_thread(struct perf_sched *sched,
2287                                           struct perf_sample *sample,
2288                                           struct machine *machine,
2289                                           struct perf_evsel *evsel)
2290 {
2291         struct thread *thread;
2292
2293         if (is_idle_sample(sample, evsel)) {
2294                 thread = get_idle_thread(sample->cpu);
2295                 if (thread == NULL)
2296                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2297
2298         } else {
2299                 /* there were samples with tid 0 but non-zero pid */
2300                 thread = machine__findnew_thread(machine, sample->pid,
2301                                                  sample->tid ?: sample->pid);
2302                 if (thread == NULL) {
2303                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2304                                  sample->tid);
2305                 }
2306
2307                 save_task_callchain(sched, sample, evsel, machine);
2308                 if (sched->idle_hist) {
2309                         struct thread *idle;
2310                         struct idle_thread_runtime *itr;
2311
2312                         idle = get_idle_thread(sample->cpu);
2313                         if (idle == NULL) {
2314                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2315                                 return NULL;
2316                         }
2317
2318                         itr = thread__priv(idle);
2319                         if (itr == NULL)
2320                                 return NULL;
2321
2322                         itr->last_thread = thread;
2323
2324                         /* copy task callchain when entering to idle */
2325                         if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2326                                 save_idle_callchain(sched, itr, sample);
2327                 }
2328         }
2329
2330         return thread;
2331 }
2332
2333 static bool timehist_skip_sample(struct perf_sched *sched,
2334                                  struct thread *thread,
2335                                  struct perf_evsel *evsel,
2336                                  struct perf_sample *sample)
2337 {
2338         bool rc = false;
2339
2340         if (thread__is_filtered(thread)) {
2341                 rc = true;
2342                 sched->skipped_samples++;
2343         }
2344
2345         if (sched->idle_hist) {
2346                 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2347                         rc = true;
2348                 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2349                          perf_evsel__intval(evsel, sample, "next_pid") != 0)
2350                         rc = true;
2351         }
2352
2353         return rc;
2354 }
2355
2356 static void timehist_print_wakeup_event(struct perf_sched *sched,
2357                                         struct perf_evsel *evsel,
2358                                         struct perf_sample *sample,
2359                                         struct machine *machine,
2360                                         struct thread *awakened)
2361 {
2362         struct thread *thread;
2363         char tstr[64];
2364
2365         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2366         if (thread == NULL)
2367                 return;
2368
2369         /* show wakeup unless both awakee and awaker are filtered */
2370         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2371             timehist_skip_sample(sched, awakened, evsel, sample)) {
2372                 return;
2373         }
2374
2375         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2376         printf("%15s [%04d] ", tstr, sample->cpu);
2377         if (sched->show_cpu_visual)
2378                 printf(" %*s ", sched->max_cpu + 1, "");
2379
2380         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2381
2382         /* dt spacer */
2383         printf("  %9s  %9s  %9s ", "", "", "");
2384
2385         printf("awakened: %s", timehist_get_commstr(awakened));
2386
2387         printf("\n");
2388 }
2389
2390 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2391                                        union perf_event *event __maybe_unused,
2392                                        struct perf_evsel *evsel,
2393                                        struct perf_sample *sample,
2394                                        struct machine *machine)
2395 {
2396         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2397         struct thread *thread;
2398         struct thread_runtime *tr = NULL;
2399         /* want pid of awakened task not pid in sample */
2400         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2401
2402         thread = machine__findnew_thread(machine, 0, pid);
2403         if (thread == NULL)
2404                 return -1;
2405
2406         tr = thread__get_runtime(thread);
2407         if (tr == NULL)
2408                 return -1;
2409
2410         if (tr->ready_to_run == 0)
2411                 tr->ready_to_run = sample->time;
2412
2413         /* show wakeups if requested */
2414         if (sched->show_wakeups &&
2415             !perf_time__skip_sample(&sched->ptime, sample->time))
2416                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2417
2418         return 0;
2419 }
2420
2421 static void timehist_print_migration_event(struct perf_sched *sched,
2422                                         struct perf_evsel *evsel,
2423                                         struct perf_sample *sample,
2424                                         struct machine *machine,
2425                                         struct thread *migrated)
2426 {
2427         struct thread *thread;
2428         char tstr[64];
2429         u32 max_cpus = sched->max_cpu + 1;
2430         u32 ocpu, dcpu;
2431
2432         if (sched->summary_only)
2433                 return;
2434
2435         max_cpus = sched->max_cpu + 1;
2436         ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2437         dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2438
2439         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2440         if (thread == NULL)
2441                 return;
2442
2443         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2444             timehist_skip_sample(sched, migrated, evsel, sample)) {
2445                 return;
2446         }
2447
2448         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2449         printf("%15s [%04d] ", tstr, sample->cpu);
2450
2451         if (sched->show_cpu_visual) {
2452                 u32 i;
2453                 char c;
2454
2455                 printf("  ");
2456                 for (i = 0; i < max_cpus; ++i) {
2457                         c = (i == sample->cpu) ? 'm' : ' ';
2458                         printf("%c", c);
2459                 }
2460                 printf("  ");
2461         }
2462
2463         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2464
2465         /* dt spacer */
2466         printf("  %9s  %9s  %9s ", "", "", "");
2467
2468         printf("migrated: %s", timehist_get_commstr(migrated));
2469         printf(" cpu %d => %d", ocpu, dcpu);
2470
2471         printf("\n");
2472 }
2473
2474 static int timehist_migrate_task_event(struct perf_tool *tool,
2475                                        union perf_event *event __maybe_unused,
2476                                        struct perf_evsel *evsel,
2477                                        struct perf_sample *sample,
2478                                        struct machine *machine)
2479 {
2480         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2481         struct thread *thread;
2482         struct thread_runtime *tr = NULL;
2483         /* want pid of migrated task not pid in sample */
2484         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2485
2486         thread = machine__findnew_thread(machine, 0, pid);
2487         if (thread == NULL)
2488                 return -1;
2489
2490         tr = thread__get_runtime(thread);
2491         if (tr == NULL)
2492                 return -1;
2493
2494         tr->migrations++;
2495
2496         /* show migrations if requested */
2497         timehist_print_migration_event(sched, evsel, sample, machine, thread);
2498
2499         return 0;
2500 }
2501
2502 static int timehist_sched_change_event(struct perf_tool *tool,
2503                                        union perf_event *event,
2504                                        struct perf_evsel *evsel,
2505                                        struct perf_sample *sample,
2506                                        struct machine *machine)
2507 {
2508         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2509         struct perf_time_interval *ptime = &sched->ptime;
2510         struct addr_location al;
2511         struct thread *thread;
2512         struct thread_runtime *tr = NULL;
2513         u64 tprev, t = sample->time;
2514         int rc = 0;
2515         int state = perf_evsel__intval(evsel, sample, "prev_state");
2516
2517
2518         if (machine__resolve(machine, &al, sample) < 0) {
2519                 pr_err("problem processing %d event. skipping it\n",
2520                        event->header.type);
2521                 rc = -1;
2522                 goto out;
2523         }
2524
2525         thread = timehist_get_thread(sched, sample, machine, evsel);
2526         if (thread == NULL) {
2527                 rc = -1;
2528                 goto out;
2529         }
2530
2531         if (timehist_skip_sample(sched, thread, evsel, sample))
2532                 goto out;
2533
2534         tr = thread__get_runtime(thread);
2535         if (tr == NULL) {
2536                 rc = -1;
2537                 goto out;
2538         }
2539
2540         tprev = perf_evsel__get_time(evsel, sample->cpu);
2541
2542         /*
2543          * If start time given:
2544          * - sample time is under window user cares about - skip sample
2545          * - tprev is under window user cares about  - reset to start of window
2546          */
2547         if (ptime->start && ptime->start > t)
2548                 goto out;
2549
2550         if (tprev && ptime->start > tprev)
2551                 tprev = ptime->start;
2552
2553         /*
2554          * If end time given:
2555          * - previous sched event is out of window - we are done
2556          * - sample time is beyond window user cares about - reset it
2557          *   to close out stats for time window interest
2558          */
2559         if (ptime->end) {
2560                 if (tprev > ptime->end)
2561                         goto out;
2562
2563                 if (t > ptime->end)
2564                         t = ptime->end;
2565         }
2566
2567         if (!sched->idle_hist || thread->tid == 0) {
2568                 timehist_update_runtime_stats(tr, t, tprev);
2569
2570                 if (sched->idle_hist) {
2571                         struct idle_thread_runtime *itr = (void *)tr;
2572                         struct thread_runtime *last_tr;
2573
2574                         BUG_ON(thread->tid != 0);
2575
2576                         if (itr->last_thread == NULL)
2577                                 goto out;
2578
2579                         /* add current idle time as last thread's runtime */
2580                         last_tr = thread__get_runtime(itr->last_thread);
2581                         if (last_tr == NULL)
2582                                 goto out;
2583
2584                         timehist_update_runtime_stats(last_tr, t, tprev);
2585                         /*
2586                          * remove delta time of last thread as it's not updated
2587                          * and otherwise it will show an invalid value next
2588                          * time.  we only care total run time and run stat.
2589                          */
2590                         last_tr->dt_run = 0;
2591                         last_tr->dt_delay = 0;
2592                         last_tr->dt_sleep = 0;
2593                         last_tr->dt_iowait = 0;
2594                         last_tr->dt_preempt = 0;
2595
2596                         if (itr->cursor.nr)
2597                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2598
2599                         itr->last_thread = NULL;
2600                 }
2601         }
2602
2603         if (!sched->summary_only)
2604                 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2605
2606 out:
2607         if (sched->hist_time.start == 0 && t >= ptime->start)
2608                 sched->hist_time.start = t;
2609         if (ptime->end == 0 || t <= ptime->end)
2610                 sched->hist_time.end = t;
2611
2612         if (tr) {
2613                 /* time of this sched_switch event becomes last time task seen */
2614                 tr->last_time = sample->time;
2615
2616                 /* last state is used to determine where to account wait time */
2617                 tr->last_state = state;
2618
2619                 /* sched out event for task so reset ready to run time */
2620                 tr->ready_to_run = 0;
2621         }
2622
2623         perf_evsel__save_time(evsel, sample->time, sample->cpu);
2624
2625         return rc;
2626 }
2627
2628 static int timehist_sched_switch_event(struct perf_tool *tool,
2629                              union perf_event *event,
2630                              struct perf_evsel *evsel,
2631                              struct perf_sample *sample,
2632                              struct machine *machine __maybe_unused)
2633 {
2634         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2635 }
2636
2637 static int process_lost(struct perf_tool *tool __maybe_unused,
2638                         union perf_event *event,
2639                         struct perf_sample *sample,
2640                         struct machine *machine __maybe_unused)
2641 {
2642         char tstr[64];
2643
2644         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2645         printf("%15s ", tstr);
2646         printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2647
2648         return 0;
2649 }
2650
2651
2652 static void print_thread_runtime(struct thread *t,
2653                                  struct thread_runtime *r)
2654 {
2655         double mean = avg_stats(&r->run_stats);
2656         float stddev;
2657
2658         printf("%*s   %5d  %9" PRIu64 " ",
2659                comm_width, timehist_get_commstr(t), t->ppid,
2660                (u64) r->run_stats.n);
2661
2662         print_sched_time(r->total_run_time, 8);
2663         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2664         print_sched_time(r->run_stats.min, 6);
2665         printf(" ");
2666         print_sched_time((u64) mean, 6);
2667         printf(" ");
2668         print_sched_time(r->run_stats.max, 6);
2669         printf("  ");
2670         printf("%5.2f", stddev);
2671         printf("   %5" PRIu64, r->migrations);
2672         printf("\n");
2673 }
2674
2675 static void print_thread_waittime(struct thread *t,
2676                                   struct thread_runtime *r)
2677 {
2678         printf("%*s   %5d  %9" PRIu64 " ",
2679                comm_width, timehist_get_commstr(t), t->ppid,
2680                (u64) r->run_stats.n);
2681
2682         print_sched_time(r->total_run_time, 8);
2683         print_sched_time(r->total_sleep_time, 6);
2684         printf(" ");
2685         print_sched_time(r->total_iowait_time, 6);
2686         printf(" ");
2687         print_sched_time(r->total_preempt_time, 6);
2688         printf(" ");
2689         print_sched_time(r->total_delay_time, 6);
2690         printf("\n");
2691 }
2692
2693 struct total_run_stats {
2694         struct perf_sched *sched;
2695         u64  sched_count;
2696         u64  task_count;
2697         u64  total_run_time;
2698 };
2699
2700 static int __show_thread_runtime(struct thread *t, void *priv)
2701 {
2702         struct total_run_stats *stats = priv;
2703         struct thread_runtime *r;
2704
2705         if (thread__is_filtered(t))
2706                 return 0;
2707
2708         r = thread__priv(t);
2709         if (r && r->run_stats.n) {
2710                 stats->task_count++;
2711                 stats->sched_count += r->run_stats.n;
2712                 stats->total_run_time += r->total_run_time;
2713
2714                 if (stats->sched->show_state)
2715                         print_thread_waittime(t, r);
2716                 else
2717                         print_thread_runtime(t, r);
2718         }
2719
2720         return 0;
2721 }
2722
2723 static int show_thread_runtime(struct thread *t, void *priv)
2724 {
2725         if (t->dead)
2726                 return 0;
2727
2728         return __show_thread_runtime(t, priv);
2729 }
2730
2731 static int show_deadthread_runtime(struct thread *t, void *priv)
2732 {
2733         if (!t->dead)
2734                 return 0;
2735
2736         return __show_thread_runtime(t, priv);
2737 }
2738
2739 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2740 {
2741         const char *sep = " <- ";
2742         struct callchain_list *chain;
2743         size_t ret = 0;
2744         char bf[1024];
2745         bool first;
2746
2747         if (node == NULL)
2748                 return 0;
2749
2750         ret = callchain__fprintf_folded(fp, node->parent);
2751         first = (ret == 0);
2752
2753         list_for_each_entry(chain, &node->val, list) {
2754                 if (chain->ip >= PERF_CONTEXT_MAX)
2755                         continue;
2756                 if (chain->ms.sym && chain->ms.sym->ignore)
2757                         continue;
2758                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2759                                callchain_list__sym_name(chain, bf, sizeof(bf),
2760                                                         false));
2761                 first = false;
2762         }
2763
2764         return ret;
2765 }
2766
2767 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2768 {
2769         size_t ret = 0;
2770         FILE *fp = stdout;
2771         struct callchain_node *chain;
2772         struct rb_node *rb_node = rb_first_cached(root);
2773
2774         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2775         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2776                graph_dotted_line);
2777
2778         while (rb_node) {
2779                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2780                 rb_node = rb_next(rb_node);
2781
2782                 ret += fprintf(fp, "  ");
2783                 print_sched_time(chain->hit, 12);
2784                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2785                 ret += fprintf(fp, " %8d  ", chain->count);
2786                 ret += callchain__fprintf_folded(fp, chain);
2787                 ret += fprintf(fp, "\n");
2788         }
2789
2790         return ret;
2791 }
2792
2793 static void timehist_print_summary(struct perf_sched *sched,
2794                                    struct perf_session *session)
2795 {
2796         struct machine *m = &session->machines.host;
2797         struct total_run_stats totals;
2798         u64 task_count;
2799         struct thread *t;
2800         struct thread_runtime *r;
2801         int i;
2802         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2803
2804         memset(&totals, 0, sizeof(totals));
2805         totals.sched = sched;
2806
2807         if (sched->idle_hist) {
2808                 printf("\nIdle-time summary\n");
2809                 printf("%*s  parent  sched-out  ", comm_width, "comm");
2810                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2811         } else if (sched->show_state) {
2812                 printf("\nWait-time summary\n");
2813                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2814                 printf("   run-time      sleep      iowait     preempt       delay\n");
2815         } else {
2816                 printf("\nRuntime summary\n");
2817                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2818                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2819         }
2820         printf("%*s            (count)  ", comm_width, "");
2821         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2822                sched->show_state ? "(msec)" : "%");
2823         printf("%.117s\n", graph_dotted_line);
2824
2825         machine__for_each_thread(m, show_thread_runtime, &totals);
2826         task_count = totals.task_count;
2827         if (!task_count)
2828                 printf("<no still running tasks>\n");
2829
2830         printf("\nTerminated tasks:\n");
2831         machine__for_each_thread(m, show_deadthread_runtime, &totals);
2832         if (task_count == totals.task_count)
2833                 printf("<no terminated tasks>\n");
2834
2835         /* CPU idle stats not tracked when samples were skipped */
2836         if (sched->skipped_samples && !sched->idle_hist)
2837                 return;
2838
2839         printf("\nIdle stats:\n");
2840         for (i = 0; i < idle_max_cpu; ++i) {
2841                 t = idle_threads[i];
2842                 if (!t)
2843                         continue;
2844
2845                 r = thread__priv(t);
2846                 if (r && r->run_stats.n) {
2847                         totals.sched_count += r->run_stats.n;
2848                         printf("    CPU %2d idle for ", i);
2849                         print_sched_time(r->total_run_time, 6);
2850                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2851                 } else
2852                         printf("    CPU %2d idle entire time window\n", i);
2853         }
2854
2855         if (sched->idle_hist && sched->show_callchain) {
2856                 callchain_param.mode  = CHAIN_FOLDED;
2857                 callchain_param.value = CCVAL_PERIOD;
2858
2859                 callchain_register_param(&callchain_param);
2860
2861                 printf("\nIdle stats by callchain:\n");
2862                 for (i = 0; i < idle_max_cpu; ++i) {
2863                         struct idle_thread_runtime *itr;
2864
2865                         t = idle_threads[i];
2866                         if (!t)
2867                                 continue;
2868
2869                         itr = thread__priv(t);
2870                         if (itr == NULL)
2871                                 continue;
2872
2873                         callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2874                                              0, &callchain_param);
2875
2876                         printf("  CPU %2d:", i);
2877                         print_sched_time(itr->tr.total_run_time, 6);
2878                         printf(" msec\n");
2879                         timehist_print_idlehist_callchain(&itr->sorted_root);
2880                         printf("\n");
2881                 }
2882         }
2883
2884         printf("\n"
2885                "    Total number of unique tasks: %" PRIu64 "\n"
2886                "Total number of context switches: %" PRIu64 "\n",
2887                totals.task_count, totals.sched_count);
2888
2889         printf("           Total run time (msec): ");
2890         print_sched_time(totals.total_run_time, 2);
2891         printf("\n");
2892
2893         printf("    Total scheduling time (msec): ");
2894         print_sched_time(hist_time, 2);
2895         printf(" (x %d)\n", sched->max_cpu);
2896 }
2897
2898 typedef int (*sched_handler)(struct perf_tool *tool,
2899                           union perf_event *event,
2900                           struct perf_evsel *evsel,
2901                           struct perf_sample *sample,
2902                           struct machine *machine);
2903
2904 static int perf_timehist__process_sample(struct perf_tool *tool,
2905                                          union perf_event *event,
2906                                          struct perf_sample *sample,
2907                                          struct perf_evsel *evsel,
2908                                          struct machine *machine)
2909 {
2910         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2911         int err = 0;
2912         int this_cpu = sample->cpu;
2913
2914         if (this_cpu > sched->max_cpu)
2915                 sched->max_cpu = this_cpu;
2916
2917         if (evsel->handler != NULL) {
2918                 sched_handler f = evsel->handler;
2919
2920                 err = f(tool, event, evsel, sample, machine);
2921         }
2922
2923         return err;
2924 }
2925
2926 static int timehist_check_attr(struct perf_sched *sched,
2927                                struct perf_evlist *evlist)
2928 {
2929         struct perf_evsel *evsel;
2930         struct evsel_runtime *er;
2931
2932         list_for_each_entry(evsel, &evlist->entries, node) {
2933                 er = perf_evsel__get_runtime(evsel);
2934                 if (er == NULL) {
2935                         pr_err("Failed to allocate memory for evsel runtime data\n");
2936                         return -1;
2937                 }
2938
2939                 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2940                         pr_info("Samples do not have callchains.\n");
2941                         sched->show_callchain = 0;
2942                         symbol_conf.use_callchain = 0;
2943                 }
2944         }
2945
2946         return 0;
2947 }
2948
2949 static int perf_sched__timehist(struct perf_sched *sched)
2950 {
2951         const struct perf_evsel_str_handler handlers[] = {
2952                 { "sched:sched_switch",       timehist_sched_switch_event, },
2953                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2954                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2955         };
2956         const struct perf_evsel_str_handler migrate_handlers[] = {
2957                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2958         };
2959         struct perf_data data = {
2960                 .path  = input_name,
2961                 .mode  = PERF_DATA_MODE_READ,
2962                 .force = sched->force,
2963         };
2964
2965         struct perf_session *session;
2966         struct perf_evlist *evlist;
2967         int err = -1;
2968
2969         /*
2970          * event handlers for timehist option
2971          */
2972         sched->tool.sample       = perf_timehist__process_sample;
2973         sched->tool.mmap         = perf_event__process_mmap;
2974         sched->tool.comm         = perf_event__process_comm;
2975         sched->tool.exit         = perf_event__process_exit;
2976         sched->tool.fork         = perf_event__process_fork;
2977         sched->tool.lost         = process_lost;
2978         sched->tool.attr         = perf_event__process_attr;
2979         sched->tool.tracing_data = perf_event__process_tracing_data;
2980         sched->tool.build_id     = perf_event__process_build_id;
2981
2982         sched->tool.ordered_events = true;
2983         sched->tool.ordering_requires_timestamps = true;
2984
2985         symbol_conf.use_callchain = sched->show_callchain;
2986
2987         session = perf_session__new(&data, false, &sched->tool);
2988         if (session == NULL)
2989                 return -ENOMEM;
2990
2991         evlist = session->evlist;
2992
2993         symbol__init(&session->header.env);
2994
2995         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2996                 pr_err("Invalid time string\n");
2997                 return -EINVAL;
2998         }
2999
3000         if (timehist_check_attr(sched, evlist) != 0)
3001                 goto out;
3002
3003         setup_pager();
3004
3005         /* setup per-evsel handlers */
3006         if (perf_session__set_tracepoints_handlers(session, handlers))
3007                 goto out;
3008
3009         /* sched_switch event at a minimum needs to exist */
3010         if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3011                                                   "sched:sched_switch")) {
3012                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3013                 goto out;
3014         }
3015
3016         if (sched->show_migrations &&
3017             perf_session__set_tracepoints_handlers(session, migrate_handlers))
3018                 goto out;
3019
3020         /* pre-allocate struct for per-CPU idle stats */
3021         sched->max_cpu = session->header.env.nr_cpus_online;
3022         if (sched->max_cpu == 0)
3023                 sched->max_cpu = 4;
3024         if (init_idle_threads(sched->max_cpu))
3025                 goto out;
3026
3027         /* summary_only implies summary option, but don't overwrite summary if set */
3028         if (sched->summary_only)
3029                 sched->summary = sched->summary_only;
3030
3031         if (!sched->summary_only)
3032                 timehist_header(sched);
3033
3034         err = perf_session__process_events(session);
3035         if (err) {
3036                 pr_err("Failed to process events, error %d", err);
3037                 goto out;
3038         }
3039
3040         sched->nr_events      = evlist->stats.nr_events[0];
3041         sched->nr_lost_events = evlist->stats.total_lost;
3042         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3043
3044         if (sched->summary)
3045                 timehist_print_summary(sched, session);
3046
3047 out:
3048         free_idle_threads();
3049         perf_session__delete(session);
3050
3051         return err;
3052 }
3053
3054
3055 static void print_bad_events(struct perf_sched *sched)
3056 {
3057         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3058                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3059                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3060                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3061         }
3062         if (sched->nr_lost_events && sched->nr_events) {
3063                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3064                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3065                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3066         }
3067         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3068                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3069                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3070                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3071                 if (sched->nr_lost_events)
3072                         printf(" (due to lost events?)");
3073                 printf("\n");
3074         }
3075 }
3076
3077 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3078 {
3079         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3080         struct work_atoms *this;
3081         const char *comm = thread__comm_str(data->thread), *this_comm;
3082         bool leftmost = true;
3083
3084         while (*new) {
3085                 int cmp;
3086
3087                 this = container_of(*new, struct work_atoms, node);
3088                 parent = *new;
3089
3090                 this_comm = thread__comm_str(this->thread);
3091                 cmp = strcmp(comm, this_comm);
3092                 if (cmp > 0) {
3093                         new = &((*new)->rb_left);
3094                 } else if (cmp < 0) {
3095                         new = &((*new)->rb_right);
3096                         leftmost = false;
3097                 } else {
3098                         this->num_merged++;
3099                         this->total_runtime += data->total_runtime;
3100                         this->nb_atoms += data->nb_atoms;
3101                         this->total_lat += data->total_lat;
3102                         list_splice(&data->work_list, &this->work_list);
3103                         if (this->max_lat < data->max_lat) {
3104                                 this->max_lat = data->max_lat;
3105                                 this->max_lat_at = data->max_lat_at;
3106                         }
3107                         zfree(&data);
3108                         return;
3109                 }
3110         }
3111
3112         data->num_merged++;
3113         rb_link_node(&data->node, parent, new);
3114         rb_insert_color_cached(&data->node, root, leftmost);
3115 }
3116
3117 static void perf_sched__merge_lat(struct perf_sched *sched)
3118 {
3119         struct work_atoms *data;
3120         struct rb_node *node;
3121
3122         if (sched->skip_merge)
3123                 return;
3124
3125         while ((node = rb_first_cached(&sched->atom_root))) {
3126                 rb_erase_cached(node, &sched->atom_root);
3127                 data = rb_entry(node, struct work_atoms, node);
3128                 __merge_work_atoms(&sched->merged_atom_root, data);
3129         }
3130 }
3131
3132 static int perf_sched__lat(struct perf_sched *sched)
3133 {
3134         struct rb_node *next;
3135
3136         setup_pager();
3137
3138         if (perf_sched__read_events(sched))
3139                 return -1;
3140
3141         perf_sched__merge_lat(sched);
3142         perf_sched__sort_lat(sched);
3143
3144         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3145         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3146         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3147
3148         next = rb_first_cached(&sched->sorted_atom_root);
3149
3150         while (next) {
3151                 struct work_atoms *work_list;
3152
3153                 work_list = rb_entry(next, struct work_atoms, node);
3154                 output_lat_thread(sched, work_list);
3155                 next = rb_next(next);
3156                 thread__zput(work_list->thread);
3157         }
3158
3159         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3160         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3161                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3162
3163         printf(" ---------------------------------------------------\n");
3164
3165         print_bad_events(sched);
3166         printf("\n");
3167
3168         return 0;
3169 }
3170
3171 static int setup_map_cpus(struct perf_sched *sched)
3172 {
3173         struct cpu_map *map;
3174
3175         sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3176
3177         if (sched->map.comp) {
3178                 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3179                 if (!sched->map.comp_cpus)
3180                         return -1;
3181         }
3182
3183         if (!sched->map.cpus_str)
3184                 return 0;
3185
3186         map = cpu_map__new(sched->map.cpus_str);
3187         if (!map) {
3188                 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3189                 return -1;
3190         }
3191
3192         sched->map.cpus = map;
3193         return 0;
3194 }
3195
3196 static int setup_color_pids(struct perf_sched *sched)
3197 {
3198         struct thread_map *map;
3199
3200         if (!sched->map.color_pids_str)
3201                 return 0;
3202
3203         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3204         if (!map) {
3205                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3206                 return -1;
3207         }
3208
3209         sched->map.color_pids = map;
3210         return 0;
3211 }
3212
3213 static int setup_color_cpus(struct perf_sched *sched)
3214 {
3215         struct cpu_map *map;
3216
3217         if (!sched->map.color_cpus_str)
3218                 return 0;
3219
3220         map = cpu_map__new(sched->map.color_cpus_str);
3221         if (!map) {
3222                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3223                 return -1;
3224         }
3225
3226         sched->map.color_cpus = map;
3227         return 0;
3228 }
3229
3230 static int perf_sched__map(struct perf_sched *sched)
3231 {
3232         if (setup_map_cpus(sched))
3233                 return -1;
3234
3235         if (setup_color_pids(sched))
3236                 return -1;
3237
3238         if (setup_color_cpus(sched))
3239                 return -1;
3240
3241         setup_pager();
3242         if (perf_sched__read_events(sched))
3243                 return -1;
3244         print_bad_events(sched);
3245         return 0;
3246 }
3247
3248 static int perf_sched__replay(struct perf_sched *sched)
3249 {
3250         unsigned long i;
3251
3252         calibrate_run_measurement_overhead(sched);
3253         calibrate_sleep_measurement_overhead(sched);
3254
3255         test_calibrations(sched);
3256
3257         if (perf_sched__read_events(sched))
3258                 return -1;
3259
3260         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3261         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3262         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3263
3264         if (sched->targetless_wakeups)
3265                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3266         if (sched->multitarget_wakeups)
3267                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3268         if (sched->nr_run_events_optimized)
3269                 printf("run atoms optimized: %ld\n",
3270                         sched->nr_run_events_optimized);
3271
3272         print_task_traces(sched);
3273         add_cross_task_wakeups(sched);
3274
3275         create_tasks(sched);
3276         printf("------------------------------------------------------------\n");
3277         for (i = 0; i < sched->replay_repeat; i++)
3278                 run_one_test(sched);
3279
3280         return 0;
3281 }
3282
3283 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3284                           const char * const usage_msg[])
3285 {
3286         char *tmp, *tok, *str = strdup(sched->sort_order);
3287
3288         for (tok = strtok_r(str, ", ", &tmp);
3289                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3290                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3291                         usage_with_options_msg(usage_msg, options,
3292                                         "Unknown --sort key: `%s'", tok);
3293                 }
3294         }
3295
3296         free(str);
3297
3298         sort_dimension__add("pid", &sched->cmp_pid);
3299 }
3300
3301 static int __cmd_record(int argc, const char **argv)
3302 {
3303         unsigned int rec_argc, i, j;
3304         const char **rec_argv;
3305         const char * const record_args[] = {
3306                 "record",
3307                 "-a",
3308                 "-R",
3309                 "-m", "1024",
3310                 "-c", "1",
3311                 "-e", "sched:sched_switch",
3312                 "-e", "sched:sched_stat_wait",
3313                 "-e", "sched:sched_stat_sleep",
3314                 "-e", "sched:sched_stat_iowait",
3315                 "-e", "sched:sched_stat_runtime",
3316                 "-e", "sched:sched_process_fork",
3317                 "-e", "sched:sched_wakeup",
3318                 "-e", "sched:sched_wakeup_new",
3319                 "-e", "sched:sched_migrate_task",
3320         };
3321
3322         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3323         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3324
3325         if (rec_argv == NULL)
3326                 return -ENOMEM;
3327
3328         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3329                 rec_argv[i] = strdup(record_args[i]);
3330
3331         for (j = 1; j < (unsigned int)argc; j++, i++)
3332                 rec_argv[i] = argv[j];
3333
3334         BUG_ON(i != rec_argc);
3335
3336         return cmd_record(i, rec_argv);
3337 }
3338
3339 int cmd_sched(int argc, const char **argv)
3340 {
3341         static const char default_sort_order[] = "avg, max, switch, runtime";
3342         struct perf_sched sched = {
3343                 .tool = {
3344                         .sample          = perf_sched__process_tracepoint_sample,
3345                         .comm            = perf_sched__process_comm,
3346                         .namespaces      = perf_event__process_namespaces,
3347                         .lost            = perf_event__process_lost,
3348                         .fork            = perf_sched__process_fork_event,
3349                         .ordered_events = true,
3350                 },
3351                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3352                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3353                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3354                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3355                 .sort_order           = default_sort_order,
3356                 .replay_repeat        = 10,
3357                 .profile_cpu          = -1,
3358                 .next_shortname1      = 'A',
3359                 .next_shortname2      = '0',
3360                 .skip_merge           = 0,
3361                 .show_callchain       = 1,
3362                 .max_stack            = 5,
3363         };
3364         const struct option sched_options[] = {
3365         OPT_STRING('i', "input", &input_name, "file",
3366                     "input file name"),
3367         OPT_INCR('v', "verbose", &verbose,
3368                     "be more verbose (show symbol address, etc)"),
3369         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3370                     "dump raw trace in ASCII"),
3371         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3372         OPT_END()
3373         };
3374         const struct option latency_options[] = {
3375         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3376                    "sort by key(s): runtime, switch, avg, max"),
3377         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3378                     "CPU to profile on"),
3379         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3380                     "latency stats per pid instead of per comm"),
3381         OPT_PARENT(sched_options)
3382         };
3383         const struct option replay_options[] = {
3384         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3385                      "repeat the workload replay N times (-1: infinite)"),
3386         OPT_PARENT(sched_options)
3387         };
3388         const struct option map_options[] = {
3389         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3390                     "map output in compact mode"),
3391         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3392                    "highlight given pids in map"),
3393         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3394                     "highlight given CPUs in map"),
3395         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3396                     "display given CPUs in map"),
3397         OPT_PARENT(sched_options)
3398         };
3399         const struct option timehist_options[] = {
3400         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3401                    "file", "vmlinux pathname"),
3402         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3403                    "file", "kallsyms pathname"),
3404         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3405                     "Display call chains if present (default on)"),
3406         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3407                    "Maximum number of functions to display backtrace."),
3408         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3409                     "Look for files with symbols relative to this directory"),
3410         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3411                     "Show only syscall summary with statistics"),
3412         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3413                     "Show all syscalls and summary with statistics"),
3414         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3415         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3416         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3417         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3418         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3419         OPT_STRING(0, "time", &sched.time_str, "str",
3420                    "Time span for analysis (start,stop)"),
3421         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3422         OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3423                    "analyze events only for given process id(s)"),
3424         OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3425                    "analyze events only for given thread id(s)"),
3426         OPT_PARENT(sched_options)
3427         };
3428
3429         const char * const latency_usage[] = {
3430                 "perf sched latency [<options>]",
3431                 NULL
3432         };
3433         const char * const replay_usage[] = {
3434                 "perf sched replay [<options>]",
3435                 NULL
3436         };
3437         const char * const map_usage[] = {
3438                 "perf sched map [<options>]",
3439                 NULL
3440         };
3441         const char * const timehist_usage[] = {
3442                 "perf sched timehist [<options>]",
3443                 NULL
3444         };
3445         const char *const sched_subcommands[] = { "record", "latency", "map",
3446                                                   "replay", "script",
3447                                                   "timehist", NULL };
3448         const char *sched_usage[] = {
3449                 NULL,
3450                 NULL
3451         };
3452         struct trace_sched_handler lat_ops  = {
3453                 .wakeup_event       = latency_wakeup_event,
3454                 .switch_event       = latency_switch_event,
3455                 .runtime_event      = latency_runtime_event,
3456                 .migrate_task_event = latency_migrate_task_event,
3457         };
3458         struct trace_sched_handler map_ops  = {
3459                 .switch_event       = map_switch_event,
3460         };
3461         struct trace_sched_handler replay_ops  = {
3462                 .wakeup_event       = replay_wakeup_event,
3463                 .switch_event       = replay_switch_event,
3464                 .fork_event         = replay_fork_event,
3465         };
3466         unsigned int i;
3467
3468         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3469                 sched.curr_pid[i] = -1;
3470
3471         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3472                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3473         if (!argc)
3474                 usage_with_options(sched_usage, sched_options);
3475
3476         /*
3477          * Aliased to 'perf script' for now:
3478          */
3479         if (!strcmp(argv[0], "script"))
3480                 return cmd_script(argc, argv);
3481
3482         if (!strncmp(argv[0], "rec", 3)) {
3483                 return __cmd_record(argc, argv);
3484         } else if (!strncmp(argv[0], "lat", 3)) {
3485                 sched.tp_handler = &lat_ops;
3486                 if (argc > 1) {
3487                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3488                         if (argc)
3489                                 usage_with_options(latency_usage, latency_options);
3490                 }
3491                 setup_sorting(&sched, latency_options, latency_usage);
3492                 return perf_sched__lat(&sched);
3493         } else if (!strcmp(argv[0], "map")) {
3494                 if (argc) {
3495                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3496                         if (argc)
3497                                 usage_with_options(map_usage, map_options);
3498                 }
3499                 sched.tp_handler = &map_ops;
3500                 setup_sorting(&sched, latency_options, latency_usage);
3501                 return perf_sched__map(&sched);
3502         } else if (!strncmp(argv[0], "rep", 3)) {
3503                 sched.tp_handler = &replay_ops;
3504                 if (argc) {
3505                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3506                         if (argc)
3507                                 usage_with_options(replay_usage, replay_options);
3508                 }
3509                 return perf_sched__replay(&sched);
3510         } else if (!strcmp(argv[0], "timehist")) {
3511                 if (argc) {
3512                         argc = parse_options(argc, argv, timehist_options,
3513                                              timehist_usage, 0);
3514                         if (argc)
3515                                 usage_with_options(timehist_usage, timehist_options);
3516                 }
3517                 if ((sched.show_wakeups || sched.show_next) &&
3518                     sched.summary_only) {
3519                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3520                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3521                         if (sched.show_wakeups)
3522                                 parse_options_usage(NULL, timehist_options, "w", true);
3523                         if (sched.show_next)
3524                                 parse_options_usage(NULL, timehist_options, "n", true);
3525                         return -EINVAL;
3526                 }
3527
3528                 return perf_sched__timehist(&sched);
3529         } else {
3530                 usage_with_options(sched_usage, sched_options);
3531         }
3532
3533         return 0;
3534 }