cns3xxx: fix a ethernet driver napi poll handling bug
[librecmc/librecmc.git] / target / linux / cns3xxx / files / drivers / net / ethernet / cavium / cns3xxx_eth.c
1 /*
2  * Cavium CNS3xxx Gigabit driver for Linux
3  *
4  * Copyright 2011 Gateworks Corporation
5  *                Chris Lang <clang@gateworks.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11  */
12
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/platform_data/cns3xxx.h>
24 #include <linux/skbuff.h>
25
26 #define DRV_NAME "cns3xxx_eth"
27
28 #define RX_DESCS 256
29 #define TX_DESCS 128
30 #define TX_DESC_RESERVE 20
31
32 #define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
33 #define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
34 #define REGS_SIZE 336
35
36 #define RX_BUFFER_ALIGN 64
37 #define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
38
39 #define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
40 #define RX_SEGMENT_ALLOC_SIZE 2048
41 #define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
42 #define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
43 #define MAX_MTU 9500
44
45 #define NAPI_WEIGHT 64
46
47 /* MDIO Defines */
48 #define MDIO_CMD_COMPLETE 0x00008000
49 #define MDIO_WRITE_COMMAND 0x00002000
50 #define MDIO_READ_COMMAND 0x00004000
51 #define MDIO_REG_OFFSET 8
52 #define MDIO_VALUE_OFFSET 16
53
54 /* Descritor Defines */
55 #define END_OF_RING 0x40000000
56 #define FIRST_SEGMENT 0x20000000
57 #define LAST_SEGMENT 0x10000000
58 #define FORCE_ROUTE 0x04000000
59 #define UDP_CHECKSUM 0x00020000
60 #define TCP_CHECKSUM 0x00010000
61
62 /* Port Config Defines */
63 #define PORT_BP_ENABLE 0x00020000
64 #define PORT_DISABLE 0x00040000
65 #define PORT_LEARN_DIS 0x00080000
66 #define PORT_BLOCK_STATE 0x00100000
67 #define PORT_BLOCK_MODE 0x00200000
68
69 #define PROMISC_OFFSET 29
70
71 /* Global Config Defines */
72 #define UNKNOWN_VLAN_TO_CPU 0x02000000
73 #define ACCEPT_CRC_PACKET 0x00200000
74 #define CRC_STRIPPING 0x00100000
75
76 /* VLAN Config Defines */
77 #define NIC_MODE 0x00008000
78 #define VLAN_UNAWARE 0x00000001
79
80 /* DMA AUTO Poll Defines */
81 #define TS_POLL_EN 0x00000020
82 #define TS_SUSPEND 0x00000010
83 #define FS_POLL_EN 0x00000002
84 #define FS_SUSPEND 0x00000001
85
86 /* DMA Ring Control Defines */
87 #define QUEUE_THRESHOLD 0x000000f0
88 #define CLR_FS_STATE 0x80000000
89
90 /* Interrupt Status Defines */
91 #define MAC0_STATUS_CHANGE 0x00004000
92 #define MAC1_STATUS_CHANGE 0x00008000
93 #define MAC2_STATUS_CHANGE 0x00010000
94 #define MAC0_RX_ERROR 0x00100000
95 #define MAC1_RX_ERROR 0x00200000
96 #define MAC2_RX_ERROR 0x00400000
97
98 struct tx_desc
99 {
100         u32 sdp; /* segment data pointer */
101
102         union {
103                 struct {
104                         u32 sdl:16; /* segment data length */
105                         u32 tco:1;
106                         u32 uco:1;
107                         u32 ico:1;
108                         u32 rsv_1:3; /* reserve */
109                         u32 pri:3;
110                         u32 fp:1; /* force priority */
111                         u32 fr:1;
112                         u32 interrupt:1;
113                         u32 lsd:1;
114                         u32 fsd:1;
115                         u32 eor:1;
116                         u32 cown:1;
117                 };
118                 u32 config0;
119         };
120
121         union {
122                 struct {
123                         u32 ctv:1;
124                         u32 stv:1;
125                         u32 sid:4;
126                         u32 inss:1;
127                         u32 dels:1;
128                         u32 rsv_2:9;
129                         u32 pmap:5;
130                         u32 mark:3;
131                         u32 ewan:1;
132                         u32 fewan:1;
133                         u32 rsv_3:5;
134                 };
135                 u32 config1;
136         };
137
138         union {
139                 struct {
140                         u32 c_vid:12;
141                         u32 c_cfs:1;
142                         u32 c_pri:3;
143                         u32 s_vid:12;
144                         u32 s_dei:1;
145                         u32 s_pri:3;
146                 };
147                 u32 config2;
148         };
149
150         u8 alignment[16]; /* for 32 byte */
151 };
152
153 struct rx_desc
154 {
155         u32 sdp; /* segment data pointer */
156
157         union {
158                 struct {
159                         u32 sdl:16; /* segment data length */
160                         u32 l4f:1;
161                         u32 ipf:1;
162                         u32 prot:4;
163                         u32 hr:6;
164                         u32 lsd:1;
165                         u32 fsd:1;
166                         u32 eor:1;
167                         u32 cown:1;
168                 };
169                 u32 config0;
170         };
171
172         union {
173                 struct {
174                         u32 ctv:1;
175                         u32 stv:1;
176                         u32 unv:1;
177                         u32 iwan:1;
178                         u32 exdv:1;
179                         u32 e_wan:1;
180                         u32 rsv_1:2;
181                         u32 sp:3;
182                         u32 crc_err:1;
183                         u32 un_eth:1;
184                         u32 tc:2;
185                         u32 rsv_2:1;
186                         u32 ip_offset:5;
187                         u32 rsv_3:11;
188                 };
189                 u32 config1;
190         };
191
192         union {
193                 struct {
194                         u32 c_vid:12;
195                         u32 c_cfs:1;
196                         u32 c_pri:3;
197                         u32 s_vid:12;
198                         u32 s_dei:1;
199                         u32 s_pri:3;
200                 };
201                 u32 config2;
202         };
203
204         u8 alignment[16]; /* for 32 byte alignment */
205 };
206
207
208 struct switch_regs {
209         u32 phy_control;
210         u32 phy_auto_addr;
211         u32 mac_glob_cfg;
212         u32 mac_cfg[4];
213         u32 mac_pri_ctrl[5], __res;
214         u32 etype[2];
215         u32 udp_range[4];
216         u32 prio_etype_udp;
217         u32 prio_ipdscp[8];
218         u32 tc_ctrl;
219         u32 rate_ctrl;
220         u32 fc_glob_thrs;
221         u32 fc_port_thrs;
222         u32 mc_fc_glob_thrs;
223         u32 dc_glob_thrs;
224         u32 arl_vlan_cmd;
225         u32 arl_ctrl[3];
226         u32 vlan_cfg;
227         u32 pvid[2];
228         u32 vlan_ctrl[3];
229         u32 session_id[8];
230         u32 intr_stat;
231         u32 intr_mask;
232         u32 sram_test;
233         u32 mem_queue;
234         u32 farl_ctrl;
235         u32 fc_input_thrs, __res1[2];
236         u32 clk_skew_ctrl;
237         u32 mac_glob_cfg_ext, __res2[2];
238         u32 dma_ring_ctrl;
239         u32 dma_auto_poll_cfg;
240         u32 delay_intr_cfg, __res3;
241         u32 ts_dma_ctrl0;
242         u32 ts_desc_ptr0;
243         u32 ts_desc_base_addr0, __res4;
244         u32 fs_dma_ctrl0;
245         u32 fs_desc_ptr0;
246         u32 fs_desc_base_addr0, __res5;
247         u32 ts_dma_ctrl1;
248         u32 ts_desc_ptr1;
249         u32 ts_desc_base_addr1, __res6;
250         u32 fs_dma_ctrl1;
251         u32 fs_desc_ptr1;
252         u32 fs_desc_base_addr1;
253         u32 __res7[109];
254         u32 mac_counter0[13];
255 };
256
257 struct _tx_ring {
258         struct tx_desc *desc;
259         dma_addr_t phys_addr;
260         struct tx_desc *cur_addr;
261         struct sk_buff *buff_tab[TX_DESCS];
262         unsigned int phys_tab[TX_DESCS];
263         u32 free_index;
264         u32 count_index;
265         u32 cur_index;
266         int num_used;
267         int num_count;
268         bool stopped;
269 };
270
271 struct _rx_ring {
272         struct rx_desc *desc;
273         dma_addr_t phys_addr;
274         struct rx_desc *cur_addr;
275         void *buff_tab[RX_DESCS];
276         unsigned int phys_tab[RX_DESCS];
277         u32 cur_index;
278         u32 alloc_index;
279         int alloc_count;
280 };
281
282 struct sw {
283         struct switch_regs __iomem *regs;
284         struct napi_struct napi;
285         struct cns3xxx_plat_info *plat;
286         struct _tx_ring tx_ring;
287         struct _rx_ring rx_ring;
288         struct sk_buff *frag_first;
289         struct sk_buff *frag_last;
290         struct device *dev;
291         int rx_irq;
292         int stat_irq;
293 };
294
295 struct port {
296         struct net_device *netdev;
297         struct phy_device *phydev;
298         struct sw *sw;
299         int id;                 /* logical port ID */
300         int speed, duplex;
301 };
302
303 static spinlock_t mdio_lock;
304 static DEFINE_SPINLOCK(tx_lock);
305 static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
306 struct mii_bus *mdio_bus;
307 static int ports_open;
308 static struct port *switch_port_tab[4];
309 static struct dma_pool *rx_dma_pool;
310 static struct dma_pool *tx_dma_pool;
311 struct net_device *napi_dev;
312
313 static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
314                            int write, u16 cmd)
315 {
316         int cycles = 0;
317         u32 temp = 0;
318
319         temp = __raw_readl(&mdio_regs->phy_control);
320         temp |= MDIO_CMD_COMPLETE;
321         __raw_writel(temp, &mdio_regs->phy_control);
322         udelay(10);
323
324         if (write) {
325                 temp = (cmd << MDIO_VALUE_OFFSET);
326                 temp |= MDIO_WRITE_COMMAND;
327         } else {
328                 temp = MDIO_READ_COMMAND;
329         }
330         temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
331         temp |= (phy_id & 0x1f);
332
333         __raw_writel(temp, &mdio_regs->phy_control);
334
335         while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
336                         && cycles < 5000) {
337                 udelay(1);
338                 cycles++;
339         }
340
341         if (cycles == 5000) {
342                 printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name,
343                        phy_id);
344                 return -1;
345         }
346
347         temp = __raw_readl(&mdio_regs->phy_control);
348         temp |= MDIO_CMD_COMPLETE;
349         __raw_writel(temp, &mdio_regs->phy_control);
350
351         if (write)
352                 return 0;
353
354         return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
355 }
356
357 static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
358 {
359         unsigned long flags;
360         int ret;
361
362         spin_lock_irqsave(&mdio_lock, flags);
363         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
364         spin_unlock_irqrestore(&mdio_lock, flags);
365         return ret;
366 }
367
368 static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location,
369                              u16 val)
370 {
371         unsigned long flags;
372         int ret;
373
374         spin_lock_irqsave(&mdio_lock, flags);
375         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
376         spin_unlock_irqrestore(&mdio_lock, flags);
377         return ret;
378 }
379
380 static int cns3xxx_mdio_register(void __iomem *base)
381 {
382         int err;
383
384         if (!(mdio_bus = mdiobus_alloc()))
385                 return -ENOMEM;
386
387         mdio_regs = base;
388
389         spin_lock_init(&mdio_lock);
390         mdio_bus->name = "CNS3xxx MII Bus";
391         mdio_bus->read = &cns3xxx_mdio_read;
392         mdio_bus->write = &cns3xxx_mdio_write;
393         strcpy(mdio_bus->id, "0");
394
395         if ((err = mdiobus_register(mdio_bus)))
396                 mdiobus_free(mdio_bus);
397         return err;
398 }
399
400 static void cns3xxx_mdio_remove(void)
401 {
402         mdiobus_unregister(mdio_bus);
403         mdiobus_free(mdio_bus);
404 }
405
406 static void enable_tx_dma(struct sw *sw)
407 {
408         __raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
409 }
410
411 static void enable_rx_dma(struct sw *sw)
412 {
413         __raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
414 }
415
416 static void cns3xxx_adjust_link(struct net_device *dev)
417 {
418         struct port *port = netdev_priv(dev);
419         struct phy_device *phydev = port->phydev;
420
421         if (!phydev->link) {
422                 if (port->speed) {
423                         port->speed = 0;
424                         printk(KERN_INFO "%s: link down\n", dev->name);
425                 }
426                 return;
427         }
428
429         if (port->speed == phydev->speed && port->duplex == phydev->duplex)
430                 return;
431
432         port->speed = phydev->speed;
433         port->duplex = phydev->duplex;
434
435         printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
436                dev->name, port->speed, port->duplex ? "full" : "half");
437 }
438
439 static void eth_schedule_poll(struct sw *sw)
440 {
441         if (unlikely(!napi_schedule_prep(&sw->napi)))
442                 return;
443
444         disable_irq_nosync(sw->rx_irq);
445         __napi_schedule(&sw->napi);
446 }
447
448 irqreturn_t eth_rx_irq(int irq, void *pdev)
449 {
450         struct net_device *dev = pdev;
451         struct sw *sw = netdev_priv(dev);
452         eth_schedule_poll(sw);
453         return (IRQ_HANDLED);
454 }
455
456 irqreturn_t eth_stat_irq(int irq, void *pdev)
457 {
458         struct net_device *dev = pdev;
459         struct sw *sw = netdev_priv(dev);
460         u32 cfg;
461         u32 stat = __raw_readl(&sw->regs->intr_stat);
462         __raw_writel(0xffffffff, &sw->regs->intr_stat);
463
464         if (stat & MAC2_RX_ERROR)
465                 switch_port_tab[3]->netdev->stats.rx_dropped++;
466         if (stat & MAC1_RX_ERROR)
467                 switch_port_tab[1]->netdev->stats.rx_dropped++;
468         if (stat & MAC0_RX_ERROR)
469                 switch_port_tab[0]->netdev->stats.rx_dropped++;
470
471         if (stat & MAC0_STATUS_CHANGE) {
472                 cfg = __raw_readl(&sw->regs->mac_cfg[0]);
473                 switch_port_tab[0]->phydev->link = (cfg & 0x1);
474                 switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
475                 if (((cfg >> 2) & 0x3) == 2)
476                         switch_port_tab[0]->phydev->speed = 1000;
477                 else if (((cfg >> 2) & 0x3) == 1)
478                         switch_port_tab[0]->phydev->speed = 100;
479                 else
480                         switch_port_tab[0]->phydev->speed = 10;
481                 cns3xxx_adjust_link(switch_port_tab[0]->netdev);
482         }
483
484         if (stat & MAC1_STATUS_CHANGE) {
485                 cfg = __raw_readl(&sw->regs->mac_cfg[1]);
486                 switch_port_tab[1]->phydev->link = (cfg & 0x1);
487                 switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
488                 if (((cfg >> 2) & 0x3) == 2)
489                         switch_port_tab[1]->phydev->speed = 1000;
490                 else if (((cfg >> 2) & 0x3) == 1)
491                         switch_port_tab[1]->phydev->speed = 100;
492                 else
493                         switch_port_tab[1]->phydev->speed = 10;
494                 cns3xxx_adjust_link(switch_port_tab[1]->netdev);
495         }
496
497         if (stat & MAC2_STATUS_CHANGE) {
498                 cfg = __raw_readl(&sw->regs->mac_cfg[3]);
499                 switch_port_tab[3]->phydev->link = (cfg & 0x1);
500                 switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
501                 if (((cfg >> 2) & 0x3) == 2)
502                         switch_port_tab[3]->phydev->speed = 1000;
503                 else if (((cfg >> 2) & 0x3) == 1)
504                         switch_port_tab[3]->phydev->speed = 100;
505                 else
506                         switch_port_tab[3]->phydev->speed = 10;
507                 cns3xxx_adjust_link(switch_port_tab[3]->netdev);
508         }
509
510         return (IRQ_HANDLED);
511 }
512
513
514 static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
515 {
516         struct _rx_ring *rx_ring = &sw->rx_ring;
517         unsigned int i = rx_ring->alloc_index;
518         struct rx_desc *desc = &(rx_ring)->desc[i];
519         void *buf;
520         unsigned int phys;
521
522         for (received += rx_ring->alloc_count; received > 0; received--) {
523                 buf = kmalloc(RX_SEGMENT_ALLOC_SIZE, GFP_ATOMIC);
524                 if (!buf)
525                         break;
526
527                 phys = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
528                                       RX_SEGMENT_MRU, DMA_FROM_DEVICE);
529                 if (dma_mapping_error(sw->dev, phys)) {
530                         kfree(buf);
531                         break;
532                 }
533
534                 desc->sdl = RX_SEGMENT_MRU;
535                 desc->sdp = phys;
536
537                 wmb();
538
539                 /* put the new buffer on RX-free queue */
540                 rx_ring->buff_tab[i] = buf;
541                 rx_ring->phys_tab[i] = phys;
542                 if (i == RX_DESCS - 1) {
543                         i = 0;
544                         desc->config0 = END_OF_RING | FIRST_SEGMENT |
545                                         LAST_SEGMENT | RX_SEGMENT_MRU;
546                         desc = &(rx_ring)->desc[i];
547                 } else {
548                         desc->config0 = FIRST_SEGMENT | LAST_SEGMENT |
549                                         RX_SEGMENT_MRU;
550                         i++;
551                         desc++;
552                 }
553         }
554
555         rx_ring->alloc_count = received;
556         rx_ring->alloc_index = i;
557 }
558
559 static void eth_check_num_used(struct _tx_ring *tx_ring)
560 {
561         bool stop = false;
562         int i;
563
564         if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
565                 stop = true;
566
567         if (tx_ring->stopped == stop)
568                 return;
569
570         tx_ring->stopped = stop;
571         for (i = 0; i < 4; i++) {
572                 struct port *port = switch_port_tab[i];
573                 struct net_device *dev;
574
575                 if (!port)
576                         continue;
577
578                 dev = port->netdev;
579                 if (stop)
580                         netif_stop_queue(dev);
581                 else
582                         netif_wake_queue(dev);
583         }
584 }
585
586 static void eth_complete_tx(struct sw *sw)
587 {
588         struct _tx_ring *tx_ring = &sw->tx_ring;
589         struct tx_desc *desc;
590         int i;
591         int index;
592         int num_used = tx_ring->num_used;
593         struct sk_buff *skb;
594
595         index = tx_ring->free_index;
596         desc = &(tx_ring)->desc[index];
597         for (i = 0; i < num_used; i++) {
598                 if (desc->cown) {
599                         skb = tx_ring->buff_tab[index];
600                         tx_ring->buff_tab[index] = 0;
601                         if (skb)
602                                 dev_kfree_skb_any(skb);
603                         dma_unmap_single(sw->dev, tx_ring->phys_tab[index],
604                                 desc->sdl, DMA_TO_DEVICE);
605                         if (++index == TX_DESCS) {
606                                 index = 0;
607                                 desc = &(tx_ring)->desc[index];
608                         } else {
609                                 desc++;
610                         }
611                 } else {
612                         break;
613                 }
614         }
615         tx_ring->free_index = index;
616         tx_ring->num_used -= i;
617         eth_check_num_used(tx_ring);
618 }
619
620 static int eth_poll(struct napi_struct *napi, int budget)
621 {
622         struct sw *sw = container_of(napi, struct sw, napi);
623         struct _rx_ring *rx_ring = &sw->rx_ring;
624         int received = 0;
625         unsigned int length;
626         unsigned int i = rx_ring->cur_index;
627         struct rx_desc *desc = &(rx_ring)->desc[i];
628         unsigned int alloc_count = rx_ring->alloc_count;
629
630         while (desc->cown && alloc_count + received < RX_DESCS - 1) {
631                 struct sk_buff *skb;
632                 int reserve = SKB_HEAD_ALIGN;
633
634                 if (received >= budget)
635                         break;
636
637                 /* process received frame */
638                 dma_unmap_single(sw->dev, rx_ring->phys_tab[i],
639                                  RX_SEGMENT_MRU, DMA_FROM_DEVICE);
640
641                 skb = build_skb(rx_ring->buff_tab[i], 0);
642                 if (!skb)
643                         break;
644
645                 skb->dev = switch_port_tab[desc->sp]->netdev;
646
647                 length = desc->sdl;
648                 if (desc->fsd && !desc->lsd)
649                         length = RX_SEGMENT_MRU;
650
651                 if (!desc->fsd) {
652                         reserve -= NET_IP_ALIGN;
653                         if (!desc->lsd)
654                                 length += NET_IP_ALIGN;
655                 }
656
657                 skb_reserve(skb, reserve);
658                 skb_put(skb, length);
659
660                 if (!sw->frag_first)
661                         sw->frag_first = skb;
662                 else {
663                         if (sw->frag_first == sw->frag_last)
664                                 skb_shinfo(sw->frag_first)->frag_list = skb;
665                         else
666                                 sw->frag_last->next = skb;
667                         sw->frag_first->len += skb->len;
668                         sw->frag_first->data_len += skb->len;
669                         sw->frag_first->truesize += skb->truesize;
670                 }
671                 sw->frag_last = skb;
672
673                 if (desc->lsd) {
674                         struct net_device *dev;
675
676                         skb = sw->frag_first;
677                         dev = skb->dev;
678                         skb->protocol = eth_type_trans(skb, dev);
679
680                         dev->stats.rx_packets++;
681                         dev->stats.rx_bytes += skb->len;
682
683                         /* RX Hardware checksum offload */
684                         skb->ip_summed = CHECKSUM_NONE;
685                         switch (desc->prot) {
686                                 case 1:
687                                 case 2:
688                                 case 5:
689                                 case 6:
690                                 case 13:
691                                 case 14:
692                                         if (!desc->l4f) {
693                                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
694                                                 napi_gro_receive(napi, skb);
695                                                 break;
696                                         }
697                                         /* fall through */
698                                 default:
699                                         netif_receive_skb(skb);
700                                         break;
701                         }
702
703                         sw->frag_first = NULL;
704                         sw->frag_last = NULL;
705                 }
706
707                 received++;
708                 if (++i == RX_DESCS) {
709                         i = 0;
710                         desc = &(rx_ring)->desc[i];
711                 } else {
712                         desc++;
713                 }
714         }
715
716         rx_ring->cur_index = i;
717         if (!received) {
718                 napi_complete(napi);
719                 enable_irq(sw->rx_irq);
720                 budget = 0;
721
722                 /* if rx descriptors are full schedule another poll */
723                 if (rx_ring->desc[(i-1) & (RX_DESCS-1)].cown)
724                         eth_schedule_poll(sw);
725         }
726
727         spin_lock_bh(&tx_lock);
728         eth_complete_tx(sw);
729         spin_unlock_bh(&tx_lock);
730
731         cns3xxx_alloc_rx_buf(sw, received);
732
733         wmb();
734         enable_rx_dma(sw);
735
736         return budget;
737 }
738
739 static void eth_set_desc(struct sw *sw, struct _tx_ring *tx_ring, int index,
740                          int index_last, void *data, int len, u32 config0,
741                          u32 pmap)
742 {
743         struct tx_desc *tx_desc = &(tx_ring)->desc[index];
744         unsigned int phys;
745
746         phys = dma_map_single(sw->dev, data, len, DMA_TO_DEVICE);
747         tx_desc->sdp = phys;
748         tx_desc->pmap = pmap;
749         tx_ring->phys_tab[index] = phys;
750
751         config0 |= len;
752         if (index == TX_DESCS - 1)
753                 config0 |= END_OF_RING;
754         if (index == index_last)
755                 config0 |= LAST_SEGMENT;
756
757         wmb();
758         tx_desc->config0 = config0;
759 }
760
761 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
762 {
763         struct port *port = netdev_priv(dev);
764         struct sw *sw = port->sw;
765         struct _tx_ring *tx_ring = &sw->tx_ring;
766         struct sk_buff *skb1;
767         char pmap = (1 << port->id);
768         int nr_frags = skb_shinfo(skb)->nr_frags;
769         int nr_desc = nr_frags;
770         int index0, index, index_last;
771         int len0;
772         unsigned int i;
773         u32 config0;
774
775         if (pmap == 8)
776                 pmap = (1 << 4);
777
778         skb_walk_frags(skb, skb1)
779                 nr_desc++;
780
781         eth_schedule_poll(sw);
782         spin_lock_bh(&tx_lock);
783         if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
784                 spin_unlock_bh(&tx_lock);
785                 return NETDEV_TX_BUSY;
786         }
787
788         index = index0 = tx_ring->cur_index;
789         index_last = (index0 + nr_desc) % TX_DESCS;
790         tx_ring->cur_index = (index_last + 1) % TX_DESCS;
791
792         spin_unlock_bh(&tx_lock);
793
794         config0 = FORCE_ROUTE;
795         if (skb->ip_summed == CHECKSUM_PARTIAL)
796                 config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
797
798         len0 = skb->len;
799
800         /* fragments */
801         for (i = 0; i < nr_frags; i++) {
802                 struct skb_frag_struct *frag;
803                 void *addr;
804
805                 index = (index + 1) % TX_DESCS;
806
807                 frag = &skb_shinfo(skb)->frags[i];
808                 addr = page_address(skb_frag_page(frag)) + frag->page_offset;
809
810                 eth_set_desc(sw, tx_ring, index, index_last, addr, frag->size,
811                              config0, pmap);
812         }
813
814         if (nr_frags)
815                 len0 = skb->len - skb->data_len;
816
817         skb_walk_frags(skb, skb1) {
818                 index = (index + 1) % TX_DESCS;
819                 len0 -= skb1->len;
820
821                 eth_set_desc(sw, tx_ring, index, index_last, skb1->data,
822                              skb1->len, config0, pmap);
823         }
824
825         tx_ring->buff_tab[index0] = skb;
826         eth_set_desc(sw, tx_ring, index0, index_last, skb->data, len0,
827                      config0 | FIRST_SEGMENT, pmap);
828
829         wmb();
830
831         spin_lock(&tx_lock);
832         tx_ring->num_used += nr_desc + 1;
833         spin_unlock(&tx_lock);
834
835         dev->stats.tx_packets++;
836         dev->stats.tx_bytes += skb->len;
837
838         enable_tx_dma(sw);
839
840         return NETDEV_TX_OK;
841 }
842
843 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
844 {
845         struct port *port = netdev_priv(dev);
846
847         if (!netif_running(dev))
848                 return -EINVAL;
849         return phy_mii_ioctl(port->phydev, req, cmd);
850 }
851
852 /* ethtool support */
853
854 static void cns3xxx_get_drvinfo(struct net_device *dev,
855                                struct ethtool_drvinfo *info)
856 {
857         strcpy(info->driver, DRV_NAME);
858         strcpy(info->bus_info, "internal");
859 }
860
861 static int cns3xxx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
862 {
863         struct port *port = netdev_priv(dev);
864         return phy_ethtool_gset(port->phydev, cmd);
865 }
866
867 static int cns3xxx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
868 {
869         struct port *port = netdev_priv(dev);
870         return phy_ethtool_sset(port->phydev, cmd);
871 }
872
873 static int cns3xxx_nway_reset(struct net_device *dev)
874 {
875         struct port *port = netdev_priv(dev);
876         return phy_start_aneg(port->phydev);
877 }
878
879 static struct ethtool_ops cns3xxx_ethtool_ops = {
880         .get_drvinfo = cns3xxx_get_drvinfo,
881         .get_settings = cns3xxx_get_settings,
882         .set_settings = cns3xxx_set_settings,
883         .nway_reset = cns3xxx_nway_reset,
884         .get_link = ethtool_op_get_link,
885 };
886
887
888 static int init_rings(struct sw *sw)
889 {
890         int i;
891         struct _rx_ring *rx_ring = &sw->rx_ring;
892         struct _tx_ring *tx_ring = &sw->tx_ring;
893
894         __raw_writel(0, &sw->regs->fs_dma_ctrl0);
895         __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
896         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
897         __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
898
899         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
900
901         if (!(rx_dma_pool = dma_pool_create(DRV_NAME, sw->dev,
902                                             RX_POOL_ALLOC_SIZE, 32, 0)))
903                 return -ENOMEM;
904
905         if (!(rx_ring->desc = dma_pool_alloc(rx_dma_pool, GFP_KERNEL,
906                                               &rx_ring->phys_addr)))
907                 return -ENOMEM;
908         memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
909
910         /* Setup RX buffers */
911         for (i = 0; i < RX_DESCS; i++) {
912                 struct rx_desc *desc = &(rx_ring)->desc[i];
913                 void *buf;
914
915                 buf = kzalloc(RX_SEGMENT_ALLOC_SIZE, GFP_KERNEL);
916                 if (!buf)
917                         return -ENOMEM;
918
919                 desc->sdl = RX_SEGMENT_MRU;
920                 if (i == (RX_DESCS - 1))
921                         desc->eor = 1;
922                 desc->fsd = 1;
923                 desc->lsd = 1;
924
925                 desc->sdp = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
926                                            RX_SEGMENT_MRU, DMA_FROM_DEVICE);
927                 if (dma_mapping_error(sw->dev, desc->sdp))
928                         return -EIO;
929
930                 rx_ring->buff_tab[i] = buf;
931                 rx_ring->phys_tab[i] = desc->sdp;
932                 desc->cown = 0;
933         }
934         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
935         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
936
937         if (!(tx_dma_pool = dma_pool_create(DRV_NAME, sw->dev,
938                                             TX_POOL_ALLOC_SIZE, 32, 0)))
939                 return -ENOMEM;
940
941         if (!(tx_ring->desc = dma_pool_alloc(tx_dma_pool, GFP_KERNEL,
942                                               &tx_ring->phys_addr)))
943                 return -ENOMEM;
944         memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
945
946         /* Setup TX buffers */
947         for (i = 0; i < TX_DESCS; i++) {
948                 struct tx_desc *desc = &(tx_ring)->desc[i];
949                 tx_ring->buff_tab[i] = 0;
950
951                 if (i == (TX_DESCS - 1))
952                         desc->eor = 1;
953                 desc->cown = 1;
954         }
955         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
956         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
957
958         return 0;
959 }
960
961 static void destroy_rings(struct sw *sw)
962 {
963         int i;
964         if (sw->rx_ring.desc) {
965                 for (i = 0; i < RX_DESCS; i++) {
966                         struct _rx_ring *rx_ring = &sw->rx_ring;
967                         struct rx_desc *desc = &(rx_ring)->desc[i];
968                         struct sk_buff *skb = sw->rx_ring.buff_tab[i];
969
970                         if (!skb)
971                                 continue;
972
973                         dma_unmap_single(sw->dev, desc->sdp, RX_SEGMENT_MRU,
974                                          DMA_FROM_DEVICE);
975                         dev_kfree_skb(skb);
976                 }
977                 dma_pool_free(rx_dma_pool, sw->rx_ring.desc, sw->rx_ring.phys_addr);
978                 dma_pool_destroy(rx_dma_pool);
979                 rx_dma_pool = 0;
980                 sw->rx_ring.desc = 0;
981         }
982         if (sw->tx_ring.desc) {
983                 for (i = 0; i < TX_DESCS; i++) {
984                         struct _tx_ring *tx_ring = &sw->tx_ring;
985                         struct tx_desc *desc = &(tx_ring)->desc[i];
986                         struct sk_buff *skb = sw->tx_ring.buff_tab[i];
987                         if (skb) {
988                                 dma_unmap_single(sw->dev, desc->sdp,
989                                         skb->len, DMA_TO_DEVICE);
990                                 dev_kfree_skb(skb);
991                         }
992                 }
993                 dma_pool_free(tx_dma_pool, sw->tx_ring.desc, sw->tx_ring.phys_addr);
994                 dma_pool_destroy(tx_dma_pool);
995                 tx_dma_pool = 0;
996                 sw->tx_ring.desc = 0;
997         }
998 }
999
1000 static int eth_open(struct net_device *dev)
1001 {
1002         struct port *port = netdev_priv(dev);
1003         struct sw *sw = port->sw;
1004         u32 temp;
1005
1006         port->speed = 0;        /* force "link up" message */
1007         phy_start(port->phydev);
1008
1009         netif_start_queue(dev);
1010
1011         if (!ports_open) {
1012                 request_irq(sw->rx_irq, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
1013                 request_irq(sw->stat_irq, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
1014                 napi_enable(&sw->napi);
1015                 netif_start_queue(napi_dev);
1016
1017                 __raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
1018                                MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
1019
1020                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1021                 temp &= ~(PORT_DISABLE);
1022                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1023
1024                 temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
1025                 temp &= ~(TS_SUSPEND | FS_SUSPEND);
1026                 __raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
1027
1028                 enable_rx_dma(sw);
1029         }
1030         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1031         temp &= ~(PORT_DISABLE);
1032         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1033
1034         ports_open++;
1035         netif_carrier_on(dev);
1036
1037         return 0;
1038 }
1039
1040 static int eth_close(struct net_device *dev)
1041 {
1042         struct port *port = netdev_priv(dev);
1043         struct sw *sw = port->sw;
1044         u32 temp;
1045
1046         ports_open--;
1047
1048         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1049         temp |= (PORT_DISABLE);
1050         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1051
1052         netif_stop_queue(dev);
1053
1054         phy_stop(port->phydev);
1055
1056         if (!ports_open) {
1057                 disable_irq(sw->rx_irq);
1058                 free_irq(sw->rx_irq, napi_dev);
1059                 disable_irq(sw->stat_irq);
1060                 free_irq(sw->stat_irq, napi_dev);
1061                 napi_disable(&sw->napi);
1062                 netif_stop_queue(napi_dev);
1063                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1064                 temp |= (PORT_DISABLE);
1065                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1066
1067                 __raw_writel(TS_SUSPEND | FS_SUSPEND,
1068                              &sw->regs->dma_auto_poll_cfg);
1069         }
1070
1071         netif_carrier_off(dev);
1072         return 0;
1073 }
1074
1075 static void eth_rx_mode(struct net_device *dev)
1076 {
1077         struct port *port = netdev_priv(dev);
1078         struct sw *sw = port->sw;
1079         u32 temp;
1080
1081         temp = __raw_readl(&sw->regs->mac_glob_cfg);
1082
1083         if (dev->flags & IFF_PROMISC) {
1084                 if (port->id == 3)
1085                         temp |= ((1 << 2) << PROMISC_OFFSET);
1086                 else
1087                         temp |= ((1 << port->id) << PROMISC_OFFSET);
1088         } else {
1089                 if (port->id == 3)
1090                         temp &= ~((1 << 2) << PROMISC_OFFSET);
1091                 else
1092                         temp &= ~((1 << port->id) << PROMISC_OFFSET);
1093         }
1094         __raw_writel(temp, &sw->regs->mac_glob_cfg);
1095 }
1096
1097 static int eth_set_mac(struct net_device *netdev, void *p)
1098 {
1099         struct port *port = netdev_priv(netdev);
1100         struct sw *sw = port->sw;
1101         struct sockaddr *addr = p;
1102         u32 cycles = 0;
1103
1104         if (!is_valid_ether_addr(addr->sa_data))
1105                 return -EADDRNOTAVAIL;
1106
1107         /* Invalidate old ARL Entry */
1108         if (port->id == 3)
1109                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1110         else
1111                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1112         __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
1113                         (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
1114                         &sw->regs->arl_ctrl[1]);
1115
1116         __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
1117                         (1 << 1)),
1118                         &sw->regs->arl_ctrl[2]);
1119         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1120
1121         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1122                         && cycles < 5000) {
1123                 udelay(1);
1124                 cycles++;
1125         }
1126
1127         cycles = 0;
1128         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1129
1130         if (port->id == 3)
1131                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1132         else
1133                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1134         __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
1135                         (addr->sa_data[2] << 8) | (addr->sa_data[3])),
1136                         &sw->regs->arl_ctrl[1]);
1137
1138         __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
1139                         (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
1140         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1141
1142         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1143                 && cycles < 5000) {
1144                 udelay(1);
1145                 cycles++;
1146         }
1147         return 0;
1148 }
1149
1150 static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
1151 {
1152         if (new_mtu > MAX_MTU)
1153                 return -EINVAL;
1154
1155         dev->mtu = new_mtu;
1156         return 0;
1157 }
1158
1159 static const struct net_device_ops cns3xxx_netdev_ops = {
1160         .ndo_open = eth_open,
1161         .ndo_stop = eth_close,
1162         .ndo_start_xmit = eth_xmit,
1163         .ndo_set_rx_mode = eth_rx_mode,
1164         .ndo_do_ioctl = eth_ioctl,
1165         .ndo_change_mtu = cns3xxx_change_mtu,
1166         .ndo_set_mac_address = eth_set_mac,
1167         .ndo_validate_addr = eth_validate_addr,
1168 };
1169
1170 static int eth_init_one(struct platform_device *pdev)
1171 {
1172         int i;
1173         struct port *port;
1174         struct sw *sw;
1175         struct net_device *dev;
1176         struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
1177         char phy_id[MII_BUS_ID_SIZE + 3];
1178         int err;
1179         u32 temp;
1180         struct resource *res;
1181         void __iomem *regs;
1182
1183         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1184         regs = devm_ioremap_resource(&pdev->dev, res);
1185         if (IS_ERR(regs))
1186                 return PTR_ERR(regs);
1187
1188         err = cns3xxx_mdio_register(regs);
1189         if (err)
1190                 return err;
1191
1192         if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) {
1193                 err = -ENOMEM;
1194                 goto err_remove_mdio;
1195         }
1196
1197         strcpy(napi_dev->name, "switch%d");
1198         napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1199
1200         SET_NETDEV_DEV(napi_dev, &pdev->dev);
1201         sw = netdev_priv(napi_dev);
1202         memset(sw, 0, sizeof(struct sw));
1203         sw->regs = regs;
1204         sw->dev = &pdev->dev;
1205
1206         sw->rx_irq = platform_get_irq_byname(pdev, "eth_rx");
1207         sw->stat_irq = platform_get_irq_byname(pdev, "eth_stat");
1208
1209         temp = __raw_readl(&sw->regs->phy_auto_addr);
1210         temp |= (3 << 30); /* maximum frame length: 9600 bytes */
1211         __raw_writel(temp, &sw->regs->phy_auto_addr);
1212
1213         for (i = 0; i < 4; i++) {
1214                 temp = __raw_readl(&sw->regs->mac_cfg[i]);
1215                 temp |= (PORT_DISABLE);
1216                 __raw_writel(temp, &sw->regs->mac_cfg[i]);
1217         }
1218
1219         temp = PORT_DISABLE;
1220         __raw_writel(temp, &sw->regs->mac_cfg[2]);
1221
1222         temp = __raw_readl(&sw->regs->vlan_cfg);
1223         temp |= NIC_MODE | VLAN_UNAWARE;
1224         __raw_writel(temp, &sw->regs->vlan_cfg);
1225
1226         __raw_writel(UNKNOWN_VLAN_TO_CPU |
1227                      CRC_STRIPPING, &sw->regs->mac_glob_cfg);
1228
1229         if ((err = init_rings(sw)) != 0) {
1230                 destroy_rings(sw);
1231                 err = -ENOMEM;
1232                 goto err_free;
1233         }
1234         platform_set_drvdata(pdev, napi_dev);
1235
1236         netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
1237
1238         for (i = 0; i < 3; i++) {
1239                 if (!(plat->ports & (1 << i))) {
1240                         continue;
1241                 }
1242
1243                 if (!(dev = alloc_etherdev(sizeof(struct port)))) {
1244                         goto free_ports;
1245                 }
1246
1247                 port = netdev_priv(dev);
1248                 port->netdev = dev;
1249                 if (i == 2)
1250                         port->id = 3;
1251                 else
1252                         port->id = i;
1253                 port->sw = sw;
1254
1255                 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1256                 temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
1257                 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1258
1259                 SET_NETDEV_DEV(dev, &pdev->dev);
1260                 dev->netdev_ops = &cns3xxx_netdev_ops;
1261                 dev->ethtool_ops = &cns3xxx_ethtool_ops;
1262                 dev->tx_queue_len = 1000;
1263                 dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1264
1265                 switch_port_tab[port->id] = port;
1266                 memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
1267
1268                 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
1269                 port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link,
1270                         PHY_INTERFACE_MODE_RGMII);
1271                 if ((err = IS_ERR(port->phydev))) {
1272                         switch_port_tab[port->id] = 0;
1273                         free_netdev(dev);
1274                         goto free_ports;
1275                 }
1276
1277                 port->phydev->irq = PHY_IGNORE_INTERRUPT;
1278
1279                 if ((err = register_netdev(dev))) {
1280                         phy_disconnect(port->phydev);
1281                         switch_port_tab[port->id] = 0;
1282                         free_netdev(dev);
1283                         goto free_ports;
1284                 }
1285
1286                 printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
1287                 netif_carrier_off(dev);
1288                 dev = 0;
1289         }
1290
1291         return 0;
1292
1293 free_ports:
1294         err = -ENOMEM;
1295         for (--i; i >= 0; i--) {
1296                 if (switch_port_tab[i]) {
1297                         port = switch_port_tab[i];
1298                         dev = port->netdev;
1299                         unregister_netdev(dev);
1300                         phy_disconnect(port->phydev);
1301                         switch_port_tab[i] = 0;
1302                         free_netdev(dev);
1303                 }
1304         }
1305 err_free:
1306         free_netdev(napi_dev);
1307 err_remove_mdio:
1308         cns3xxx_mdio_remove();
1309         return err;
1310 }
1311
1312 static int eth_remove_one(struct platform_device *pdev)
1313 {
1314         struct net_device *dev = platform_get_drvdata(pdev);
1315         struct sw *sw = netdev_priv(dev);
1316         int i;
1317         destroy_rings(sw);
1318
1319         for (i = 3; i >= 0; i--) {
1320                 if (switch_port_tab[i]) {
1321                         struct port *port = switch_port_tab[i];
1322                         struct net_device *dev = port->netdev;
1323                         unregister_netdev(dev);
1324                         phy_disconnect(port->phydev);
1325                         switch_port_tab[i] = 0;
1326                         free_netdev(dev);
1327                 }
1328         }
1329
1330         free_netdev(napi_dev);
1331         cns3xxx_mdio_remove();
1332
1333         return 0;
1334 }
1335
1336 static struct platform_driver cns3xxx_eth_driver = {
1337         .driver.name    = DRV_NAME,
1338         .probe          = eth_init_one,
1339         .remove         = eth_remove_one,
1340 };
1341
1342 static int __init eth_init_module(void)
1343 {
1344         return platform_driver_register(&cns3xxx_eth_driver);
1345 }
1346
1347 static void __exit eth_cleanup_module(void)
1348 {
1349         platform_driver_unregister(&cns3xxx_eth_driver);
1350 }
1351
1352 module_init(eth_init_module);
1353 module_exit(eth_cleanup_module);
1354
1355 MODULE_AUTHOR("Chris Lang");
1356 MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
1357 MODULE_LICENSE("GPL v2");
1358 MODULE_ALIAS("platform:cns3xxx_eth");