cns3xxx: update to linux 3.10
[librecmc/librecmc.git] / target / linux / cns3xxx / files / drivers / net / ethernet / cavium / cns3xxx_eth.c
1 /*
2  * Cavium CNS3xxx Gigabit driver for Linux
3  *
4  * Copyright 2011 Gateworks Corporation
5  *                Chris Lang <clang@gateworks.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11  */
12
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/platform_data/cns3xxx.h>
24 #include <linux/skbuff.h>
25
26 #define DRV_NAME "cns3xxx_eth"
27
28 #define RX_DESCS 256
29 #define TX_DESCS 128
30 #define TX_DESC_RESERVE 20
31
32 #define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
33 #define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
34 #define REGS_SIZE 336
35
36 #define RX_BUFFER_ALIGN 64
37 #define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
38
39 #define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
40 #define RX_SEGMENT_ALLOC_SIZE 2048
41 #define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
42 #define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
43 #define MAX_MTU 9500
44
45 #define NAPI_WEIGHT 64
46
47 /* MDIO Defines */
48 #define MDIO_CMD_COMPLETE 0x00008000
49 #define MDIO_WRITE_COMMAND 0x00002000
50 #define MDIO_READ_COMMAND 0x00004000
51 #define MDIO_REG_OFFSET 8
52 #define MDIO_VALUE_OFFSET 16
53
54 /* Descritor Defines */
55 #define END_OF_RING 0x40000000
56 #define FIRST_SEGMENT 0x20000000
57 #define LAST_SEGMENT 0x10000000
58 #define FORCE_ROUTE 0x04000000
59 #define IP_CHECKSUM 0x00040000
60 #define UDP_CHECKSUM 0x00020000
61 #define TCP_CHECKSUM 0x00010000
62
63 /* Port Config Defines */
64 #define PORT_BP_ENABLE 0x00020000
65 #define PORT_DISABLE 0x00040000
66 #define PORT_LEARN_DIS 0x00080000
67 #define PORT_BLOCK_STATE 0x00100000
68 #define PORT_BLOCK_MODE 0x00200000
69
70 #define PROMISC_OFFSET 29
71
72 /* Global Config Defines */
73 #define UNKNOWN_VLAN_TO_CPU 0x02000000
74 #define ACCEPT_CRC_PACKET 0x00200000
75 #define CRC_STRIPPING 0x00100000
76
77 /* VLAN Config Defines */
78 #define NIC_MODE 0x00008000
79 #define VLAN_UNAWARE 0x00000001
80
81 /* DMA AUTO Poll Defines */
82 #define TS_POLL_EN 0x00000020
83 #define TS_SUSPEND 0x00000010
84 #define FS_POLL_EN 0x00000002
85 #define FS_SUSPEND 0x00000001
86
87 /* DMA Ring Control Defines */
88 #define QUEUE_THRESHOLD 0x000000f0
89 #define CLR_FS_STATE 0x80000000
90
91 /* Interrupt Status Defines */
92 #define MAC0_STATUS_CHANGE 0x00004000
93 #define MAC1_STATUS_CHANGE 0x00008000
94 #define MAC2_STATUS_CHANGE 0x00010000
95 #define MAC0_RX_ERROR 0x00100000
96 #define MAC1_RX_ERROR 0x00200000
97 #define MAC2_RX_ERROR 0x00400000
98
99 struct tx_desc
100 {
101         u32 sdp; /* segment data pointer */
102
103         union {
104                 struct {
105                         u32 sdl:16; /* segment data length */
106                         u32 tco:1;
107                         u32 uco:1;
108                         u32 ico:1;
109                         u32 rsv_1:3; /* reserve */
110                         u32 pri:3;
111                         u32 fp:1; /* force priority */
112                         u32 fr:1;
113                         u32 interrupt:1;
114                         u32 lsd:1;
115                         u32 fsd:1;
116                         u32 eor:1;
117                         u32 cown:1;
118                 };
119                 u32 config0;
120         };
121
122         union {
123                 struct {
124                         u32 ctv:1;
125                         u32 stv:1;
126                         u32 sid:4;
127                         u32 inss:1;
128                         u32 dels:1;
129                         u32 rsv_2:9;
130                         u32 pmap:5;
131                         u32 mark:3;
132                         u32 ewan:1;
133                         u32 fewan:1;
134                         u32 rsv_3:5;
135                 };
136                 u32 config1;
137         };
138
139         union {
140                 struct {
141                         u32 c_vid:12;
142                         u32 c_cfs:1;
143                         u32 c_pri:3;
144                         u32 s_vid:12;
145                         u32 s_dei:1;
146                         u32 s_pri:3;
147                 };
148                 u32 config2;
149         };
150
151         u8 alignment[16]; /* for 32 byte */
152 };
153
154 struct rx_desc
155 {
156         u32 sdp; /* segment data pointer */
157
158         union {
159                 struct {
160                         u32 sdl:16; /* segment data length */
161                         u32 l4f:1;
162                         u32 ipf:1;
163                         u32 prot:4;
164                         u32 hr:6;
165                         u32 lsd:1;
166                         u32 fsd:1;
167                         u32 eor:1;
168                         u32 cown:1;
169                 };
170                 u32 config0;
171         };
172
173         union {
174                 struct {
175                         u32 ctv:1;
176                         u32 stv:1;
177                         u32 unv:1;
178                         u32 iwan:1;
179                         u32 exdv:1;
180                         u32 e_wan:1;
181                         u32 rsv_1:2;
182                         u32 sp:3;
183                         u32 crc_err:1;
184                         u32 un_eth:1;
185                         u32 tc:2;
186                         u32 rsv_2:1;
187                         u32 ip_offset:5;
188                         u32 rsv_3:11;
189                 };
190                 u32 config1;
191         };
192
193         union {
194                 struct {
195                         u32 c_vid:12;
196                         u32 c_cfs:1;
197                         u32 c_pri:3;
198                         u32 s_vid:12;
199                         u32 s_dei:1;
200                         u32 s_pri:3;
201                 };
202                 u32 config2;
203         };
204
205         u8 alignment[16]; /* for 32 byte alignment */
206 };
207
208
209 struct switch_regs {
210         u32 phy_control;
211         u32 phy_auto_addr;
212         u32 mac_glob_cfg;
213         u32 mac_cfg[4];
214         u32 mac_pri_ctrl[5], __res;
215         u32 etype[2];
216         u32 udp_range[4];
217         u32 prio_etype_udp;
218         u32 prio_ipdscp[8];
219         u32 tc_ctrl;
220         u32 rate_ctrl;
221         u32 fc_glob_thrs;
222         u32 fc_port_thrs;
223         u32 mc_fc_glob_thrs;
224         u32 dc_glob_thrs;
225         u32 arl_vlan_cmd;
226         u32 arl_ctrl[3];
227         u32 vlan_cfg;
228         u32 pvid[2];
229         u32 vlan_ctrl[3];
230         u32 session_id[8];
231         u32 intr_stat;
232         u32 intr_mask;
233         u32 sram_test;
234         u32 mem_queue;
235         u32 farl_ctrl;
236         u32 fc_input_thrs, __res1[2];
237         u32 clk_skew_ctrl;
238         u32 mac_glob_cfg_ext, __res2[2];
239         u32 dma_ring_ctrl;
240         u32 dma_auto_poll_cfg;
241         u32 delay_intr_cfg, __res3;
242         u32 ts_dma_ctrl0;
243         u32 ts_desc_ptr0;
244         u32 ts_desc_base_addr0, __res4;
245         u32 fs_dma_ctrl0;
246         u32 fs_desc_ptr0;
247         u32 fs_desc_base_addr0, __res5;
248         u32 ts_dma_ctrl1;
249         u32 ts_desc_ptr1;
250         u32 ts_desc_base_addr1, __res6;
251         u32 fs_dma_ctrl1;
252         u32 fs_desc_ptr1;
253         u32 fs_desc_base_addr1;
254         u32 __res7[109];
255         u32 mac_counter0[13];
256 };
257
258 struct _tx_ring {
259         struct tx_desc *desc;
260         dma_addr_t phys_addr;
261         struct tx_desc *cur_addr;
262         struct sk_buff *buff_tab[TX_DESCS];
263         unsigned int phys_tab[TX_DESCS];
264         u32 free_index;
265         u32 count_index;
266         u32 cur_index;
267         int num_used;
268         int num_count;
269         bool stopped;
270 };
271
272 struct _rx_ring {
273         struct rx_desc *desc;
274         dma_addr_t phys_addr;
275         struct rx_desc *cur_addr;
276         void *buff_tab[RX_DESCS];
277         unsigned int phys_tab[RX_DESCS];
278         u32 cur_index;
279         u32 alloc_index;
280         int alloc_count;
281 };
282
283 struct sw {
284         struct switch_regs __iomem *regs;
285         struct napi_struct napi;
286         struct cns3xxx_plat_info *plat;
287         struct _tx_ring tx_ring;
288         struct _rx_ring rx_ring;
289         struct sk_buff *frag_first;
290         struct sk_buff *frag_last;
291         int rx_irq;
292         int stat_irq;
293 };
294
295 struct port {
296         struct net_device *netdev;
297         struct phy_device *phydev;
298         struct sw *sw;
299         int id;                 /* logical port ID */
300         int speed, duplex;
301 };
302
303 static spinlock_t mdio_lock;
304 static DEFINE_SPINLOCK(tx_lock);
305 static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
306 struct mii_bus *mdio_bus;
307 static int ports_open;
308 static struct port *switch_port_tab[4];
309 static struct dma_pool *rx_dma_pool;
310 static struct dma_pool *tx_dma_pool;
311 struct net_device *napi_dev;
312
313 static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
314                            int write, u16 cmd)
315 {
316         int cycles = 0;
317         u32 temp = 0;
318
319         temp = __raw_readl(&mdio_regs->phy_control);
320         temp |= MDIO_CMD_COMPLETE;
321         __raw_writel(temp, &mdio_regs->phy_control);
322         udelay(10);
323
324         if (write) {
325                 temp = (cmd << MDIO_VALUE_OFFSET);
326                 temp |= MDIO_WRITE_COMMAND;
327         } else {
328                 temp = MDIO_READ_COMMAND;
329         }
330         temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
331         temp |= (phy_id & 0x1f);
332
333         __raw_writel(temp, &mdio_regs->phy_control);
334
335         while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
336                         && cycles < 5000) {
337                 udelay(1);
338                 cycles++;
339         }
340
341         if (cycles == 5000) {
342                 printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name,
343                        phy_id);
344                 return -1;
345         }
346
347         temp = __raw_readl(&mdio_regs->phy_control);
348         temp |= MDIO_CMD_COMPLETE;
349         __raw_writel(temp, &mdio_regs->phy_control);
350
351         if (write)
352                 return 0;
353
354         return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
355 }
356
357 static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
358 {
359         unsigned long flags;
360         int ret;
361
362         spin_lock_irqsave(&mdio_lock, flags);
363         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
364         spin_unlock_irqrestore(&mdio_lock, flags);
365         return ret;
366 }
367
368 static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location,
369                              u16 val)
370 {
371         unsigned long flags;
372         int ret;
373
374         spin_lock_irqsave(&mdio_lock, flags);
375         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
376         spin_unlock_irqrestore(&mdio_lock, flags);
377         return ret;
378 }
379
380 static int cns3xxx_mdio_register(void __iomem *base)
381 {
382         int err;
383
384         if (!(mdio_bus = mdiobus_alloc()))
385                 return -ENOMEM;
386
387         mdio_regs = base;
388
389         spin_lock_init(&mdio_lock);
390         mdio_bus->name = "CNS3xxx MII Bus";
391         mdio_bus->read = &cns3xxx_mdio_read;
392         mdio_bus->write = &cns3xxx_mdio_write;
393         strcpy(mdio_bus->id, "0");
394
395         if ((err = mdiobus_register(mdio_bus)))
396                 mdiobus_free(mdio_bus);
397         return err;
398 }
399
400 static void cns3xxx_mdio_remove(void)
401 {
402         mdiobus_unregister(mdio_bus);
403         mdiobus_free(mdio_bus);
404 }
405
406 static void enable_tx_dma(struct sw *sw)
407 {
408         __raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
409 }
410
411 static void enable_rx_dma(struct sw *sw)
412 {
413         __raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
414 }
415
416 static void cns3xxx_adjust_link(struct net_device *dev)
417 {
418         struct port *port = netdev_priv(dev);
419         struct phy_device *phydev = port->phydev;
420
421         if (!phydev->link) {
422                 if (port->speed) {
423                         port->speed = 0;
424                         printk(KERN_INFO "%s: link down\n", dev->name);
425                 }
426                 return;
427         }
428
429         if (port->speed == phydev->speed && port->duplex == phydev->duplex)
430                 return;
431
432         port->speed = phydev->speed;
433         port->duplex = phydev->duplex;
434
435         printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
436                dev->name, port->speed, port->duplex ? "full" : "half");
437 }
438
439 static void eth_schedule_poll(struct sw *sw)
440 {
441         if (unlikely(!napi_schedule_prep(&sw->napi)))
442                 return;
443
444         disable_irq_nosync(sw->rx_irq);
445         __napi_schedule(&sw->napi);
446 }
447
448 irqreturn_t eth_rx_irq(int irq, void *pdev)
449 {
450         struct net_device *dev = pdev;
451         struct sw *sw = netdev_priv(dev);
452         eth_schedule_poll(sw);
453         return (IRQ_HANDLED);
454 }
455
456 irqreturn_t eth_stat_irq(int irq, void *pdev)
457 {
458         struct net_device *dev = pdev;
459         struct sw *sw = netdev_priv(dev);
460         u32 cfg;
461         u32 stat = __raw_readl(&sw->regs->intr_stat);
462         __raw_writel(0xffffffff, &sw->regs->intr_stat);
463
464         if (stat & MAC2_RX_ERROR)
465                 switch_port_tab[3]->netdev->stats.rx_dropped++;
466         if (stat & MAC1_RX_ERROR)
467                 switch_port_tab[1]->netdev->stats.rx_dropped++;
468         if (stat & MAC0_RX_ERROR)
469                 switch_port_tab[0]->netdev->stats.rx_dropped++;
470
471         if (stat & MAC0_STATUS_CHANGE) {
472                 cfg = __raw_readl(&sw->regs->mac_cfg[0]);
473                 switch_port_tab[0]->phydev->link = (cfg & 0x1);
474                 switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
475                 if (((cfg >> 2) & 0x3) == 2)
476                         switch_port_tab[0]->phydev->speed = 1000;
477                 else if (((cfg >> 2) & 0x3) == 1)
478                         switch_port_tab[0]->phydev->speed = 100;
479                 else
480                         switch_port_tab[0]->phydev->speed = 10;
481                 cns3xxx_adjust_link(switch_port_tab[0]->netdev);
482         }
483
484         if (stat & MAC1_STATUS_CHANGE) {
485                 cfg = __raw_readl(&sw->regs->mac_cfg[1]);
486                 switch_port_tab[1]->phydev->link = (cfg & 0x1);
487                 switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
488                 if (((cfg >> 2) & 0x3) == 2)
489                         switch_port_tab[1]->phydev->speed = 1000;
490                 else if (((cfg >> 2) & 0x3) == 1)
491                         switch_port_tab[1]->phydev->speed = 100;
492                 else
493                         switch_port_tab[1]->phydev->speed = 10;
494                 cns3xxx_adjust_link(switch_port_tab[1]->netdev);
495         }
496
497         if (stat & MAC2_STATUS_CHANGE) {
498                 cfg = __raw_readl(&sw->regs->mac_cfg[3]);
499                 switch_port_tab[3]->phydev->link = (cfg & 0x1);
500                 switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
501                 if (((cfg >> 2) & 0x3) == 2)
502                         switch_port_tab[3]->phydev->speed = 1000;
503                 else if (((cfg >> 2) & 0x3) == 1)
504                         switch_port_tab[3]->phydev->speed = 100;
505                 else
506                         switch_port_tab[3]->phydev->speed = 10;
507                 cns3xxx_adjust_link(switch_port_tab[3]->netdev);
508         }
509
510         return (IRQ_HANDLED);
511 }
512
513
514 static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
515 {
516         struct _rx_ring *rx_ring = &sw->rx_ring;
517         unsigned int i = rx_ring->alloc_index;
518         struct rx_desc *desc = &(rx_ring)->desc[i];
519         void *buf;
520         unsigned int phys;
521
522         for (received += rx_ring->alloc_count; received > 0; received--) {
523                 buf = kmalloc(RX_SEGMENT_ALLOC_SIZE, GFP_ATOMIC);
524                 if (!buf)
525                         break;
526
527                 phys = dma_map_single(NULL, buf + SKB_HEAD_ALIGN,
528                                       RX_SEGMENT_MRU, DMA_FROM_DEVICE);
529                 if (dma_mapping_error(NULL, phys)) {
530                         kfree(buf);
531                         break;
532                 }
533
534                 desc->sdl = RX_SEGMENT_MRU;
535                 desc->sdp = phys;
536
537                 wmb();
538
539                 /* put the new buffer on RX-free queue */
540                 rx_ring->buff_tab[i] = buf;
541                 rx_ring->phys_tab[i] = phys;
542                 if (i == RX_DESCS - 1) {
543                         i = 0;
544                         desc->config0 = END_OF_RING | FIRST_SEGMENT |
545                                         LAST_SEGMENT | RX_SEGMENT_MRU;
546                         desc = &(rx_ring)->desc[i];
547                 } else {
548                         desc->config0 = FIRST_SEGMENT | LAST_SEGMENT |
549                                         RX_SEGMENT_MRU;
550                         i++;
551                         desc++;
552                 }
553         }
554
555         rx_ring->alloc_count = received;
556         rx_ring->alloc_index = i;
557 }
558
559 static void eth_check_num_used(struct _tx_ring *tx_ring)
560 {
561         bool stop = false;
562         int i;
563
564         if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
565                 stop = true;
566
567         if (tx_ring->stopped == stop)
568                 return;
569
570         tx_ring->stopped = stop;
571         for (i = 0; i < 4; i++) {
572                 struct port *port = switch_port_tab[i];
573                 struct net_device *dev;
574
575                 if (!port)
576                         continue;
577
578                 dev = port->netdev;
579                 if (stop)
580                         netif_stop_queue(dev);
581                 else
582                         netif_wake_queue(dev);
583         }
584 }
585
586 static void eth_complete_tx(struct sw *sw)
587 {
588         struct _tx_ring *tx_ring = &sw->tx_ring;
589         struct tx_desc *desc;
590         int i;
591         int index;
592         int num_used = tx_ring->num_used;
593         struct sk_buff *skb;
594
595         index = tx_ring->free_index;
596         desc = &(tx_ring)->desc[index];
597         for (i = 0; i < num_used; i++) {
598                 if (desc->cown) {
599                         skb = tx_ring->buff_tab[index];
600                         tx_ring->buff_tab[index] = 0;
601                         if (skb)
602                                 dev_kfree_skb_any(skb);
603                         dma_unmap_single(NULL, tx_ring->phys_tab[index],
604                                 desc->sdl, DMA_TO_DEVICE);
605                         if (++index == TX_DESCS) {
606                                 index = 0;
607                                 desc = &(tx_ring)->desc[index];
608                         } else {
609                                 desc++;
610                         }
611                 } else {
612                         break;
613                 }
614         }
615         tx_ring->free_index = index;
616         tx_ring->num_used -= i;
617         eth_check_num_used(tx_ring);
618 }
619
620 static int eth_poll(struct napi_struct *napi, int budget)
621 {
622         struct sw *sw = container_of(napi, struct sw, napi);
623         struct _rx_ring *rx_ring = &sw->rx_ring;
624         int received = 0;
625         unsigned int length;
626         unsigned int i = rx_ring->cur_index;
627         struct rx_desc *desc = &(rx_ring)->desc[i];
628         unsigned int alloc_count = rx_ring->alloc_count;
629
630         while (desc->cown && alloc_count + received < RX_DESCS - 1) {
631                 struct sk_buff *skb;
632                 int reserve = SKB_HEAD_ALIGN;
633
634                 if (received >= budget)
635                         break;
636
637                 /* process received frame */
638                 dma_unmap_single(NULL, rx_ring->phys_tab[i],
639                                  RX_SEGMENT_MRU, DMA_FROM_DEVICE);
640
641                 skb = build_skb(rx_ring->buff_tab[i], 0);
642                 if (!skb)
643                         break;
644
645                 skb->dev = switch_port_tab[desc->sp]->netdev;
646
647                 length = desc->sdl;
648                 if (desc->fsd && !desc->lsd)
649                         length = RX_SEGMENT_MRU;
650
651                 if (!desc->fsd) {
652                         reserve -= NET_IP_ALIGN;
653                         if (!desc->lsd)
654                                 length += NET_IP_ALIGN;
655                 }
656
657                 skb_reserve(skb, reserve);
658                 skb_put(skb, length);
659
660                 if (!sw->frag_first)
661                         sw->frag_first = skb;
662                 else {
663                         if (sw->frag_first == sw->frag_last)
664                                 skb_frag_add_head(sw->frag_first, skb);
665                         else
666                                 sw->frag_last->next = skb;
667                         sw->frag_first->len += skb->len;
668                         sw->frag_first->data_len += skb->len;
669                         sw->frag_first->truesize += skb->truesize;
670                 }
671                 sw->frag_last = skb;
672
673                 if (desc->lsd) {
674                         struct net_device *dev;
675
676                         skb = sw->frag_first;
677                         dev = skb->dev;
678                         skb->protocol = eth_type_trans(skb, dev);
679
680                         dev->stats.rx_packets++;
681                         dev->stats.rx_bytes += skb->len;
682
683                         /* RX Hardware checksum offload */
684                         skb->ip_summed = CHECKSUM_NONE;
685                         switch (desc->prot) {
686                                 case 1:
687                                 case 2:
688                                 case 5:
689                                 case 6:
690                                 case 13:
691                                 case 14:
692                                         if (!desc->l4f) {
693                                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
694                                                 napi_gro_receive(napi, skb);
695                                                 break;
696                                         }
697                                         /* fall through */
698                                 default:
699                                         netif_receive_skb(skb);
700                                         break;
701                         }
702
703                         sw->frag_first = NULL;
704                         sw->frag_last = NULL;
705                 }
706
707                 received++;
708                 if (++i == RX_DESCS) {
709                         i = 0;
710                         desc = &(rx_ring)->desc[i];
711                 } else {
712                         desc++;
713                 }
714         }
715
716         rx_ring->cur_index = i;
717         if (!received) {
718                 napi_complete(napi);
719                 enable_irq(sw->rx_irq);
720
721                 /* if rx descriptors are full schedule another poll */
722                 if (rx_ring->desc[(i-1) & (RX_DESCS-1)].cown)
723                         eth_schedule_poll(sw);
724         }
725
726         spin_lock_bh(&tx_lock);
727         eth_complete_tx(sw);
728         spin_unlock_bh(&tx_lock);
729
730         cns3xxx_alloc_rx_buf(sw, received);
731
732         wmb();
733         enable_rx_dma(sw);
734
735         return received;
736 }
737
738 static void eth_set_desc(struct _tx_ring *tx_ring, int index, int index_last,
739                          void *data, int len, u32 config0, u32 pmap)
740 {
741         struct tx_desc *tx_desc = &(tx_ring)->desc[index];
742         unsigned int phys;
743
744         phys = dma_map_single(NULL, data, len, DMA_TO_DEVICE);
745         tx_desc->sdp = phys;
746         tx_desc->pmap = pmap;
747         tx_ring->phys_tab[index] = phys;
748
749         config0 |= len;
750         if (index == TX_DESCS - 1)
751                 config0 |= END_OF_RING;
752         if (index == index_last)
753                 config0 |= LAST_SEGMENT;
754
755         wmb();
756         tx_desc->config0 = config0;
757 }
758
759 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
760 {
761         struct port *port = netdev_priv(dev);
762         struct sw *sw = port->sw;
763         struct _tx_ring *tx_ring = &sw->tx_ring;
764         struct sk_buff *skb1;
765         char pmap = (1 << port->id);
766         int nr_frags = skb_shinfo(skb)->nr_frags;
767         int nr_desc = nr_frags;
768         int index0, index, index_last;
769         int len0;
770         unsigned int i;
771         u32 config0;
772
773         if (pmap == 8)
774                 pmap = (1 << 4);
775
776         skb_walk_frags(skb, skb1)
777                 nr_desc++;
778
779         eth_schedule_poll(sw);
780         spin_lock_bh(&tx_lock);
781         if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
782                 spin_unlock_bh(&tx_lock);
783                 return NETDEV_TX_BUSY;
784         }
785
786         index = index0 = tx_ring->cur_index;
787         index_last = (index0 + nr_desc) % TX_DESCS;
788         tx_ring->cur_index = (index_last + 1) % TX_DESCS;
789
790         spin_unlock_bh(&tx_lock);
791
792         config0 = FORCE_ROUTE;
793         if (skb->ip_summed == CHECKSUM_PARTIAL)
794                 config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
795
796         len0 = skb->len;
797
798         /* fragments */
799         for (i = 0; i < nr_frags; i++) {
800                 struct skb_frag_struct *frag;
801                 void *addr;
802
803                 index = (index + 1) % TX_DESCS;
804
805                 frag = &skb_shinfo(skb)->frags[i];
806                 addr = page_address(skb_frag_page(frag)) + frag->page_offset;
807
808                 eth_set_desc(tx_ring, index, index_last, addr, frag->size,
809                              config0, pmap);
810         }
811
812         if (nr_frags)
813                 len0 = skb->len - skb->data_len;
814
815         skb_walk_frags(skb, skb1) {
816                 index = (index + 1) % TX_DESCS;
817                 len0 -= skb1->len;
818
819                 eth_set_desc(tx_ring, index, index_last, skb1->data, skb1->len,
820                              config0, pmap);
821         }
822
823         tx_ring->buff_tab[index0] = skb;
824         eth_set_desc(tx_ring, index0, index_last, skb->data, len0,
825                      config0 | FIRST_SEGMENT, pmap);
826
827         wmb();
828
829         spin_lock(&tx_lock);
830         tx_ring->num_used += nr_desc + 1;
831         spin_unlock(&tx_lock);
832
833         dev->stats.tx_packets++;
834         dev->stats.tx_bytes += skb->len;
835
836         enable_tx_dma(sw);
837
838         return NETDEV_TX_OK;
839 }
840
841 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
842 {
843         struct port *port = netdev_priv(dev);
844
845         if (!netif_running(dev))
846                 return -EINVAL;
847         return phy_mii_ioctl(port->phydev, req, cmd);
848 }
849
850 /* ethtool support */
851
852 static void cns3xxx_get_drvinfo(struct net_device *dev,
853                                struct ethtool_drvinfo *info)
854 {
855         strcpy(info->driver, DRV_NAME);
856         strcpy(info->bus_info, "internal");
857 }
858
859 static int cns3xxx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
860 {
861         struct port *port = netdev_priv(dev);
862         return phy_ethtool_gset(port->phydev, cmd);
863 }
864
865 static int cns3xxx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
866 {
867         struct port *port = netdev_priv(dev);
868         return phy_ethtool_sset(port->phydev, cmd);
869 }
870
871 static int cns3xxx_nway_reset(struct net_device *dev)
872 {
873         struct port *port = netdev_priv(dev);
874         return phy_start_aneg(port->phydev);
875 }
876
877 static struct ethtool_ops cns3xxx_ethtool_ops = {
878         .get_drvinfo = cns3xxx_get_drvinfo,
879         .get_settings = cns3xxx_get_settings,
880         .set_settings = cns3xxx_set_settings,
881         .nway_reset = cns3xxx_nway_reset,
882         .get_link = ethtool_op_get_link,
883 };
884
885
886 static int init_rings(struct sw *sw)
887 {
888         int i;
889         struct _rx_ring *rx_ring = &sw->rx_ring;
890         struct _tx_ring *tx_ring = &sw->tx_ring;
891
892         __raw_writel(0, &sw->regs->fs_dma_ctrl0);
893         __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
894         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
895         __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
896
897         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
898
899         if (!(rx_dma_pool = dma_pool_create(DRV_NAME, NULL,
900                                             RX_POOL_ALLOC_SIZE, 32, 0)))
901                 return -ENOMEM;
902
903         if (!(rx_ring->desc = dma_pool_alloc(rx_dma_pool, GFP_KERNEL,
904                                               &rx_ring->phys_addr)))
905                 return -ENOMEM;
906         memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
907
908         /* Setup RX buffers */
909         for (i = 0; i < RX_DESCS; i++) {
910                 struct rx_desc *desc = &(rx_ring)->desc[i];
911                 void *buf;
912
913                 buf = kzalloc(RX_SEGMENT_ALLOC_SIZE, GFP_KERNEL);
914                 if (!buf)
915                         return -ENOMEM;
916
917                 desc->sdl = RX_SEGMENT_MRU;
918                 if (i == (RX_DESCS - 1))
919                         desc->eor = 1;
920                 desc->fsd = 1;
921                 desc->lsd = 1;
922
923                 desc->sdp = dma_map_single(NULL, buf + SKB_HEAD_ALIGN,
924                                            RX_SEGMENT_MRU, DMA_FROM_DEVICE);
925                 if (dma_mapping_error(NULL, desc->sdp))
926                         return -EIO;
927
928                 rx_ring->buff_tab[i] = buf;
929                 rx_ring->phys_tab[i] = desc->sdp;
930                 desc->cown = 0;
931         }
932         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
933         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
934
935         if (!(tx_dma_pool = dma_pool_create(DRV_NAME, NULL,
936                                             TX_POOL_ALLOC_SIZE, 32, 0)))
937                 return -ENOMEM;
938
939         if (!(tx_ring->desc = dma_pool_alloc(tx_dma_pool, GFP_KERNEL,
940                                               &tx_ring->phys_addr)))
941                 return -ENOMEM;
942         memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
943
944         /* Setup TX buffers */
945         for (i = 0; i < TX_DESCS; i++) {
946                 struct tx_desc *desc = &(tx_ring)->desc[i];
947                 tx_ring->buff_tab[i] = 0;
948
949                 if (i == (TX_DESCS - 1))
950                         desc->eor = 1;
951                 desc->cown = 1;
952         }
953         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
954         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
955
956         return 0;
957 }
958
959 static void destroy_rings(struct sw *sw)
960 {
961         int i;
962         if (sw->rx_ring.desc) {
963                 for (i = 0; i < RX_DESCS; i++) {
964                         struct _rx_ring *rx_ring = &sw->rx_ring;
965                         struct rx_desc *desc = &(rx_ring)->desc[i];
966                         struct sk_buff *skb = sw->rx_ring.buff_tab[i];
967
968                         if (!skb)
969                                 continue;
970
971                         dma_unmap_single(NULL, desc->sdp, RX_SEGMENT_MRU,
972                                          DMA_FROM_DEVICE);
973                         dev_kfree_skb(skb);
974                 }
975                 dma_pool_free(rx_dma_pool, sw->rx_ring.desc, sw->rx_ring.phys_addr);
976                 dma_pool_destroy(rx_dma_pool);
977                 rx_dma_pool = 0;
978                 sw->rx_ring.desc = 0;
979         }
980         if (sw->tx_ring.desc) {
981                 for (i = 0; i < TX_DESCS; i++) {
982                         struct _tx_ring *tx_ring = &sw->tx_ring;
983                         struct tx_desc *desc = &(tx_ring)->desc[i];
984                         struct sk_buff *skb = sw->tx_ring.buff_tab[i];
985                         if (skb) {
986                                 dma_unmap_single(NULL, desc->sdp,
987                                         skb->len, DMA_TO_DEVICE);
988                                 dev_kfree_skb(skb);
989                         }
990                 }
991                 dma_pool_free(tx_dma_pool, sw->tx_ring.desc, sw->tx_ring.phys_addr);
992                 dma_pool_destroy(tx_dma_pool);
993                 tx_dma_pool = 0;
994                 sw->tx_ring.desc = 0;
995         }
996 }
997
998 static int eth_open(struct net_device *dev)
999 {
1000         struct port *port = netdev_priv(dev);
1001         struct sw *sw = port->sw;
1002         u32 temp;
1003
1004         port->speed = 0;        /* force "link up" message */
1005         phy_start(port->phydev);
1006
1007         netif_start_queue(dev);
1008
1009         if (!ports_open) {
1010                 request_irq(sw->rx_irq, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
1011                 request_irq(sw->stat_irq, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
1012                 napi_enable(&sw->napi);
1013                 netif_start_queue(napi_dev);
1014
1015                 __raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
1016                                MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
1017
1018                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1019                 temp &= ~(PORT_DISABLE);
1020                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1021
1022                 temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
1023                 temp &= ~(TS_SUSPEND | FS_SUSPEND);
1024                 __raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
1025
1026                 enable_rx_dma(sw);
1027         }
1028         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1029         temp &= ~(PORT_DISABLE);
1030         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1031
1032         ports_open++;
1033         netif_carrier_on(dev);
1034
1035         return 0;
1036 }
1037
1038 static int eth_close(struct net_device *dev)
1039 {
1040         struct port *port = netdev_priv(dev);
1041         struct sw *sw = port->sw;
1042         u32 temp;
1043
1044         ports_open--;
1045
1046         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1047         temp |= (PORT_DISABLE);
1048         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1049
1050         netif_stop_queue(dev);
1051
1052         phy_stop(port->phydev);
1053
1054         if (!ports_open) {
1055                 disable_irq(sw->rx_irq);
1056                 free_irq(sw->rx_irq, napi_dev);
1057                 disable_irq(sw->stat_irq);
1058                 free_irq(sw->stat_irq, napi_dev);
1059                 napi_disable(&sw->napi);
1060                 netif_stop_queue(napi_dev);
1061                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1062                 temp |= (PORT_DISABLE);
1063                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1064
1065                 __raw_writel(TS_SUSPEND | FS_SUSPEND,
1066                              &sw->regs->dma_auto_poll_cfg);
1067         }
1068
1069         netif_carrier_off(dev);
1070         return 0;
1071 }
1072
1073 static void eth_rx_mode(struct net_device *dev)
1074 {
1075         struct port *port = netdev_priv(dev);
1076         struct sw *sw = port->sw;
1077         u32 temp;
1078
1079         temp = __raw_readl(&sw->regs->mac_glob_cfg);
1080
1081         if (dev->flags & IFF_PROMISC) {
1082                 if (port->id == 3)
1083                         temp |= ((1 << 2) << PROMISC_OFFSET);
1084                 else
1085                         temp |= ((1 << port->id) << PROMISC_OFFSET);
1086         } else {
1087                 if (port->id == 3)
1088                         temp &= ~((1 << 2) << PROMISC_OFFSET);
1089                 else
1090                         temp &= ~((1 << port->id) << PROMISC_OFFSET);
1091         }
1092         __raw_writel(temp, &sw->regs->mac_glob_cfg);
1093 }
1094
1095 static int eth_set_mac(struct net_device *netdev, void *p)
1096 {
1097         struct port *port = netdev_priv(netdev);
1098         struct sw *sw = port->sw;
1099         struct sockaddr *addr = p;
1100         u32 cycles = 0;
1101
1102         if (!is_valid_ether_addr(addr->sa_data))
1103                 return -EADDRNOTAVAIL;
1104
1105         /* Invalidate old ARL Entry */
1106         if (port->id == 3)
1107                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1108         else
1109                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1110         __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
1111                         (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
1112                         &sw->regs->arl_ctrl[1]);
1113
1114         __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
1115                         (1 << 1)),
1116                         &sw->regs->arl_ctrl[2]);
1117         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1118
1119         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1120                         && cycles < 5000) {
1121                 udelay(1);
1122                 cycles++;
1123         }
1124
1125         cycles = 0;
1126         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1127
1128         if (port->id == 3)
1129                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1130         else
1131                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1132         __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
1133                         (addr->sa_data[2] << 8) | (addr->sa_data[3])),
1134                         &sw->regs->arl_ctrl[1]);
1135
1136         __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
1137                         (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
1138         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1139
1140         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1141                 && cycles < 5000) {
1142                 udelay(1);
1143                 cycles++;
1144         }
1145         return 0;
1146 }
1147
1148 static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
1149 {
1150         if (new_mtu > MAX_MTU)
1151                 return -EINVAL;
1152
1153         dev->mtu = new_mtu;
1154         return 0;
1155 }
1156
1157 static const struct net_device_ops cns3xxx_netdev_ops = {
1158         .ndo_open = eth_open,
1159         .ndo_stop = eth_close,
1160         .ndo_start_xmit = eth_xmit,
1161         .ndo_set_rx_mode = eth_rx_mode,
1162         .ndo_do_ioctl = eth_ioctl,
1163         .ndo_change_mtu = cns3xxx_change_mtu,
1164         .ndo_set_mac_address = eth_set_mac,
1165         .ndo_validate_addr = eth_validate_addr,
1166 };
1167
1168 static int eth_init_one(struct platform_device *pdev)
1169 {
1170         int i;
1171         struct port *port;
1172         struct sw *sw;
1173         struct net_device *dev;
1174         struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
1175         char phy_id[MII_BUS_ID_SIZE + 3];
1176         int err;
1177         u32 temp;
1178         struct resource *res;
1179         void __iomem *regs;
1180
1181         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1182         regs = devm_ioremap_resource(&pdev->dev, res);
1183         if (IS_ERR(regs))
1184                 return PTR_ERR(regs);
1185
1186         err = cns3xxx_mdio_register(regs);
1187         if (err)
1188                 return err;
1189
1190         if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) {
1191                 err = -ENOMEM;
1192                 goto err_remove_mdio;
1193         }
1194
1195         strcpy(napi_dev->name, "switch%d");
1196         napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1197
1198         SET_NETDEV_DEV(napi_dev, &pdev->dev);
1199         sw = netdev_priv(napi_dev);
1200         memset(sw, 0, sizeof(struct sw));
1201         sw->regs = regs;
1202
1203         sw->rx_irq = platform_get_irq_byname(pdev, "eth_rx");
1204         sw->stat_irq = platform_get_irq_byname(pdev, "eth_stat");
1205
1206         temp = __raw_readl(&sw->regs->phy_auto_addr);
1207         temp |= (3 << 30); /* maximum frame length: 9600 bytes */
1208         __raw_writel(temp, &sw->regs->phy_auto_addr);
1209
1210         for (i = 0; i < 4; i++) {
1211                 temp = __raw_readl(&sw->regs->mac_cfg[i]);
1212                 temp |= (PORT_DISABLE);
1213                 __raw_writel(temp, &sw->regs->mac_cfg[i]);
1214         }
1215
1216         temp = PORT_DISABLE;
1217         __raw_writel(temp, &sw->regs->mac_cfg[2]);
1218
1219         temp = __raw_readl(&sw->regs->vlan_cfg);
1220         temp |= NIC_MODE | VLAN_UNAWARE;
1221         __raw_writel(temp, &sw->regs->vlan_cfg);
1222
1223         __raw_writel(UNKNOWN_VLAN_TO_CPU |
1224                      CRC_STRIPPING, &sw->regs->mac_glob_cfg);
1225
1226         if ((err = init_rings(sw)) != 0) {
1227                 destroy_rings(sw);
1228                 err = -ENOMEM;
1229                 goto err_free;
1230         }
1231         platform_set_drvdata(pdev, napi_dev);
1232
1233         netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
1234
1235         for (i = 0; i < 3; i++) {
1236                 if (!(plat->ports & (1 << i))) {
1237                         continue;
1238                 }
1239
1240                 if (!(dev = alloc_etherdev(sizeof(struct port)))) {
1241                         goto free_ports;
1242                 }
1243
1244                 port = netdev_priv(dev);
1245                 port->netdev = dev;
1246                 if (i == 2)
1247                         port->id = 3;
1248                 else
1249                         port->id = i;
1250                 port->sw = sw;
1251
1252                 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1253                 temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
1254                 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1255
1256                 dev->netdev_ops = &cns3xxx_netdev_ops;
1257                 dev->ethtool_ops = &cns3xxx_ethtool_ops;
1258                 dev->tx_queue_len = 1000;
1259                 dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1260
1261                 switch_port_tab[port->id] = port;
1262                 memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
1263
1264                 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
1265                 port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link,
1266                         PHY_INTERFACE_MODE_RGMII);
1267                 if ((err = IS_ERR(port->phydev))) {
1268                         switch_port_tab[port->id] = 0;
1269                         free_netdev(dev);
1270                         goto free_ports;
1271                 }
1272
1273                 port->phydev->irq = PHY_IGNORE_INTERRUPT;
1274
1275                 if ((err = register_netdev(dev))) {
1276                         phy_disconnect(port->phydev);
1277                         switch_port_tab[port->id] = 0;
1278                         free_netdev(dev);
1279                         goto free_ports;
1280                 }
1281
1282                 printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
1283                 netif_carrier_off(dev);
1284                 dev = 0;
1285         }
1286
1287         return 0;
1288
1289 free_ports:
1290         err = -ENOMEM;
1291         for (--i; i >= 0; i--) {
1292                 if (switch_port_tab[i]) {
1293                         port = switch_port_tab[i];
1294                         dev = port->netdev;
1295                         unregister_netdev(dev);
1296                         phy_disconnect(port->phydev);
1297                         switch_port_tab[i] = 0;
1298                         free_netdev(dev);
1299                 }
1300         }
1301 err_free:
1302         free_netdev(napi_dev);
1303 err_remove_mdio:
1304         cns3xxx_mdio_remove();
1305         return err;
1306 }
1307
1308 static int eth_remove_one(struct platform_device *pdev)
1309 {
1310         struct net_device *dev = platform_get_drvdata(pdev);
1311         struct sw *sw = netdev_priv(dev);
1312         int i;
1313         destroy_rings(sw);
1314
1315         for (i = 3; i >= 0; i--) {
1316                 if (switch_port_tab[i]) {
1317                         struct port *port = switch_port_tab[i];
1318                         struct net_device *dev = port->netdev;
1319                         unregister_netdev(dev);
1320                         phy_disconnect(port->phydev);
1321                         switch_port_tab[i] = 0;
1322                         free_netdev(dev);
1323                 }
1324         }
1325
1326         free_netdev(napi_dev);
1327         cns3xxx_mdio_remove();
1328
1329         return 0;
1330 }
1331
1332 static struct platform_driver cns3xxx_eth_driver = {
1333         .driver.name    = DRV_NAME,
1334         .probe          = eth_init_one,
1335         .remove         = eth_remove_one,
1336 };
1337
1338 static int __init eth_init_module(void)
1339 {
1340         return platform_driver_register(&cns3xxx_eth_driver);
1341 }
1342
1343 static void __exit eth_cleanup_module(void)
1344 {
1345         platform_driver_unregister(&cns3xxx_eth_driver);
1346 }
1347
1348 module_init(eth_init_module);
1349 module_exit(eth_cleanup_module);
1350
1351 MODULE_AUTHOR("Chris Lang");
1352 MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
1353 MODULE_LICENSE("GPL v2");
1354 MODULE_ALIAS("platform:cns3xxx_eth");