2 * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved.
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
10 #include "internal/constant_time_locl.h"
13 #include <openssl/md5.h>
14 #include <openssl/sha.h>
17 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
18 * length field. (SHA-384/512 have 128-bit length.)
20 #define MAX_HASH_BIT_COUNT_BYTES 16
23 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
24 * Currently SHA-384/512 has a 128-byte block size and that's the largest
27 #define MAX_HASH_BLOCK_SIZE 128
30 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
31 * little-endian order. The value of p is advanced by four.
33 #define u32toLE(n, p) \
34 (*((p)++)=(unsigned char)(n), \
35 *((p)++)=(unsigned char)(n>>8), \
36 *((p)++)=(unsigned char)(n>>16), \
37 *((p)++)=(unsigned char)(n>>24))
40 * These functions serialize the state of a hash and thus perform the
41 * standard "final" operation without adding the padding and length that such
42 * a function typically does.
44 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
47 u32toLE(md5->A, md_out);
48 u32toLE(md5->B, md_out);
49 u32toLE(md5->C, md_out);
50 u32toLE(md5->D, md_out);
53 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
56 l2n(sha1->h0, md_out);
57 l2n(sha1->h1, md_out);
58 l2n(sha1->h2, md_out);
59 l2n(sha1->h3, md_out);
60 l2n(sha1->h4, md_out);
63 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
65 SHA256_CTX *sha256 = ctx;
68 for (i = 0; i < 8; i++) {
69 l2n(sha256->h[i], md_out);
73 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
75 SHA512_CTX *sha512 = ctx;
78 for (i = 0; i < 8; i++) {
79 l2n8(sha512->h[i], md_out);
83 #undef LARGEST_DIGEST_CTX
84 #define LARGEST_DIGEST_CTX SHA512_CTX
87 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
88 * which ssl3_cbc_digest_record supports.
90 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
94 switch (EVP_MD_CTX_type(ctx)) {
108 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
111 * ctx: the EVP_MD_CTX from which we take the hash function.
112 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
113 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
114 * md_out_size: if non-NULL, the number of output bytes is written here.
115 * header: the 13-byte, TLS record header.
116 * data: the record data itself, less any preceding explicit IV.
117 * data_plus_mac_size: the secret, reported length of the data and MAC
118 * once the padding has been removed.
119 * data_plus_mac_plus_padding_size: the public length of the whole
120 * record, including padding.
121 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
123 * On entry: by virtue of having been through one of the remove_padding
124 * functions, above, we know that data_plus_mac_size is large enough to contain
125 * a padding byte and MAC. (If the padding was invalid, it might contain the
127 * Returns 1 on success or 0 on error
129 int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
130 unsigned char *md_out,
132 const unsigned char header[13],
133 const unsigned char *data,
134 size_t data_plus_mac_size,
135 size_t data_plus_mac_plus_padding_size,
136 const unsigned char *mac_secret,
137 size_t mac_secret_length, char is_sslv3)
141 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
143 void (*md_final_raw) (void *ctx, unsigned char *md_out);
144 void (*md_transform) (void *ctx, const unsigned char *block);
145 size_t md_size, md_block_size = 64;
146 size_t sslv3_pad_length = 40, header_length, variance_blocks,
147 len, max_mac_bytes, num_blocks,
148 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
149 size_t bits; /* at most 18 bits */
150 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
151 /* hmac_pad is the masked HMAC key. */
152 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
153 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
154 unsigned char mac_out[EVP_MAX_MD_SIZE];
156 unsigned md_out_size_u;
157 EVP_MD_CTX *md_ctx = NULL;
159 * mdLengthSize is the number of bytes in the length field that
160 * terminates * the hash.
162 size_t md_length_size = 8;
163 char length_is_big_endian = 1;
167 * This is a, hopefully redundant, check that allows us to forget about
168 * many possible overflows later in this function.
170 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
172 switch (EVP_MD_CTX_type(ctx)) {
174 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
176 md_final_raw = tls1_md5_final_raw;
178 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
180 sslv3_pad_length = 48;
181 length_is_big_endian = 0;
184 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
186 md_final_raw = tls1_sha1_final_raw;
188 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
192 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
194 md_final_raw = tls1_sha256_final_raw;
196 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
200 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
202 md_final_raw = tls1_sha256_final_raw;
204 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
208 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
210 md_final_raw = tls1_sha512_final_raw;
212 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
218 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
220 md_final_raw = tls1_sha512_final_raw;
222 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
229 * ssl3_cbc_record_digest_supported should have been called first to
230 * check that the hash function is supported.
238 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
239 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
240 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
244 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
246 1 /* record type */ +
247 2 /* record length */ ;
251 * variance_blocks is the number of blocks of the hash that we have to
252 * calculate in constant time because they could be altered by the
253 * padding value. In SSLv3, the padding must be minimal so the end of
254 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
255 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
256 * of hash termination (0x80 + 64-bit length) don't fit in the final
257 * block, we say that the final two blocks can vary based on the padding.
258 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
259 * required to be minimal. Therefore we say that the final six blocks can
260 * vary based on the padding. Later in the function, if the message is
261 * short and there obviously cannot be this many blocks then
262 * variance_blocks can be reduced.
264 variance_blocks = is_sslv3 ? 2 : 6;
266 * From now on we're dealing with the MAC, which conceptually has 13
267 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
270 len = data_plus_mac_plus_padding_size + header_length;
272 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
273 * including * |header|, assuming that there's no padding.
275 max_mac_bytes = len - md_size - 1;
276 /* num_blocks is the maximum number of hash blocks. */
278 (max_mac_bytes + 1 + md_length_size + md_block_size -
281 * In order to calculate the MAC in constant time we have to handle the
282 * final blocks specially because the padding value could cause the end
283 * to appear somewhere in the final |variance_blocks| blocks and we can't
284 * leak where. However, |num_starting_blocks| worth of data can be hashed
285 * right away because no padding value can affect whether they are
288 num_starting_blocks = 0;
290 * k is the starting byte offset into the conceptual header||data where
291 * we start processing.
295 * mac_end_offset is the index just past the end of the data to be MACed.
297 mac_end_offset = data_plus_mac_size + header_length - md_size;
299 * c is the index of the 0x80 byte in the final hash block that contains
302 c = mac_end_offset % md_block_size;
304 * index_a is the hash block number that contains the 0x80 terminating
307 index_a = mac_end_offset / md_block_size;
309 * index_b is the hash block number that contains the 64-bit hash length,
312 index_b = (mac_end_offset + md_length_size) / md_block_size;
314 * bits is the hash-length in bits. It includes the additional hash block
315 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
319 * For SSLv3, if we're going to have any starting blocks then we need at
320 * least two because the header is larger than a single block.
322 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
323 num_starting_blocks = num_blocks - variance_blocks;
324 k = md_block_size * num_starting_blocks;
327 bits = 8 * mac_end_offset;
330 * Compute the initial HMAC block. For SSLv3, the padding and secret
331 * bytes are included in |header| because they take more than a
334 bits += 8 * md_block_size;
335 memset(hmac_pad, 0, md_block_size);
336 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
337 memcpy(hmac_pad, mac_secret, mac_secret_length);
338 for (i = 0; i < md_block_size; i++)
341 md_transform(md_state.c, hmac_pad);
344 if (length_is_big_endian) {
345 memset(length_bytes, 0, md_length_size - 4);
346 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
347 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
348 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
349 length_bytes[md_length_size - 1] = (unsigned char)bits;
351 memset(length_bytes, 0, md_length_size);
352 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
353 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
354 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
355 length_bytes[md_length_size - 8] = (unsigned char)bits;
363 * The SSLv3 header is larger than a single block. overhang is
364 * the number of bytes beyond a single block that the header
365 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
366 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
367 * therefore we can be confident that the header_length will be
368 * greater than |md_block_size|. However we add a sanity check just
371 if (header_length <= md_block_size) {
372 /* Should never happen */
375 overhang = header_length - md_block_size;
376 md_transform(md_state.c, header);
377 memcpy(first_block, header + md_block_size, overhang);
378 memcpy(first_block + overhang, data, md_block_size - overhang);
379 md_transform(md_state.c, first_block);
380 for (i = 1; i < k / md_block_size - 1; i++)
381 md_transform(md_state.c, data + md_block_size * i - overhang);
383 /* k is a multiple of md_block_size. */
384 memcpy(first_block, header, 13);
385 memcpy(first_block + 13, data, md_block_size - 13);
386 md_transform(md_state.c, first_block);
387 for (i = 1; i < k / md_block_size; i++)
388 md_transform(md_state.c, data + md_block_size * i - 13);
392 memset(mac_out, 0, sizeof(mac_out));
395 * We now process the final hash blocks. For each block, we construct it
396 * in constant time. If the |i==index_a| then we'll include the 0x80
397 * bytes and zero pad etc. For each block we selectively copy it, in
398 * constant time, to |mac_out|.
400 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
402 unsigned char block[MAX_HASH_BLOCK_SIZE];
403 unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
404 unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
405 for (j = 0; j < md_block_size; j++) {
406 unsigned char b = 0, is_past_c, is_past_cp1;
407 if (k < header_length)
409 else if (k < data_plus_mac_plus_padding_size + header_length)
410 b = data[k - header_length];
413 is_past_c = is_block_a & constant_time_ge_8_s(j, c);
414 is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
416 * If this is the block containing the end of the application
417 * data, and we are at the offset for the 0x80 value, then
418 * overwrite b with 0x80.
420 b = constant_time_select_8(is_past_c, 0x80, b);
422 * If this the the block containing the end of the application
423 * data and we're past the 0x80 value then just write zero.
425 b = b & ~is_past_cp1;
427 * If this is index_b (the final block), but not index_a (the end
428 * of the data), then the 64-bit length didn't fit into index_a
429 * and we're having to add an extra block of zeros.
431 b &= ~is_block_b | is_block_a;
434 * The final bytes of one of the blocks contains the length.
436 if (j >= md_block_size - md_length_size) {
437 /* If this is index_b, write a length byte. */
438 b = constant_time_select_8(is_block_b,
441 md_length_size)], b);
446 md_transform(md_state.c, block);
447 md_final_raw(md_state.c, block);
448 /* If this is index_b, copy the hash value to |mac_out|. */
449 for (j = 0; j < md_size; j++)
450 mac_out[j] |= block[j] & is_block_b;
453 md_ctx = EVP_MD_CTX_new();
456 if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
459 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
460 memset(hmac_pad, 0x5c, sslv3_pad_length);
462 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
463 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
464 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
467 /* Complete the HMAC in the standard manner. */
468 for (i = 0; i < md_block_size; i++)
471 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
472 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
475 /* TODO(size_t): Convert me */
476 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
477 if (ret && md_out_size)
478 *md_out_size = md_out_size_u;
479 EVP_MD_CTX_free(md_ctx);
483 EVP_MD_CTX_free(md_ctx);
488 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
489 * we can ensure the number of blocks processed is equal for all cases by
490 * digesting additional data.
493 int tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
494 EVP_MD_CTX *mac_ctx, const unsigned char *data,
495 size_t data_len, size_t orig_len)
497 size_t block_size, digest_pad, blocks_data, blocks_orig;
498 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
500 block_size = EVP_MD_CTX_block_size(mac_ctx);
502 * We are in FIPS mode if we get this far so we know we have only SHA*
503 * digests and TLS to deal with.
504 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
506 * Additional header is 13 bytes. To get the number of digest blocks
507 * processed round up the amount of data plus padding to the nearest
508 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
510 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
512 * blocks = (payload_len + digest_pad + 12)/block_size + 1
513 * HMAC adds a constant overhead.
514 * We're ultimately only interested in differences so this becomes
515 * blocks = (payload_len + 29)/128
516 * for SHA384/SHA512 and
517 * blocks = (payload_len + 21)/64
520 digest_pad = block_size == 64 ? 21 : 29;
521 blocks_orig = (orig_len + digest_pad) / block_size;
522 blocks_data = (data_len + digest_pad) / block_size;
524 * MAC enough blocks to make up the difference between the original and
525 * actual lengths plus one extra block to ensure this is never a no op.
526 * The "data" pointer should always have enough space to perform this
527 * operation as it is large enough for a maximum length TLS buffer.
529 return EVP_DigestSignUpdate(mac_ctx, data,
530 (blocks_orig - blocks_data + 1) * block_size);