Reimplement rx ring with EOQ markers to avoid reset storms
[librecmc/librecmc.git] / target / linux / ar7 / files / drivers / net / cpmac.c
1 /*
2  * Copyright (C) 2006, 2007 OpenWrt.org
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
22
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29 #include <linux/version.h>
30
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
39 #include <asm/gpio.h>
40 #include <asm/atomic.h>
41
42 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
43 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
44 MODULE_LICENSE("GPL");
45
46 static int debug_level = 8;
47 static int dumb_switch;
48
49 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
50 module_param(debug_level, int, 0444);
51 module_param(dumb_switch, int, 0444);
52
53 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
54 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
55
56 #define CPMAC_VERSION "0.5.0"
57 /* stolen from net/ieee80211.h */
58 #ifndef MAC_FMT
59 #define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
60 #define MAC_ARG(x) ((u8*)(x))[0], ((u8*)(x))[1], ((u8*)(x))[2], \
61                    ((u8*)(x))[3], ((u8*)(x))[4], ((u8*)(x))[5]
62 #endif
63 /* frame size + 802.1q tag */
64 #define CPMAC_SKB_SIZE          (ETH_FRAME_LEN + 4)
65 #define CPMAC_QUEUES    8
66
67 /* Ethernet registers */
68 #define CPMAC_TX_CONTROL                0x0004
69 #define CPMAC_TX_TEARDOWN               0x0008
70 #define CPMAC_RX_CONTROL                0x0014
71 #define CPMAC_RX_TEARDOWN               0x0018
72 #define CPMAC_MBP                       0x0100
73 # define MBP_RXPASSCRC                  0x40000000
74 # define MBP_RXQOS                      0x20000000
75 # define MBP_RXNOCHAIN                  0x10000000
76 # define MBP_RXCMF                      0x01000000
77 # define MBP_RXSHORT                    0x00800000
78 # define MBP_RXCEF                      0x00400000
79 # define MBP_RXPROMISC                  0x00200000
80 # define MBP_PROMISCCHAN(channel)       (((channel) & 0x7) << 16)
81 # define MBP_RXBCAST                    0x00002000
82 # define MBP_BCASTCHAN(channel)         (((channel) & 0x7) << 8)
83 # define MBP_RXMCAST                    0x00000020
84 # define MBP_MCASTCHAN(channel)         ((channel) & 0x7)
85 #define CPMAC_UNICAST_ENABLE            0x0104
86 #define CPMAC_UNICAST_CLEAR             0x0108
87 #define CPMAC_MAX_LENGTH                0x010c
88 #define CPMAC_BUFFER_OFFSET             0x0110
89 #define CPMAC_MAC_CONTROL               0x0160
90 # define MAC_TXPTYPE                    0x00000200
91 # define MAC_TXPACE                     0x00000040
92 # define MAC_MII                        0x00000020
93 # define MAC_TXFLOW                     0x00000010
94 # define MAC_RXFLOW                     0x00000008
95 # define MAC_MTEST                      0x00000004
96 # define MAC_LOOPBACK                   0x00000002
97 # define MAC_FDX                        0x00000001
98 #define CPMAC_MAC_STATUS                0x0164
99 # define MAC_STATUS_QOS                 0x00000004
100 # define MAC_STATUS_RXFLOW              0x00000002
101 # define MAC_STATUS_TXFLOW              0x00000001
102 #define CPMAC_TX_INT_ENABLE             0x0178
103 #define CPMAC_TX_INT_CLEAR              0x017c
104 #define CPMAC_MAC_INT_VECTOR            0x0180
105 # define MAC_INT_STATUS                 0x00080000
106 # define MAC_INT_HOST                   0x00040000
107 # define MAC_INT_RX                     0x00020000
108 # define MAC_INT_TX                     0x00010000
109 #define CPMAC_MAC_EOI_VECTOR            0x0184
110 #define CPMAC_RX_INT_ENABLE             0x0198
111 #define CPMAC_RX_INT_CLEAR              0x019c
112 #define CPMAC_MAC_INT_ENABLE            0x01a8
113 #define CPMAC_MAC_INT_CLEAR             0x01ac
114 #define CPMAC_MAC_ADDR_LO(channel)      (0x01b0 + (channel) * 4)
115 #define CPMAC_MAC_ADDR_MID              0x01d0
116 #define CPMAC_MAC_ADDR_HI               0x01d4
117 #define CPMAC_MAC_HASH_LO               0x01d8
118 #define CPMAC_MAC_HASH_HI               0x01dc
119 #define CPMAC_TX_PTR(channel)           (0x0600 + (channel) * 4)
120 #define CPMAC_RX_PTR(channel)           (0x0620 + (channel) * 4)
121 #define CPMAC_TX_ACK(channel)           (0x0640 + (channel) * 4)
122 #define CPMAC_RX_ACK(channel)           (0x0660 + (channel) * 4)
123 #define CPMAC_REG_END                   0x0680
124 /*
125  * Rx/Tx statistics
126  * TODO: use some of them to fill stats in cpmac_stats()
127  */
128 #define CPMAC_STATS_RX_GOOD             0x0200
129 #define CPMAC_STATS_RX_BCAST            0x0204
130 #define CPMAC_STATS_RX_MCAST            0x0208
131 #define CPMAC_STATS_RX_PAUSE            0x020c
132 #define CPMAC_STATS_RX_CRC              0x0210
133 #define CPMAC_STATS_RX_ALIGN            0x0214
134 #define CPMAC_STATS_RX_OVER             0x0218
135 #define CPMAC_STATS_RX_JABBER           0x021c
136 #define CPMAC_STATS_RX_UNDER            0x0220
137 #define CPMAC_STATS_RX_FRAG             0x0224
138 #define CPMAC_STATS_RX_FILTER           0x0228
139 #define CPMAC_STATS_RX_QOSFILTER        0x022c
140 #define CPMAC_STATS_RX_OCTETS           0x0230
141
142 #define CPMAC_STATS_TX_GOOD             0x0234
143 #define CPMAC_STATS_TX_BCAST            0x0238
144 #define CPMAC_STATS_TX_MCAST            0x023c
145 #define CPMAC_STATS_TX_PAUSE            0x0240
146 #define CPMAC_STATS_TX_DEFER            0x0244
147 #define CPMAC_STATS_TX_COLLISION        0x0248
148 #define CPMAC_STATS_TX_SINGLECOLL       0x024c
149 #define CPMAC_STATS_TX_MULTICOLL        0x0250
150 #define CPMAC_STATS_TX_EXCESSCOLL       0x0254
151 #define CPMAC_STATS_TX_LATECOLL         0x0258
152 #define CPMAC_STATS_TX_UNDERRUN         0x025c
153 #define CPMAC_STATS_TX_CARRIERSENSE     0x0260
154 #define CPMAC_STATS_TX_OCTETS           0x0264
155
156 #define cpmac_read(base, reg)           (readl((void __iomem *)(base) + (reg)))
157 #define cpmac_write(base, reg, val)     (writel(val, (void __iomem *)(base) + \
158                                                 (reg)))
159
160 /* MDIO bus */
161 #define CPMAC_MDIO_VERSION              0x0000
162 #define CPMAC_MDIO_CONTROL              0x0004
163 # define MDIOC_IDLE                     0x80000000
164 # define MDIOC_ENABLE                   0x40000000
165 # define MDIOC_PREAMBLE                 0x00100000
166 # define MDIOC_FAULT                    0x00080000
167 # define MDIOC_FAULTDETECT              0x00040000
168 # define MDIOC_INTTEST                  0x00020000
169 # define MDIOC_CLKDIV(div)              ((div) & 0xff)
170 #define CPMAC_MDIO_ALIVE                0x0008
171 #define CPMAC_MDIO_LINK                 0x000c
172 #define CPMAC_MDIO_ACCESS(channel)      (0x0080 + (channel) * 8)
173 # define MDIO_BUSY                      0x80000000
174 # define MDIO_WRITE                     0x40000000
175 # define MDIO_REG(reg)                  (((reg) & 0x1f) << 21)
176 # define MDIO_PHY(phy)                  (((phy) & 0x1f) << 16)
177 # define MDIO_DATA(data)                ((data) & 0xffff)
178 #define CPMAC_MDIO_PHYSEL(channel)      (0x0084 + (channel) * 8)
179 # define PHYSEL_LINKSEL                 0x00000040
180 # define PHYSEL_LINKINT                 0x00000020
181
182 struct cpmac_desc {
183         u32 hw_next;
184         u32 hw_data;
185         u16 buflen;
186         u16 bufflags;
187         u16 datalen;
188         u16 dataflags;
189 #define CPMAC_SOP                       0x8000
190 #define CPMAC_EOP                       0x4000
191 #define CPMAC_OWN                       0x2000
192 #define CPMAC_EOQ                       0x1000
193         struct sk_buff *skb;
194         struct cpmac_desc *next;
195         struct cpmac_desc *prev;
196         dma_addr_t mapping;
197         dma_addr_t data_mapping;
198 };
199
200 struct cpmac_priv {
201         spinlock_t lock;
202         spinlock_t rx_lock;
203         struct cpmac_desc *rx_head;
204         int ring_size;
205         struct cpmac_desc *desc_ring;
206         dma_addr_t dma_ring;
207         void __iomem *regs;
208         struct mii_bus *mii_bus;
209         struct phy_device *phy;
210         char phy_name[BUS_ID_SIZE];
211         int oldlink, oldspeed, oldduplex;
212         u32 msg_enable;
213         struct net_device *dev;
214         struct work_struct reset_work;
215         struct platform_device *pdev;
216         atomic_t reset_pending;
217 };
218
219 static irqreturn_t cpmac_irq(int, void *);
220 static void cpmac_hw_start(struct net_device *dev);
221 static void cpmac_hw_stop(struct net_device *dev);
222 static int cpmac_stop(struct net_device *dev);
223 static int cpmac_open(struct net_device *dev);
224
225 static void cpmac_dump_regs(struct net_device *dev)
226 {
227         int i;
228         struct cpmac_priv *priv = netdev_priv(dev);
229         for (i = 0; i < CPMAC_REG_END; i += 4) {
230                 if (i % 16 == 0) {
231                         if (i)
232                                 printk("\n");
233                         printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
234                                priv->regs + i);
235                 }
236                 printk(" %08x", cpmac_read(priv->regs, i));
237         }
238         printk("\n");
239 }
240
241 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
242 {
243         int i;
244         printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
245         for (i = 0; i < sizeof(*desc) / 4; i++)
246                 printk(" %08x", ((u32 *)desc)[i]);
247         printk("\n");
248 }
249
250 static void cpmac_dump_all_desc(struct net_device *dev)
251 {
252         struct cpmac_priv *priv = netdev_priv(dev);
253         struct cpmac_desc *dump = priv->rx_head;
254         do {
255                 cpmac_dump_desc(dev, dump);
256                 dump = dump->next;
257         } while (dump != priv->rx_head);
258 }
259
260 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
261 {
262         int i;
263         printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
264         for (i = 0; i < skb->len; i++) {
265                 if (i % 16 == 0) {
266                         if (i)
267                                 printk("\n");
268                         printk(KERN_DEBUG "%s: data[%p]:", dev->name,
269                                skb->data + i);
270                 }
271                 printk(" %02x", ((u8 *)skb->data)[i]);
272         }
273         printk("\n");
274 }
275
276 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
277 {
278         u32 val;
279
280         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
281                 cpu_relax();
282         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
283                     MDIO_PHY(phy_id));
284         while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
285                 cpu_relax();
286         return MDIO_DATA(val);
287 }
288
289 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
290                             int reg, u16 val)
291 {
292         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
293                 cpu_relax();
294         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
295                     MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
296         return 0;
297 }
298
299 static int cpmac_mdio_reset(struct mii_bus *bus)
300 {
301         ar7_device_reset(AR7_RESET_BIT_MDIO);
302         cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
303                     MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
304         return 0;
305 }
306
307 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
308
309 static struct mii_bus cpmac_mii = {
310         .name = "cpmac-mii",
311         .read = cpmac_mdio_read,
312         .write = cpmac_mdio_write,
313         .reset = cpmac_mdio_reset,
314         .irq = mii_irqs,
315 };
316
317 static int cpmac_config(struct net_device *dev, struct ifmap *map)
318 {
319         if (dev->flags & IFF_UP)
320                 return -EBUSY;
321
322         /* Don't allow changing the I/O address */
323         if (map->base_addr != dev->base_addr)
324                 return -EOPNOTSUPP;
325
326         /* ignore other fields */
327         return 0;
328 }
329
330 static void cpmac_set_multicast_list(struct net_device *dev)
331 {
332         struct dev_mc_list *iter;
333         int i;
334         u8 tmp;
335         u32 mbp, bit, hash[2] = { 0, };
336         struct cpmac_priv *priv = netdev_priv(dev);
337
338         mbp = cpmac_read(priv->regs, CPMAC_MBP);
339         if (dev->flags & IFF_PROMISC) {
340                 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
341                             MBP_RXPROMISC);
342         } else {
343                 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
344                 if (dev->flags & IFF_ALLMULTI) {
345                         /* enable all multicast mode */
346                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
347                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
348                 } else {
349                         /*
350                          * cpmac uses some strange mac address hashing
351                          * (not crc32)
352                          */
353                         for (i = 0, iter = dev->mc_list; i < dev->mc_count;
354                              i++, iter = iter->next) {
355                                 bit = 0;
356                                 tmp = iter->dmi_addr[0];
357                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
358                                 tmp = iter->dmi_addr[1];
359                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
360                                 tmp = iter->dmi_addr[2];
361                                 bit  ^= (tmp >> 6) ^ tmp;
362                                 tmp = iter->dmi_addr[3];
363                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
364                                 tmp = iter->dmi_addr[4];
365                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
366                                 tmp = iter->dmi_addr[5];
367                                 bit  ^= (tmp >> 6) ^ tmp;
368                                 bit &= 0x3f;
369                                 hash[bit / 32] |= 1 << (bit % 32);
370                         }
371
372                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
373                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
374                 }
375         }
376 }
377
378 static struct sk_buff *cpmac_rx_one(struct net_device *dev,
379                                     struct cpmac_priv *priv,
380                                     struct cpmac_desc *desc)
381 {
382         struct sk_buff *skb, *result = NULL;
383
384         if (unlikely(netif_msg_hw(priv)))
385                 cpmac_dump_desc(dev, desc);
386         cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
387         if (unlikely(!desc->datalen)) {
388                 if (netif_msg_rx_err(priv) && net_ratelimit())
389                         printk(KERN_WARNING "%s: rx: spurious interrupt\n",
390                                dev->name);
391                 return NULL;
392         }
393
394         skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
395         if (likely(skb)) {
396                 skb_reserve(skb, 2);
397                 skb_put(desc->skb, desc->datalen);
398                 desc->skb->protocol = eth_type_trans(desc->skb, dev);
399                 desc->skb->ip_summed = CHECKSUM_NONE;
400                 dev->stats.rx_packets++;
401                 dev->stats.rx_bytes += desc->datalen;
402                 result = desc->skb;
403                 dma_unmap_single(&dev->dev, desc->data_mapping, CPMAC_SKB_SIZE,
404                                  DMA_FROM_DEVICE);
405                 desc->skb = skb;
406                 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
407                                                     CPMAC_SKB_SIZE,
408                                                     DMA_FROM_DEVICE);
409                 desc->hw_data = (u32)desc->data_mapping;
410                 if (unlikely(netif_msg_pktdata(priv))) {
411                         printk(KERN_DEBUG "%s: received packet:\n", dev->name);
412                         cpmac_dump_skb(dev, result);
413                 }
414         } else {
415                 if (netif_msg_rx_err(priv) && net_ratelimit())
416                         printk(KERN_WARNING
417                                "%s: low on skbs, dropping packet\n", dev->name);
418                 dev->stats.rx_dropped++;
419         }
420
421         desc->buflen = CPMAC_SKB_SIZE;
422         desc->dataflags = CPMAC_OWN;
423
424         return result;
425 }
426
427 static int cpmac_poll(struct net_device *dev, int *budget)
428 {
429         struct sk_buff *skb;
430         struct cpmac_desc *desc, *restart;
431         int received = 0, processed = 0, quota = min(dev->quota, *budget);
432         struct cpmac_priv *priv = netdev_priv(dev);
433
434         spin_lock(&priv->rx_lock);
435         if (unlikely(!priv->rx_head)) {
436                 if (netif_msg_rx_err(priv) && net_ratelimit())
437                         printk(KERN_WARNING "%s: rx: polling, but no queue\n",
438                                dev->name);
439                 spin_unlock(&priv->rx_lock);
440                 netif_rx_complete(dev);
441                 return 0;
442         }
443
444         desc = priv->rx_head;
445         restart = NULL;
446         while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) {
447                 processed++;
448
449                 if ((desc->dataflags & CPMAC_EOQ) != 0) {
450                         /* The last update to eoq->hw_next didn't happen soon enough, and the
451                          * receiver stopped here. Remember this descriptor so we can restart
452                          * the receiver after freeing some space.
453                          */
454                         if (unlikely(restart)) {
455                                 if (netif_msg_rx_err(priv))
456                                         printk(KERN_ERR "%s: poll found a duplicate EOQ: %p and %p\n",
457                                                dev->name, restart, desc);
458                                 goto fatal_error;
459                         }
460
461                         restart = desc->next;
462                 }
463                         
464                 skb = cpmac_rx_one(dev, priv, desc);
465                 if (likely(skb)) {
466                         netif_receive_skb(skb);
467                         received++;
468                 }
469                 desc = desc->next;
470         }
471         
472         if (desc != priv->rx_head) {
473                 /* We freed some buffers, but not the whole ring, add what we did free to the rx list */
474                 desc->prev->hw_next = (u32)0;
475                 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
476         }
477         
478         /* Optimization: If we did not actually process an EOQ (perhaps because of
479          * quota limits), check to see if the tail of the queue has EOQ set. We
480          * should immediately restart in that case so that the receiver can restart
481          * and run in parallel with more packet processing. This lets us handle slightly
482          * larger bursts before running out of ring space (assuming dev->weight < ring_size)
483          */
484         if (!restart && 
485             (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ)) == CPMAC_EOQ &&
486             (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
487                 /* reset EOQ so the poll loop (above) doesn't try to restart this when it
488                  * eventually gets to this descriptor.
489                  */
490                 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
491                 restart = priv->rx_head;
492         }
493
494         if (restart) {
495                 dev->stats.rx_errors++;
496                 dev->stats.rx_fifo_errors++;
497                 if (netif_msg_rx_err(priv) && net_ratelimit())
498                         printk(KERN_WARNING "%s: rx dma ring overrun\n", dev->name);
499                 
500                 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
501                         if (netif_msg_drv(priv))
502                                 printk(KERN_ERR "%s: cpmac_poll is trying to restart rx from a descriptor that's not free: %p\n",
503                                        dev->name, restart);
504                         goto fatal_error;
505                 }
506
507                 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
508         }
509
510         priv->rx_head = desc;
511         spin_unlock(&priv->rx_lock);
512         *budget -= received;
513         dev->quota -= received;
514         if (unlikely(netif_msg_rx_status(priv)))
515                 printk(KERN_DEBUG "%s: poll processed %d packets\n", dev->name,
516                        received);
517         
518         if (processed == 0) {
519                 /* we ran out of packets to read, revert to interrupt-driven mode */
520                 netif_rx_complete(dev);
521                 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
522                 return 0;
523         }
524
525         return 1;
526
527 fatal_error:
528         /* Something went horribly wrong. Reset hardware to try to recover rather than wedging. */
529
530         if (netif_msg_drv(priv)) {
531                 printk(KERN_ERR "%s: cpmac_poll is confused. Resetting hardware\n", dev->name);
532                 cpmac_dump_all_desc(dev);
533                 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
534                        dev->name,
535                        cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
536                        cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
537         }
538
539         spin_unlock(&priv->rx_lock);
540         netif_rx_complete(dev);
541         netif_stop_queue(dev);
542
543         atomic_inc(&priv->reset_pending);
544         cpmac_hw_stop(dev);
545         if (!schedule_work(&priv->reset_work))
546                 atomic_dec(&priv->reset_pending);
547         return 0;
548 }
549
550 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
551 {
552         int queue, len;
553         struct cpmac_desc *desc;
554         struct cpmac_priv *priv = netdev_priv(dev);
555
556         if (unlikely(atomic_read(&priv->reset_pending)))
557                 return NETDEV_TX_BUSY;
558
559         if (unlikely(skb_padto(skb, ETH_ZLEN)))
560                 return NETDEV_TX_OK;
561
562         len = max(skb->len, ETH_ZLEN);
563         queue = skb->queue_mapping;
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565         netif_stop_subqueue(dev, queue);
566 #else
567         netif_stop_queue(dev);
568 #endif
569
570         desc = &priv->desc_ring[queue];
571         if (unlikely(desc->dataflags & CPMAC_OWN)) {
572                 if (netif_msg_tx_err(priv) && net_ratelimit())
573                         printk(KERN_WARNING "%s: tx dma ring full\n",
574                                dev->name);
575                 return NETDEV_TX_BUSY;
576         }
577
578         spin_lock(&priv->lock);
579         dev->trans_start = jiffies;
580         spin_unlock(&priv->lock);
581         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
582         desc->skb = skb;
583         desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
584                                             DMA_TO_DEVICE);
585         desc->hw_data = (u32)desc->data_mapping;
586         desc->datalen = len;
587         desc->buflen = len;
588         if (unlikely(netif_msg_tx_queued(priv)))
589                 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
590                        skb->len);
591         if (unlikely(netif_msg_hw(priv)))
592                 cpmac_dump_desc(dev, desc);
593         if (unlikely(netif_msg_pktdata(priv)))
594                 cpmac_dump_skb(dev, skb);
595         cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
596
597         return NETDEV_TX_OK;
598 }
599
600 static void cpmac_end_xmit(struct net_device *dev, int queue)
601 {
602         struct cpmac_desc *desc;
603         struct cpmac_priv *priv = netdev_priv(dev);
604
605         desc = &priv->desc_ring[queue];
606         cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
607         if (likely(desc->skb)) {
608                 spin_lock(&priv->lock);
609                 dev->stats.tx_packets++;
610                 dev->stats.tx_bytes += desc->skb->len;
611                 spin_unlock(&priv->lock);
612                 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
613                                  DMA_TO_DEVICE);
614
615                 if (unlikely(netif_msg_tx_done(priv)))
616                         printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
617                                desc->skb, desc->skb->len);
618
619                 dev_kfree_skb_irq(desc->skb);
620                 desc->skb = NULL;
621 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
622                 if (netif_subqueue_stopped(dev, queue))
623                         netif_wake_subqueue(dev, queue);
624 #else
625                 if (netif_queue_stopped(dev))
626                         netif_wake_queue(dev);
627 #endif
628         } else {
629                 if (netif_msg_tx_err(priv) && net_ratelimit())
630                         printk(KERN_WARNING
631                                "%s: end_xmit: spurious interrupt\n", dev->name);
632 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
633                 if (netif_subqueue_stopped(dev, queue))
634                         netif_wake_subqueue(dev, queue);
635 #else
636                 if (netif_queue_stopped(dev))
637                         netif_wake_queue(dev);
638 #endif
639         }
640 }
641
642 static void cpmac_hw_stop(struct net_device *dev)
643 {
644         int i;
645         struct cpmac_priv *priv = netdev_priv(dev);
646         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
647
648         ar7_device_reset(pdata->reset_bit);
649         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
650                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
651         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
652                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
653         for (i = 0; i < 8; i++) {
654                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
655                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
656         }
657         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
658         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
659         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
660         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
661         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
662                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
663 }
664
665 static void cpmac_hw_start(struct net_device *dev)
666 {
667         int i;
668         struct cpmac_priv *priv = netdev_priv(dev);
669         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
670
671         ar7_device_reset(pdata->reset_bit);
672         for (i = 0; i < 8; i++) {
673                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
674                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
675         }
676         cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
677
678         cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
679                     MBP_RXMCAST);
680         cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
681         for (i = 0; i < 8; i++)
682                 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
683         cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
684         cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
685                     (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
686                     (dev->dev_addr[3] << 24));
687         cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
688         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
689         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
690         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
691         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
692         cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
693         cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
694         cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
695         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
696
697         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
698                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
699         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
700                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
701         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
702                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
703                     MAC_FDX);
704 }
705
706 static void cpmac_clear_rx(struct net_device *dev)
707 {
708         struct cpmac_priv *priv = netdev_priv(dev);
709         struct cpmac_desc *desc;
710         int i;
711         if (unlikely(!priv->rx_head))
712                 return;
713         desc = priv->rx_head;
714         for (i = 0; i < priv->ring_size; i++) {
715                 if ((desc->dataflags & CPMAC_OWN) == 0) {
716                         if (netif_msg_rx_err(priv) && net_ratelimit())
717                                 printk(KERN_WARNING "%s: packet dropped\n",
718                                        dev->name);
719                         if (unlikely(netif_msg_hw(priv)))
720                                 cpmac_dump_desc(dev, desc);
721                         desc->dataflags = CPMAC_OWN;
722                         dev->stats.rx_dropped++;
723                 }
724                 desc->hw_next = desc->next->mapping;
725                 desc = desc->next;
726         }
727
728         priv->rx_head->prev->hw_next = 0;
729 }
730
731 static void cpmac_clear_tx(struct net_device *dev)
732 {
733         struct cpmac_priv *priv = netdev_priv(dev);
734         int i;
735         if (unlikely(!priv->desc_ring))
736                 return;
737         for (i = 0; i < CPMAC_QUEUES; i++) {
738                 priv->desc_ring[i].dataflags = 0;
739                 if (priv->desc_ring[i].skb) {
740                         dev_kfree_skb_any(priv->desc_ring[i].skb);
741                         priv->desc_ring[i].skb = NULL;
742                 }
743         }
744 }
745
746 static void cpmac_hw_error(struct work_struct *work)
747 {
748         int i;
749         struct cpmac_priv *priv =
750                 container_of(work, struct cpmac_priv, reset_work);
751
752         spin_lock(&priv->rx_lock);
753         cpmac_clear_rx(priv->dev);
754         spin_unlock(&priv->rx_lock);
755         cpmac_clear_tx(priv->dev);
756         cpmac_hw_start(priv->dev);
757         barrier();
758         atomic_dec(&priv->reset_pending);
759         
760         for (i = 0; i < CPMAC_QUEUES; i++) {
761                 netif_wake_subqueue(priv->dev, i);
762         }
763         netif_wake_queue(priv->dev);
764 }
765
766 static void cpmac_check_status(struct net_device *dev)
767 {
768         struct cpmac_priv *priv = netdev_priv(dev);
769
770         u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
771         int rx_channel = (macstatus >> 8) & 7;
772         int rx_code = (macstatus >> 12) & 15;
773         int tx_channel = (macstatus >> 16) & 7;
774         int tx_code = (macstatus >> 20) & 15;
775
776         if (rx_code || tx_code) {
777                 if (netif_msg_drv(priv) && net_ratelimit()) {
778                         /* Can't find any documentation on what these error codes actually are.
779                          * So just log them and hope..
780                          */
781                         if (rx_code)
782                                 printk(KERN_WARNING "%s: host error %d on rx channel %d (macstatus %08x), resetting\n",
783                                        dev->name, rx_code, rx_channel, macstatus);
784                         if (tx_code)
785                                 printk(KERN_WARNING "%s: host error %d on tx channel %d (macstatus %08x), resetting\n",
786                                        dev->name, tx_code, tx_channel, macstatus);
787                 }
788                 
789                 netif_stop_queue(dev);
790                 cpmac_hw_stop(dev);
791                 if (schedule_work(&priv->reset_work))
792                         atomic_inc(&priv->reset_pending);                       
793                 if (unlikely(netif_msg_hw(priv)))
794                         cpmac_dump_regs(dev);
795         }
796 }
797
798 static irqreturn_t cpmac_irq(int irq, void *dev_id)
799 {
800         struct net_device *dev = dev_id;
801         struct cpmac_priv *priv;
802         int queue;
803         u32 status;
804
805         if (!dev)
806                 return IRQ_NONE;
807
808         priv = netdev_priv(dev);
809
810         status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
811
812         if (unlikely(netif_msg_intr(priv)))
813                 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
814                        status);
815
816         if (status & MAC_INT_TX)
817                 cpmac_end_xmit(dev, (status & 7));
818
819         if (status & MAC_INT_RX) {
820                 queue = (status >> 8) & 7;
821                 netif_rx_schedule(dev);
822                 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
823         }
824
825         cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
826
827         if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
828                 cpmac_check_status(dev);
829
830         return IRQ_HANDLED;
831 }
832
833 static void cpmac_tx_timeout(struct net_device *dev)
834 {
835         int i;
836         struct cpmac_priv *priv = netdev_priv(dev);
837
838         spin_lock(&priv->lock);
839         dev->stats.tx_errors++;
840         spin_unlock(&priv->lock);
841         if (netif_msg_tx_err(priv) && net_ratelimit())
842                 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
843
844         atomic_inc(&priv->reset_pending);
845         barrier();
846         cpmac_clear_tx(dev);
847         barrier();
848         atomic_dec(&priv->reset_pending);
849
850         netif_wake_queue(priv->dev);
851         for (i = 0; i < CPMAC_QUEUES; i++) {
852                 netif_wake_subqueue(dev, i);
853         }
854 }
855
856 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
857 {
858         struct cpmac_priv *priv = netdev_priv(dev);
859         if (!(netif_running(dev)))
860                 return -EINVAL;
861         if (!priv->phy)
862                 return -EINVAL;
863         if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
864             (cmd == SIOCSMIIREG))
865                 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
866
867         return -EOPNOTSUPP;
868 }
869
870 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
871 {
872         struct cpmac_priv *priv = netdev_priv(dev);
873
874         if (priv->phy)
875                 return phy_ethtool_gset(priv->phy, cmd);
876
877         return -EINVAL;
878 }
879
880 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
881 {
882         struct cpmac_priv *priv = netdev_priv(dev);
883
884         if (!capable(CAP_NET_ADMIN))
885                 return -EPERM;
886
887         if (priv->phy)
888                 return phy_ethtool_sset(priv->phy, cmd);
889
890         return -EINVAL;
891 }
892
893 static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
894 {
895         struct cpmac_priv *priv = netdev_priv(dev);
896
897         ring->rx_max_pending = 1024;
898         ring->rx_mini_max_pending = 1;
899         ring->rx_jumbo_max_pending = 1;
900         ring->tx_max_pending = 1;
901
902         ring->rx_pending = priv->ring_size;
903         ring->rx_mini_pending = 1;
904         ring->rx_jumbo_pending = 1;
905         ring->tx_pending = 1;
906 }
907
908 static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
909 {
910         struct cpmac_priv *priv = netdev_priv(dev);
911
912         if (netif_running(dev))
913                 return -EBUSY;
914         priv->ring_size = ring->rx_pending;
915         return 0;
916 }
917
918 static void cpmac_get_drvinfo(struct net_device *dev,
919                               struct ethtool_drvinfo *info)
920 {
921         strcpy(info->driver, "cpmac");
922         strcpy(info->version, CPMAC_VERSION);
923         info->fw_version[0] = '\0';
924         sprintf(info->bus_info, "%s", "cpmac");
925         info->regdump_len = 0;
926 }
927
928 static const struct ethtool_ops cpmac_ethtool_ops = {
929         .get_settings = cpmac_get_settings,
930         .set_settings = cpmac_set_settings,
931         .get_drvinfo = cpmac_get_drvinfo,
932         .get_link = ethtool_op_get_link,
933         .get_ringparam = cpmac_get_ringparam,
934         .set_ringparam = cpmac_set_ringparam,
935 };
936
937 static void cpmac_adjust_link(struct net_device *dev)
938 {
939         struct cpmac_priv *priv = netdev_priv(dev);
940         int new_state = 0;
941
942         spin_lock(&priv->lock);
943         if (priv->phy->link) {
944                 netif_start_queue(dev);
945                 if (priv->phy->duplex != priv->oldduplex) {
946                         new_state = 1;
947                         priv->oldduplex = priv->phy->duplex;
948                 }
949
950                 if (priv->phy->speed != priv->oldspeed) {
951                         new_state = 1;
952                         priv->oldspeed = priv->phy->speed;
953                 }
954
955                 if (!priv->oldlink) {
956                         new_state = 1;
957                         priv->oldlink = 1;
958                         netif_schedule(dev);
959                 }
960         } else if (priv->oldlink) {
961                 netif_stop_queue(dev);
962                 new_state = 1;
963                 priv->oldlink = 0;
964                 priv->oldspeed = 0;
965                 priv->oldduplex = -1;
966         }
967
968         if (new_state && netif_msg_link(priv) && net_ratelimit())
969                 phy_print_status(priv->phy);
970
971         spin_unlock(&priv->lock);
972 }
973
974 static int cpmac_open(struct net_device *dev)
975 {
976         int i, size, res;
977         struct cpmac_priv *priv = netdev_priv(dev);
978         struct resource *mem;
979         struct cpmac_desc *desc;
980         struct sk_buff *skb;
981
982         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link,
983                                 0, PHY_INTERFACE_MODE_MII);
984         if (IS_ERR(priv->phy)) {
985                 if (netif_msg_drv(priv))
986                         printk(KERN_ERR "%s: Could not attach to PHY\n",
987                                dev->name);
988                 return PTR_ERR(priv->phy);
989         }
990
991         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
992         if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
993                 if (netif_msg_drv(priv))
994                         printk(KERN_ERR "%s: failed to request registers\n",
995                                dev->name);
996                 res = -ENXIO;
997                 goto fail_reserve;
998         }
999
1000         priv->regs = ioremap(mem->start, mem->end - mem->start);
1001         if (!priv->regs) {
1002                 if (netif_msg_drv(priv))
1003                         printk(KERN_ERR "%s: failed to remap registers\n",
1004                                dev->name);
1005                 res = -ENXIO;
1006                 goto fail_remap;
1007         }
1008
1009         size = priv->ring_size + CPMAC_QUEUES;
1010         priv->desc_ring = dma_alloc_coherent(&dev->dev,
1011                                              sizeof(struct cpmac_desc) * size,
1012                                              &priv->dma_ring,
1013                                              GFP_KERNEL);
1014         if (!priv->desc_ring) {
1015                 res = -ENOMEM;
1016                 goto fail_alloc;
1017         }
1018
1019         for (i = 0; i < size; i++)
1020                 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
1021
1022         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1023         for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
1024                 skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
1025                 if (unlikely(!skb)) {
1026                         res = -ENOMEM;
1027                         goto fail_desc;
1028                 }
1029                 skb_reserve(skb, 2);
1030                 desc->skb = skb;
1031                 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1032                                                     CPMAC_SKB_SIZE,
1033                                                     DMA_FROM_DEVICE);
1034                 desc->hw_data = (u32)desc->data_mapping;
1035                 desc->buflen = CPMAC_SKB_SIZE;
1036                 desc->dataflags = CPMAC_OWN;
1037                 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1038                 desc->next->prev = desc;
1039                 desc->hw_next = (u32)desc->next->mapping;
1040         }
1041
1042         priv->rx_head->prev->hw_next = (u32)0;
1043
1044         if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
1045                                dev->name, dev))) {
1046                 if (netif_msg_drv(priv))
1047                         printk(KERN_ERR "%s: failed to obtain irq\n",
1048                                dev->name);
1049                 goto fail_irq;
1050         }
1051
1052         atomic_set(&priv->reset_pending, 0);
1053         INIT_WORK(&priv->reset_work, cpmac_hw_error);
1054         cpmac_hw_start(dev);
1055
1056         priv->phy->state = PHY_CHANGELINK;
1057         phy_start(priv->phy);
1058
1059         return 0;
1060
1061 fail_irq:
1062 fail_desc:
1063         for (i = 0; i < priv->ring_size; i++) {
1064                 if (priv->rx_head[i].skb) {
1065                         dma_unmap_single(&dev->dev,
1066                                          priv->rx_head[i].data_mapping,
1067                                          CPMAC_SKB_SIZE,
1068                                          DMA_FROM_DEVICE);
1069                         kfree_skb(priv->rx_head[i].skb);
1070                 }
1071         }
1072 fail_alloc:
1073         kfree(priv->desc_ring);
1074         iounmap(priv->regs);
1075
1076 fail_remap:
1077         release_mem_region(mem->start, mem->end - mem->start);
1078
1079 fail_reserve:
1080         phy_disconnect(priv->phy);
1081
1082         return res;
1083 }
1084
1085 static int cpmac_stop(struct net_device *dev)
1086 {
1087         int i;
1088         struct cpmac_priv *priv = netdev_priv(dev);
1089         struct resource *mem;
1090
1091         netif_stop_queue(dev);
1092
1093         cancel_work_sync(&priv->reset_work);
1094         phy_stop(priv->phy);
1095         phy_disconnect(priv->phy);
1096         priv->phy = NULL;
1097
1098         cpmac_hw_stop(dev);
1099
1100         for (i = 0; i < 8; i++)
1101                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1102         cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1103         cpmac_write(priv->regs, CPMAC_MBP, 0);
1104
1105         free_irq(dev->irq, dev);
1106         iounmap(priv->regs);
1107         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1108         release_mem_region(mem->start, mem->end - mem->start);
1109         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1110         for (i = 0; i < priv->ring_size; i++) {
1111                 if (priv->rx_head[i].skb) {
1112                         dma_unmap_single(&dev->dev,
1113                                          priv->rx_head[i].data_mapping,
1114                                          CPMAC_SKB_SIZE,
1115                                          DMA_FROM_DEVICE);
1116                         kfree_skb(priv->rx_head[i].skb);
1117                 }
1118         }
1119
1120         dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1121                           (CPMAC_QUEUES + priv->ring_size),
1122                           priv->desc_ring, priv->dma_ring);
1123         return 0;
1124 }
1125
1126 static int external_switch;
1127
1128 static int __devinit cpmac_probe(struct platform_device *pdev)
1129 {
1130         int rc, phy_id;
1131         struct resource *mem;
1132         struct cpmac_priv *priv;
1133         struct net_device *dev;
1134         struct plat_cpmac_data *pdata;
1135
1136         pdata = pdev->dev.platform_data;
1137
1138         for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1139                 if (!(pdata->phy_mask & (1 << phy_id)))
1140                         continue;
1141                 if (!cpmac_mii.phy_map[phy_id])
1142                         continue;
1143                 break;
1144         }
1145
1146         if (phy_id == PHY_MAX_ADDR) {
1147                 if (external_switch || dumb_switch)
1148                         phy_id = 0;
1149                 else {
1150                         printk(KERN_ERR "cpmac: no PHY present\n");
1151                         return -ENODEV;
1152                 }
1153         }
1154
1155         dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1156
1157         if (!dev) {
1158                 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1159                 return -ENOMEM;
1160         }
1161
1162         platform_set_drvdata(pdev, dev);
1163         priv = netdev_priv(dev);
1164
1165         priv->pdev = pdev;
1166         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1167         if (!mem) {
1168                 rc = -ENODEV;
1169                 goto fail;
1170         }
1171
1172         dev->irq = platform_get_irq_byname(pdev, "irq");
1173
1174         dev->open               = cpmac_open;
1175         dev->stop               = cpmac_stop;
1176         dev->set_config         = cpmac_config;
1177         dev->hard_start_xmit    = cpmac_start_xmit;
1178         dev->do_ioctl           = cpmac_ioctl;
1179         dev->set_multicast_list = cpmac_set_multicast_list;
1180         dev->tx_timeout         = cpmac_tx_timeout;
1181         dev->ethtool_ops        = &cpmac_ethtool_ops;
1182         dev->poll = cpmac_poll;
1183         dev->features |= NETIF_F_MULTI_QUEUE;
1184
1185         spin_lock_init(&priv->lock);
1186         spin_lock_init(&priv->rx_lock);
1187         priv->dev = dev;
1188         priv->ring_size = 64;
1189         dev->weight = max(4, priv->ring_size/4);
1190         priv->msg_enable = netif_msg_init(debug_level, 0xff);
1191         memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
1192         if (phy_id == 31) {
1193                 snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
1194                          cpmac_mii.id, phy_id);
1195         } else
1196                 snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);
1197
1198         if ((rc = register_netdev(dev))) {
1199                 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1200                        dev->name);
1201                 goto fail;
1202         }
1203
1204         if (netif_msg_probe(priv)) {
1205                 printk(KERN_INFO
1206                        "cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: "
1207                        MAC_FMT ")\n", dev->name, (void *)mem->start, dev->irq,
1208                        priv->phy_name, MAC_ARG(dev->dev_addr));
1209         }
1210         return 0;
1211
1212 fail:
1213         free_netdev(dev);
1214         return rc;
1215 }
1216
1217 static int __devexit cpmac_remove(struct platform_device *pdev)
1218 {
1219         struct net_device *dev = platform_get_drvdata(pdev);
1220         unregister_netdev(dev);
1221         free_netdev(dev);
1222         return 0;
1223 }
1224
1225 static struct platform_driver cpmac_driver = {
1226         .driver.name = "cpmac",
1227         .probe = cpmac_probe,
1228         .remove = __devexit_p(cpmac_remove),
1229 };
1230
1231 int __devinit cpmac_init(void)
1232 {
1233         u32 mask;
1234         int i, res;
1235
1236         cpmac_mii.priv = ioremap(AR7_REGS_MDIO, 256);
1237
1238         if (!cpmac_mii.priv) {
1239                 printk(KERN_ERR "Can't ioremap mdio registers\n");
1240                 return -ENXIO;
1241         }
1242
1243 #warning FIXME: unhardcode gpio&reset bits
1244         ar7_gpio_disable(26);
1245         ar7_gpio_disable(27);
1246         ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1247         ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1248         ar7_device_reset(AR7_RESET_BIT_EPHY);
1249
1250         cpmac_mii.reset(&cpmac_mii);
1251
1252         for (i = 0; i < 300000; i++)
1253                 if ((mask = cpmac_read(cpmac_mii.priv, CPMAC_MDIO_ALIVE)))
1254                         break;
1255                 else
1256                         cpu_relax();
1257
1258         mask &= 0x7fffffff;
1259         if (mask & (mask - 1)) {
1260                 external_switch = 1;
1261                 mask = 0;
1262         }
1263
1264         cpmac_mii.phy_mask = ~(mask | 0x80000000);
1265
1266         res = mdiobus_register(&cpmac_mii);
1267         if (res)
1268                 goto fail_mii;
1269
1270         res = platform_driver_register(&cpmac_driver);
1271         if (res)
1272                 goto fail_cpmac;
1273
1274         return 0;
1275
1276 fail_cpmac:
1277         mdiobus_unregister(&cpmac_mii);
1278
1279 fail_mii:
1280         iounmap(cpmac_mii.priv);
1281
1282         return res;
1283 }
1284
1285 void __devexit cpmac_exit(void)
1286 {
1287         platform_driver_unregister(&cpmac_driver);
1288         mdiobus_unregister(&cpmac_mii);
1289         iounmap(cpmac_mii.priv);
1290 }
1291
1292 module_init(cpmac_init);
1293 module_exit(cpmac_exit);