ar7-2.6: make cpmac robust against hardware quirks when the tx or rx dma ring runs...
[librecmc/librecmc.git] / target / linux / ar7-2.6 / files / drivers / net / cpmac.c
1 /*
2  * $Id$
3  * 
4  * Copyright (C) 2006, 2007 OpenWrt.org
5  * 
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * 
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  * 
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/moduleparam.h>
24
25 #include <linux/sched.h>
26 #include <linux/kernel.h> /* printk() */
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/types.h>
30 #include <linux/delay.h>
31 #include <linux/version.h>
32
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/mii.h>
38 #include <linux/phy.h>
39 #include <linux/platform_device.h>
40 #include <asm/ar7/ar7.h>
41 #include <asm/gpio.h>
42
43 MODULE_AUTHOR("Eugene Konev");
44 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
45 MODULE_LICENSE("GPL");
46
47 /* Register definitions */
48 struct cpmac_control_regs {
49         volatile u32 revision;
50         volatile u32 control;
51         volatile u32 teardown;
52         volatile u32 unused;
53 };
54
55 struct cpmac_int_regs {
56         volatile u32 stat_raw;
57         volatile u32 stat_masked;
58         volatile u32 enable;
59         volatile u32 clear;
60 };
61
62 struct cpmac_stats {
63         volatile u32 good;
64         volatile u32 bcast;
65         volatile u32 mcast;
66         volatile u32 pause;
67         volatile u32 crc_error;
68         volatile u32 align_error;
69         volatile u32 oversized;
70         volatile u32 jabber;
71         volatile u32 undersized;
72         volatile u32 fragment;
73         volatile u32 filtered;
74         volatile u32 qos_filtered;
75         volatile u32 octets;
76 };
77
78 struct cpmac_regs {
79         struct cpmac_control_regs tx_ctrl;
80         struct cpmac_control_regs rx_ctrl;
81         volatile u32 unused1[56];
82         volatile u32 mbp;
83 /* MBP bits */
84 #define MBP_RXPASSCRC         0x40000000
85 #define MBP_RXQOS             0x20000000
86 #define MBP_RXNOCHAIN         0x10000000
87 #define MBP_RXCMF             0x01000000
88 #define MBP_RXSHORT           0x00800000
89 #define MBP_RXCEF             0x00400000
90 #define MBP_RXPROMISC         0x00200000
91 #define MBP_PROMISCCHAN(chan) (((chan) & 0x7) << 16)
92 #define MBP_RXBCAST           0x00002000
93 #define MBP_BCASTCHAN(chan)   (((chan) & 0x7) << 8)
94 #define MBP_RXMCAST           0x00000020
95 #define MBP_MCASTCHAN(chan)   ((chan) & 0x7)
96         volatile u32 unicast_enable;
97         volatile u32 unicast_clear;
98         volatile u32 max_len;
99         volatile u32 buffer_offset;
100         volatile u32 filter_flow_threshold;
101         volatile u32 unused2[2];
102         volatile u32 flow_thre[8];
103         volatile u32 free_buffer[8];
104         volatile u32 mac_control;
105 #define MAC_TXPTYPE  0x00000200
106 #define MAC_TXPACE   0x00000040
107 #define MAC_MII      0x00000020
108 #define MAC_TXFLOW   0x00000010
109 #define MAC_RXFLOW   0x00000008
110 #define MAC_MTEST    0x00000004
111 #define MAC_LOOPBACK 0x00000002
112 #define MAC_FDX      0x00000001
113         volatile u32 mac_status;
114 #define MACST_QOS    0x4
115 #define MACST_RXFLOW 0x2
116 #define MACST_TXFLOW 0x1
117         volatile u32 emc_control;
118         volatile u32 unused3;
119         struct cpmac_int_regs tx_int;
120         volatile u32 mac_int_vector;
121 /* Int Status bits */
122 #define INTST_STATUS 0x80000
123 #define INTST_HOST   0x40000
124 #define INTST_RX     0x20000
125 #define INTST_TX     0x10000
126         volatile u32 mac_eoi_vector;
127         volatile u32 unused4[2];
128         struct cpmac_int_regs rx_int;
129         volatile u32 mac_int_stat_raw;
130         volatile u32 mac_int_stat_masked;
131         volatile u32 mac_int_enable;
132         volatile u32 mac_int_clear;
133         volatile u32 mac_addr_low[8];
134         volatile u32 mac_addr_mid;
135         volatile u32 mac_addr_high;
136         volatile u32 mac_hash_low;
137         volatile u32 mac_hash_high;
138         volatile u32 boff_test;
139         volatile u32 pac_test;
140         volatile u32 rx_pause;
141         volatile u32 tx_pause;
142         volatile u32 unused5[2];
143         struct cpmac_stats rx_stats;
144         struct cpmac_stats tx_stats;
145         volatile u32 unused6[232];
146         volatile u32 tx_ptr[8];
147         volatile u32 rx_ptr[8];
148         volatile u32 tx_ack[8];
149         volatile u32 rx_ack[8];
150         
151 };
152
153 struct cpmac_mdio_regs {
154         volatile u32 version;
155         volatile u32 control;
156 #define MDIOC_IDLE        0x80000000
157 #define MDIOC_ENABLE      0x40000000
158 #define MDIOC_PREAMBLE    0x00100000
159 #define MDIOC_FAULT       0x00080000
160 #define MDIOC_FAULTDETECT 0x00040000
161 #define MDIOC_INTTEST     0x00020000
162 #define MDIOC_CLKDIV(div) ((div) & 0xff)
163         volatile u32 alive;
164         volatile u32 link;
165         struct cpmac_int_regs link_int;
166         struct cpmac_int_regs user_int;
167         u32 unused[20];
168         volatile u32 access;
169 #define MDIO_BUSY       0x80000000
170 #define MDIO_WRITE      0x40000000
171 #define MDIO_REG(reg)   (((reg) & 0x1f) << 21)
172 #define MDIO_PHY(phy)   (((phy) & 0x1f) << 16)
173 #define MDIO_DATA(data) ((data) & 0xffff)
174         volatile u32 physel;
175 };
176
177 /* Descriptor */
178 struct cpmac_desc {
179         u32 hw_next;
180         u32 hw_data;
181         u16 buflen;
182         u16 bufflags;
183         u16 datalen;
184         u16 dataflags;
185 /* Flags bits */
186 #define CPMAC_SOP 0x8000
187 #define CPMAC_EOP 0x4000
188 #define CPMAC_OWN 0x2000
189 #define CPMAC_EOQ 0x1000
190         u32 jiffies;
191         struct sk_buff *skb;
192         struct cpmac_desc *next;
193 };
194
195 struct cpmac_priv {
196         struct net_device_stats stats;
197         spinlock_t lock;
198         struct sk_buff *skb_pool;
199         int free_skbs;
200         struct cpmac_desc *rx_head, *rx_tail;
201         int tx_head, tx_tail;
202         struct cpmac_desc *desc_ring;
203         struct cpmac_regs *regs;
204         struct mii_bus *mii_bus;
205         struct phy_device *phy;
206         char phy_name[BUS_ID_SIZE];
207         struct plat_cpmac_data *config;
208         int oldlink, oldspeed, oldduplex;
209         u32 msg_enable;
210         struct net_device *dev;
211         struct work_struct alloc_work;
212         struct work_struct reset_work;
213 };
214
215 static irqreturn_t cpmac_irq(int, void *);
216 static int cpmac_stop(struct net_device *dev);
217 static int cpmac_open(struct net_device *dev);
218
219 #define CPMAC_LOW_THRESH 8
220 #define CPMAC_ALLOC_SIZE 32
221 #define CPMAC_SKB_SIZE 1536
222 #define CPMAC_TX_RING_SIZE 8
223 #define CPMAC_RX_RING_SIZE 16
224
225 #ifdef CPMAC_DEBUG
226 static void cpmac_dump_regs(u32 *base, int count)
227 {
228         int i;
229         for (i = 0; i < (count + 3) / 4; i++) {
230                 if (i % 4 == 0) printk("\nCPMAC[0x%04x]:", i * 4);
231                 printk(" 0x%08x", *(base + i));
232         }
233         printk("\n");
234 }
235 #endif
236
237 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int regnum)
238 {
239         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
240         volatile u32 val;
241
242         while ((val = regs->access) & MDIO_BUSY);
243         regs->access = MDIO_BUSY | MDIO_REG(regnum & 0x1f) |
244                 MDIO_PHY(phy_id & 0x1f);
245         while ((val = regs->access) & MDIO_BUSY);
246
247         return val & 0xffff;
248 }
249
250 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, int regnum, u16 val)
251 {
252         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
253         volatile u32 tmp;
254
255         while ((tmp = regs->access) & MDIO_BUSY);
256         regs->access = MDIO_BUSY | MDIO_WRITE | 
257                 MDIO_REG(regnum & 0x1f) | MDIO_PHY(phy_id & 0x1f) |
258                 val;
259
260         return 0;
261 }
262
263 static int cpmac_mdio_reset(struct mii_bus *bus)
264 {
265         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
266
267         ar7_device_reset(AR7_RESET_BIT_MDIO);
268         regs->control = MDIOC_ENABLE |
269                 MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1);
270
271         return 0;
272 }
273
274 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
275
276 static struct mii_bus cpmac_mii = {
277         .name = "cpmac-mii",
278         .read = cpmac_mdio_read,
279         .write = cpmac_mdio_write,
280         .reset = cpmac_mdio_reset,
281         .irq = mii_irqs,
282 };
283
284 static int cpmac_config(struct net_device *dev, struct ifmap *map)
285 {
286         if (dev->flags & IFF_UP)
287                 return -EBUSY;
288
289         /* Don't allow changing the I/O address */
290         if (map->base_addr != dev->base_addr)
291                 return -EOPNOTSUPP;
292
293         /* ignore other fields */
294         return 0;
295 }
296
297 static int cpmac_set_mac_address(struct net_device *dev, void *addr)
298 {
299         struct sockaddr *sa = addr;
300
301         if (dev->flags & IFF_UP)
302                 return -EBUSY;
303
304         memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
305
306         return 0;
307 }
308
309 static void cpmac_set_multicast_list(struct net_device *dev)
310 {
311         struct dev_mc_list *iter;
312         int i;
313         int hash, tmp;
314         int hashlo = 0, hashhi = 0;
315         struct cpmac_priv *priv = netdev_priv(dev);
316
317         if(dev->flags & IFF_PROMISC) {
318                 priv->regs->mbp &= ~MBP_PROMISCCHAN(0); /* promisc channel 0 */
319                 priv->regs->mbp |= MBP_RXPROMISC;
320         } else {
321                 priv->regs->mbp &= ~MBP_RXPROMISC;
322                 if(dev->flags & IFF_ALLMULTI) {
323                         /* enable all multicast mode */
324                         priv->regs->mac_hash_low = 0xffffffff;
325                         priv->regs->mac_hash_high = 0xffffffff;
326                 } else {
327                         for(i = 0, iter = dev->mc_list; i < dev->mc_count;
328                             i++, iter = iter->next) {
329                                 hash = 0;
330                                 tmp = iter->dmi_addr[0];
331                                 hash  ^= (tmp >> 2) ^ (tmp << 4);
332                                 tmp = iter->dmi_addr[1];
333                                 hash  ^= (tmp >> 4) ^ (tmp << 2);
334                                 tmp = iter->dmi_addr[2];
335                                 hash  ^= (tmp >> 6) ^ tmp;
336                                 tmp = iter->dmi_addr[4];
337                                 hash  ^= (tmp >> 2) ^ (tmp << 4);
338                                 tmp = iter->dmi_addr[5];
339                                 hash  ^= (tmp >> 4) ^ (tmp << 2);
340                                 tmp = iter->dmi_addr[6];
341                                 hash  ^= (tmp >> 6) ^ tmp;
342                                 hash &= 0x3f;
343                                 if(hash < 32) {
344                                         hashlo |= 1<<hash;
345                                 } else {
346                                         hashhi |= 1<<(hash - 32);
347                                 }
348                         }
349
350                         priv->regs->mac_hash_low = hashlo;
351                         priv->regs->mac_hash_high = hashhi;
352                 }
353         }
354 }
355
356 static struct sk_buff *cpmac_get_skb(struct net_device *dev) 
357 {
358         struct sk_buff *skb;
359         struct cpmac_priv *priv = netdev_priv(dev);
360
361         skb = priv->skb_pool;
362         if (likely(skb))
363                 priv->skb_pool = skb->next;
364
365         if (likely(priv->free_skbs))
366                 priv->free_skbs--;
367
368         if (priv->free_skbs < CPMAC_LOW_THRESH)
369                 schedule_work(&priv->alloc_work);
370
371         return skb;
372 }
373
374 static void cpmac_rx(struct net_device *dev, int channel)
375 {
376         char *data;
377         struct sk_buff *skb;
378         struct cpmac_desc *desc;
379         struct cpmac_desc *start;
380         struct cpmac_priv *priv = netdev_priv(dev);
381
382         spin_lock(&priv->lock);
383         if (unlikely(!priv->rx_head))
384                 return;
385
386
387         desc = priv->rx_tail->next;
388         dma_cache_inv((u32)desc, 16);
389         
390         start = priv->rx_tail;
391         while((desc->dataflags & CPMAC_OWN) == 0) {
392                 priv->regs->rx_ack[0] = virt_to_phys(desc);
393                 if (unlikely(!desc->datalen)) {
394                         if (printk_ratelimit())
395                                 printk(KERN_NOTICE "%s: rx: spurious interrupt\n",
396                                        dev->name);
397                         priv->stats.rx_errors++;
398                         goto out;
399                 }
400
401                 skb = cpmac_get_skb(dev);
402                 if (likely(skb)) {
403                         data = (char *)phys_to_virt(desc->hw_data);
404                         dma_cache_inv((u32)data, desc->datalen);
405                         skb_put(desc->skb, desc->datalen);
406                         desc->skb->protocol = eth_type_trans(desc->skb, dev);
407                         desc->skb->ip_summed = CHECKSUM_NONE;
408                         priv->stats.rx_packets++;
409                         priv->stats.rx_bytes += desc->datalen;
410                         netif_rx(desc->skb);
411                         desc->skb = skb;
412                 } else {
413                         if (printk_ratelimit())
414                                 printk(KERN_NOTICE "%s: rx: no free skbs, dropping packet\n",
415                                        dev->name);
416                         priv->regs->rx_ptr[0] = virt_to_phys(desc);
417                         priv->stats.rx_dropped++;
418                 }
419                 desc->hw_data = virt_to_phys(desc->skb->data);
420                 desc->buflen = CPMAC_SKB_SIZE;
421                 desc->dataflags = CPMAC_OWN;
422                 desc->hw_next = 0;
423                 dma_cache_wback((u32)desc, 16);
424
425                 priv->rx_tail->hw_next = virt_to_phys(desc);
426                 priv->rx_tail->dataflags = CPMAC_OWN;
427                 dma_cache_wback((u32)priv->rx_tail, 16);
428
429                 priv->rx_tail = desc;
430                 desc = desc->next;
431                 dma_cache_inv((u32)desc, 16);
432                 if (start == desc) {
433                         printk("Somebody set up us the bomb!!\n");
434                         break;
435                 }
436         }
437 out:
438         priv->rx_head = desc;
439         priv->regs->rx_ptr[0] = virt_to_phys(desc);
440         spin_unlock(&priv->lock);
441 }
442
443 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
444 static void
445 cpmac_alloc_skbs(struct work_struct *work)
446 {
447         struct cpmac_priv *priv = container_of(work, struct cpmac_priv,
448                                                alloc_work);
449 #else
450 static void
451 cpmac_alloc_skbs(void *data)
452 {
453         struct net_device *dev = (struct net_device*)data;
454         struct cpmac_priv *priv = netdev_priv(dev);
455 #endif
456         unsigned long flags;
457         int i, num_skbs = 0;
458         struct sk_buff *skb, *skbs = NULL;
459
460         for (i = 0; i < CPMAC_ALLOC_SIZE; i++) {
461                 skb = alloc_skb(CPMAC_SKB_SIZE + 2, GFP_KERNEL);
462                 if (!skb)
463                         break;
464                 skb->next = skbs;
465                 skb_reserve(skb, 2);
466                 skb->dev = priv->dev;
467                 num_skbs++;
468                 skbs = skb;
469         }
470
471         if (skbs) {
472                 spin_lock_irqsave(&priv->lock, flags);
473                 for (skb = priv->skb_pool; skb && skb->next; skb = skb->next);
474                 if (!skb) {
475                         priv->skb_pool = skbs;
476                 } else {
477                         skb->next = skbs;
478                 }
479                 priv->free_skbs += num_skbs;
480                 spin_unlock_irqrestore(&priv->lock, flags);
481 #ifdef CPMAC_DEBUG
482                 printk("%s: allocated %d skbs\n", priv->dev->name, num_skbs);
483 #endif
484         }
485 }
486
487 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
488 {
489         unsigned long flags;
490         int len, chan;
491         struct cpmac_desc *desc;
492         struct cpmac_priv *priv = netdev_priv(dev);
493
494         len = skb->len;
495         if (unlikely(len < ETH_ZLEN)) {
496                 if (unlikely(skb_padto(skb, ETH_ZLEN))) {
497                         if (printk_ratelimit())
498                                 printk(KERN_NOTICE "%s: padding failed, dropping\n",
499                                        dev->name); 
500                         spin_lock_irqsave(&priv->lock, flags);
501                         priv->stats.tx_dropped++;
502                         spin_unlock_irqrestore(&priv->lock, flags);
503                         return -ENOMEM;
504                 }
505                 len = ETH_ZLEN;
506         }
507         spin_lock_irqsave(&priv->lock, flags);
508         chan = priv->tx_tail++;
509         priv->tx_tail %= 8;
510         if (priv->tx_tail == priv->tx_head)
511                 netif_stop_queue(dev);
512
513         desc = &priv->desc_ring[chan];
514         dma_cache_inv((u32)desc, 16);
515         if (desc->dataflags & CPMAC_OWN) {
516                 printk(KERN_NOTICE "%s: tx dma ring full, dropping\n", dev->name);
517                 spin_lock_irqsave(&priv->lock, flags);
518                 priv->stats.tx_dropped++;
519                 spin_unlock_irqrestore(&priv->lock, flags);
520                 return -ENOMEM;
521         }
522
523         dev->trans_start = jiffies;
524         desc->jiffies = dev->trans_start;
525         spin_unlock_irqrestore(&priv->lock, flags);
526
527         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
528         desc->skb = skb;
529         desc->hw_data = virt_to_phys(skb->data);
530         dma_cache_wback((u32)skb->data, len);
531         desc->buflen = len;
532         desc->datalen = len;
533         desc->hw_next = 0;
534         dma_cache_wback((u32)desc, 16);
535         priv->regs->tx_ptr[chan] = virt_to_phys(desc);
536         return 0;
537 }
538
539 static void cpmac_end_xmit(struct net_device *dev, int channel)
540 {
541         struct cpmac_desc *desc;
542         struct cpmac_priv *priv = netdev_priv(dev);
543
544         spin_lock(&priv->lock);
545         desc = &priv->desc_ring[channel];
546         priv->regs->tx_ack[channel] = virt_to_phys(desc);
547         if (likely(desc->skb)) {
548                 priv->stats.tx_packets++;
549                 priv->stats.tx_bytes += desc->skb->len;
550                 dev_kfree_skb_irq(desc->skb);
551                 if (priv->tx_head == channel) {
552                         while ((desc->dataflags & CPMAC_OWN) == 0) {
553                                 priv->tx_head++;
554                                 priv->tx_head %= 8;
555                                 if (priv->tx_head == priv->tx_tail)
556                                         break;
557                                 desc = &priv->desc_ring[priv->tx_head];
558                         }
559                 }
560                 if (netif_queue_stopped(dev))
561                         netif_wake_queue(dev);
562         } else {
563                 if (printk_ratelimit())
564                         printk(KERN_NOTICE "%s: end_xmit: spurious interrupt\n",
565                                dev->name); 
566         }
567         spin_unlock(&priv->lock);
568 }
569
570 static void cpmac_reset(struct net_device *dev)
571 {
572         int i;
573         struct cpmac_priv *priv = netdev_priv(dev);
574
575         ar7_device_reset(priv->config->reset_bit);
576         priv->regs->rx_ctrl.control &= ~1;
577         priv->regs->tx_ctrl.control &= ~1;
578         for (i = 0; i < 8; i++) {
579                 priv->regs->tx_ptr[i] = 0;
580                 priv->regs->rx_ptr[i] = 0;
581         }
582         priv->regs->mac_control &= ~MAC_MII; /* disable mii */
583 }
584
585 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
586 static void
587 cpmac_full_reset(struct work_struct *work)
588 {
589         struct cpmac_priv *priv = container_of(work, struct cpmac_priv,
590                                                alloc_work);
591         struct net_device *dev = priv->dev;
592 #else
593 static void
594 cpmac_full_reset(void *data)
595 {
596         struct net_device *dev = (struct net_device*)data;
597 #endif
598
599         cpmac_stop(dev);
600         cpmac_open(dev);
601 }
602
603
604 static irqreturn_t cpmac_irq(int irq, void *dev_id)
605 {
606         struct net_device *dev = (struct net_device *)dev_id;
607         struct cpmac_priv *priv = netdev_priv(dev);
608         u32 status;
609
610         if (!dev)
611                 return IRQ_NONE;
612
613         status = priv->regs->mac_int_vector;
614
615         if (status & INTST_TX) {
616                 cpmac_end_xmit(dev, (status & 7));
617         }
618
619         if (status & INTST_RX) {
620                 cpmac_rx(dev, (status >> 8) & 7);
621         }
622
623         if (unlikely(status & INTST_HOST)) { /* host interrupt ??? */
624                 printk("%s: host int, something bad happened - mac status: 0x%08x\n", dev->name, priv->regs->mac_status);
625
626                 /* try to recover */
627                 cpmac_reset(dev);
628                 schedule_work(&priv->reset_work);
629         }
630
631         if (unlikely(status & INTST_STATUS)) { /* status interrupt ??? */
632                 printk("%s: status int, what are we gonna do?\n", dev->name);
633         }
634
635         priv->regs->mac_eoi_vector = 0;
636
637         return IRQ_HANDLED;
638 }
639
640 static void cpmac_tx_timeout(struct net_device *dev)
641 {
642         struct cpmac_priv *priv = netdev_priv(dev);
643         struct cpmac_desc *desc;
644
645         priv->stats.tx_errors++;
646         desc = &priv->desc_ring[priv->tx_head++];
647         priv->tx_head %= 8;
648         printk("Transmit timeout at %ld, latency %ld\n", jiffies,
649                jiffies - desc->jiffies);
650         if (desc->skb)
651                 dev_kfree_skb(desc->skb);
652         netif_wake_queue(dev);
653 }
654
655 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
656 {
657         struct cpmac_priv *priv = netdev_priv(dev);
658         if (!(netif_running(dev)))
659                 return -EINVAL;
660         if (!priv->phy)
661                 return -EINVAL;
662         return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
663 }
664
665 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
666 {
667         struct cpmac_priv *priv = netdev_priv(dev);
668
669         if (priv->phy)
670                 return phy_ethtool_gset(priv->phy, cmd);
671
672         return -EINVAL;
673 }
674
675 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
676 {
677         struct cpmac_priv *priv = netdev_priv(dev);
678
679         if (!capable(CAP_NET_ADMIN))
680                 return -EPERM;
681
682         if (priv->phy)
683                 return phy_ethtool_sset(priv->phy, cmd);
684
685         return -EINVAL;
686 }
687
688 static void cpmac_get_drvinfo(struct net_device *dev, 
689                               struct ethtool_drvinfo *info)
690 {
691         strcpy(info->driver, "cpmac");
692         strcpy(info->version, "0.0.3");
693         info->fw_version[0] = '\0';
694         sprintf(info->bus_info, "%s", "cpmac");
695         info->regdump_len = 0;
696 }
697
698 static const struct ethtool_ops cpmac_ethtool_ops = {
699         .get_settings = cpmac_get_settings,
700         .set_settings = cpmac_set_settings,
701         .get_drvinfo = cpmac_get_drvinfo,
702         .get_link = ethtool_op_get_link,
703 };
704
705 static struct net_device_stats *cpmac_stats(struct net_device *dev)
706 {
707         struct cpmac_priv *priv = netdev_priv(dev);
708
709         if (netif_device_present(dev))
710                 return &priv->stats;
711
712         return NULL;
713 }
714
715 static int cpmac_change_mtu(struct net_device *dev, int mtu)
716 {
717         unsigned long flags;
718         struct cpmac_priv *priv = netdev_priv(dev);
719         spinlock_t *lock = &priv->lock;
720     
721         if ((mtu < 68) || (mtu > 1500))
722                 return -EINVAL;
723
724         spin_lock_irqsave(lock, flags);
725         dev->mtu = mtu;
726         spin_unlock_irqrestore(lock, flags);
727
728         return 0;
729 }
730
731 static void cpmac_adjust_link(struct net_device *dev)
732 {
733         struct cpmac_priv *priv = netdev_priv(dev);
734         unsigned long flags;
735         int new_state = 0;
736
737         spin_lock_irqsave(&priv->lock, flags);
738         if (priv->phy->link) {
739                 if (priv->phy->duplex != priv->oldduplex) {
740                         new_state = 1;
741                         priv->oldduplex = priv->phy->duplex;
742                 }
743
744                 if (priv->phy->speed != priv->oldspeed) {
745                         new_state = 1;
746                         priv->oldspeed = priv->phy->speed;
747                 }
748
749                 if (!priv->oldlink) {
750                         new_state = 1;
751                         priv->oldlink = 1;
752                         netif_schedule(dev);
753                 }
754         } else if (priv->oldlink) {
755                 new_state = 1;
756                 priv->oldlink = 0;
757                 priv->oldspeed = 0;
758                 priv->oldduplex = -1;
759         }
760
761         if (new_state)
762                 phy_print_status(priv->phy);
763
764         spin_unlock_irqrestore(&priv->lock, flags);
765 }
766
767 static int cpmac_open(struct net_device *dev)
768 {
769         int i, size, res;
770         struct cpmac_priv *priv = netdev_priv(dev);
771         struct cpmac_desc *desc;
772         struct sk_buff *skb;
773
774 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
775         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link,
776                                 0, PHY_INTERFACE_MODE_MII);
777 #else
778         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0);
779 #endif
780         if (IS_ERR(priv->phy)) {
781                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
782                 return PTR_ERR(priv->phy);
783         }
784
785         if (!request_mem_region(dev->mem_start, dev->mem_end -
786                                 dev->mem_start, dev->name)) {
787                 printk("%s: failed to request registers\n",
788                        dev->name); 
789                 res = -ENXIO;
790                 goto fail_reserve;
791         }
792
793         priv->regs = ioremap_nocache(dev->mem_start, dev->mem_end -
794                                      dev->mem_start);
795         if (!priv->regs) {
796                 printk("%s: failed to remap registers\n", dev->name);
797                 res = -ENXIO;
798                 goto fail_remap;
799         }
800
801         priv->rx_head = NULL;
802         size = sizeof(struct cpmac_desc) * (CPMAC_RX_RING_SIZE +
803                                             CPMAC_TX_RING_SIZE);
804         priv->desc_ring = (struct cpmac_desc *)kmalloc(size, GFP_KERNEL);
805         if (!priv->desc_ring) {
806                 res = -ENOMEM;
807                 goto fail_alloc;
808         }
809
810         memset((char *)priv->desc_ring, 0, size);
811
812         priv->skb_pool = NULL;
813         priv->free_skbs = 0;
814         priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
815
816 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
817         INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs);
818         INIT_WORK(&priv->reset_work, cpmac_full_reset);
819 #else
820         INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs, dev);
821         INIT_WORK(&priv->reset_work, cpmac_full_reset, dev);
822 #endif
823         schedule_work(&priv->alloc_work);
824         flush_scheduled_work();
825
826         for (i = 0; i < CPMAC_RX_RING_SIZE; i++) {
827                 desc = &priv->rx_head[i];
828                 skb = cpmac_get_skb(dev);
829                 if (!skb) {
830                         res = -ENOMEM;
831                         goto fail_desc;
832                 }
833                 desc->skb = skb;
834                 desc->hw_data = virt_to_phys(skb->data);
835                 desc->buflen = CPMAC_SKB_SIZE;
836                 desc->dataflags = CPMAC_OWN;
837                 desc->next = &priv->rx_head[i + 1];
838                 desc->hw_next = virt_to_phys(desc->next);
839                 dma_cache_wback((u32)desc, 16);
840         }
841         priv->rx_tail = &priv->rx_head[CPMAC_RX_RING_SIZE - 1];
842         priv->rx_tail->next = priv->rx_head;
843         priv->rx_tail->hw_next = 0;
844
845         cpmac_reset(dev);
846         for (i = 0; i < 8; i++)
847                 priv->regs->tx_ptr[i] = 0;
848         priv->regs->rx_ptr[0] = virt_to_phys(priv->rx_head);
849
850         priv->regs->mbp = MBP_RXSHORT | MBP_RXBCAST | MBP_RXMCAST;
851         priv->regs->unicast_enable = 0x1;
852         priv->regs->unicast_clear = 0xfe;
853         priv->regs->buffer_offset = 0;
854         for (i = 0; i < 8; i++)
855                 priv->regs->mac_addr_low[i] = dev->dev_addr[5];
856         priv->regs->mac_addr_mid = dev->dev_addr[4];
857         priv->regs->mac_addr_high = dev->dev_addr[0] | (dev->dev_addr[1] << 8)
858                 | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
859         priv->regs->max_len = CPMAC_SKB_SIZE;
860         priv->regs->rx_int.enable = 0x1;
861         priv->regs->rx_int.clear = 0xfe;
862         priv->regs->tx_int.enable = 0xff;
863         priv->regs->tx_int.clear = 0;
864         priv->regs->mac_int_enable = 3;
865         priv->regs->mac_int_clear = 0xfc;
866
867         if((res = request_irq(dev->irq, cpmac_irq, SA_INTERRUPT,
868                               dev->name, dev))) {
869                 printk("%s: failed to obtain irq\n", dev->name);
870                 goto fail_irq;
871         }
872
873         priv->regs->rx_ctrl.control |= 1;
874         priv->regs->tx_ctrl.control |= 1;
875         priv->regs->mac_control |= MAC_MII | MAC_FDX;
876
877         priv->phy->state = PHY_CHANGELINK;
878         phy_start(priv->phy);
879
880         netif_start_queue(dev);
881         return 0;
882
883 fail_irq:
884 fail_desc:
885         for (i = 0; i < CPMAC_RX_RING_SIZE; i++)
886                 if (priv->rx_head[i].skb)
887                         kfree_skb(priv->rx_head[i].skb);
888 fail_alloc:
889         kfree(priv->desc_ring);
890
891         for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
892                 priv->skb_pool = skb->next;
893                 kfree_skb(skb);
894         }
895
896         iounmap(priv->regs);
897
898 fail_remap:
899         release_mem_region(dev->mem_start, dev->mem_end -
900                            dev->mem_start);
901
902 fail_reserve:
903         phy_disconnect(priv->phy);
904
905         return res;
906 }
907
908 static int cpmac_stop(struct net_device *dev)
909 {
910         int i;
911         struct sk_buff *skb;
912         struct cpmac_priv *priv = netdev_priv(dev);
913
914         netif_stop_queue(dev);
915
916         phy_stop(priv->phy);
917         phy_disconnect(priv->phy);
918         priv->phy = NULL;
919
920         cpmac_reset(dev);
921
922         for (i = 0; i < 8; i++) {
923                 priv->regs->rx_ptr[i] = 0;
924                 priv->regs->tx_ptr[i] = 0;
925                 priv->regs->mbp = 0;
926         }
927
928         free_irq(dev->irq, dev);
929         release_mem_region(dev->mem_start, dev->mem_end -
930                            dev->mem_start);
931
932         cancel_delayed_work(&priv->alloc_work);
933         flush_scheduled_work();
934
935         priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
936         for (i = 0; i < CPMAC_RX_RING_SIZE; i++)
937                 if (priv->rx_head[i].skb)
938                         kfree_skb(priv->rx_head[i].skb);
939
940         kfree(priv->desc_ring);
941
942         for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
943                 priv->skb_pool = skb->next;
944                 kfree_skb(skb);
945         }
946
947         return 0;
948 }
949
950 static int external_switch = 0;
951
952 static int __devinit cpmac_probe(struct platform_device *pdev)
953 {
954         int i, rc, phy_id;
955         struct resource *res;
956         struct cpmac_priv *priv;
957         struct net_device *dev;
958         struct plat_cpmac_data *pdata;
959
960         if (strcmp(pdev->name, "cpmac") != 0)
961                 return -ENODEV;
962
963         pdata = pdev->dev.platform_data;
964
965         for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
966                 if (!(pdata->phy_mask & (1 << phy_id)))
967                         continue;
968                 if (!cpmac_mii.phy_map[phy_id])
969                         continue;
970                 break;
971         }
972
973         if (phy_id == PHY_MAX_ADDR) {
974                 if (external_switch) {
975                         phy_id = 0;
976                 } else {
977                         printk("cpmac: no PHY present\n");
978                         return -ENODEV;
979                 }
980         }
981
982         dev = alloc_etherdev(sizeof(struct cpmac_priv));
983
984         if (!dev) {
985                 printk(KERN_ERR "cpmac: Unable to allocate net_device structure!\n");
986                 return -ENOMEM;
987         }
988
989         SET_MODULE_OWNER(dev);
990         platform_set_drvdata(pdev, dev);
991         priv = netdev_priv(dev);
992
993         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
994         if (!res) {
995                 rc = -ENODEV;
996                 goto fail;
997         }
998
999         dev->mem_start = res->start;
1000         dev->mem_end = res->end;
1001         dev->irq = platform_get_irq_byname(pdev, "irq");
1002
1003         dev->mtu                = 1500;
1004         dev->open               = cpmac_open;
1005         dev->stop               = cpmac_stop;
1006         dev->set_config         = cpmac_config;
1007         dev->hard_start_xmit    = cpmac_start_xmit;
1008         dev->do_ioctl           = cpmac_ioctl;
1009         dev->get_stats          = cpmac_stats;
1010         dev->change_mtu         = cpmac_change_mtu;  
1011         dev->set_mac_address    = cpmac_set_mac_address;  
1012         dev->set_multicast_list = cpmac_set_multicast_list;
1013         dev->tx_timeout         = cpmac_tx_timeout;
1014         dev->ethtool_ops        = &cpmac_ethtool_ops;
1015
1016         memset(priv, 0, sizeof(struct cpmac_priv));
1017         spin_lock_init(&priv->lock);
1018         priv->msg_enable = netif_msg_init(NETIF_MSG_WOL, 0x3fff);
1019         priv->config = pdata;
1020         priv->dev = dev;
1021         memcpy(dev->dev_addr, priv->config->dev_addr, sizeof(dev->dev_addr));
1022         if (phy_id == 31) {
1023                 snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
1024                          cpmac_mii.id, phy_id);
1025         } else {
1026                 snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);
1027         }
1028
1029         if ((rc = register_netdev(dev))) {
1030                 printk("cpmac: error %i registering device %s\n",
1031                        rc, dev->name);
1032                 goto fail;
1033         }
1034
1035         printk("cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: ",
1036                dev->name, (u32 *)dev->mem_start, dev->irq,
1037                priv->phy_name);
1038         for (i = 0; i < 6; i++) {
1039                 printk("%02x", dev->dev_addr[i]);
1040                 if (i < 5) printk(":");
1041                 else printk(")\n");
1042         }
1043
1044         return 0;
1045
1046 fail:
1047         free_netdev(dev);
1048         return rc;
1049 }
1050
1051 static int __devexit cpmac_remove(struct platform_device *pdev)
1052 {
1053         struct net_device *dev = platform_get_drvdata(pdev);
1054         unregister_netdev(dev);
1055         free_netdev(dev);
1056         return 0;
1057 }
1058
1059 static struct platform_driver cpmac_driver = {
1060         .driver.name = "cpmac",
1061         .probe = cpmac_probe,
1062         .remove = cpmac_remove,
1063 };
1064
1065 int __devinit cpmac_init(void)
1066 {
1067         volatile u32 mask;
1068         int i, res;
1069         cpmac_mii.priv = (struct cpmac_mdio_regs *)
1070                 ioremap_nocache(AR7_REGS_MDIO, sizeof(struct cpmac_mdio_regs));
1071
1072         if (!cpmac_mii.priv) {
1073                 printk("Can't ioremap mdio registers\n");
1074                 return -ENXIO;
1075         }
1076
1077 #warning FIXME: unhardcode gpio&reset bits
1078         ar7_gpio_disable(26);
1079         ar7_gpio_disable(27);
1080         ar7_device_reset(17);
1081         ar7_device_reset(21);
1082         ar7_device_reset(26);
1083
1084         cpmac_mii.reset(&cpmac_mii);
1085
1086         for (i = 0; i < 300000; i++) {
1087                 mask = ((struct cpmac_mdio_regs *)cpmac_mii.priv)->alive;
1088                 if (mask)
1089                         break;
1090         }
1091
1092         mask &= 0x7fffffff;
1093         if (mask & (mask - 1)) {
1094                 external_switch = 1;
1095                 mask = 0;
1096         }
1097
1098         cpmac_mii.phy_mask = ~(mask | 0x80000000);
1099
1100         res = mdiobus_register(&cpmac_mii);
1101         if (res)
1102                 goto fail_mii;
1103
1104         res = platform_driver_register(&cpmac_driver);
1105         if (res)
1106                 goto fail_cpmac;
1107
1108         return 0;
1109
1110 fail_cpmac:
1111         mdiobus_unregister(&cpmac_mii);
1112
1113 fail_mii:
1114         iounmap(cpmac_mii.priv);
1115
1116         return res;
1117 }
1118
1119 void __devexit cpmac_exit(void)
1120 {
1121         platform_driver_unregister(&cpmac_driver);
1122         mdiobus_unregister(&cpmac_mii);
1123 }
1124
1125 module_init(cpmac_init);
1126 module_exit(cpmac_exit);