Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / security / keys / gc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Key garbage collector
3  *
4  * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/security.h>
10 #include <keys/keyring-type.h>
11 #include "internal.h"
12
13 /*
14  * Delay between key revocation/expiry in seconds
15  */
16 unsigned key_gc_delay = 5 * 60;
17
18 /*
19  * Reaper for unused keys.
20  */
21 static void key_garbage_collector(struct work_struct *work);
22 DECLARE_WORK(key_gc_work, key_garbage_collector);
23
24 /*
25  * Reaper for links from keyrings to dead keys.
26  */
27 static void key_gc_timer_func(struct timer_list *);
28 static DEFINE_TIMER(key_gc_timer, key_gc_timer_func);
29
30 static time64_t key_gc_next_run = TIME64_MAX;
31 static struct key_type *key_gc_dead_keytype;
32
33 static unsigned long key_gc_flags;
34 #define KEY_GC_KEY_EXPIRED      0       /* A key expired and needs unlinking */
35 #define KEY_GC_REAP_KEYTYPE     1       /* A keytype is being unregistered */
36 #define KEY_GC_REAPING_KEYTYPE  2       /* Cleared when keytype reaped */
37
38
39 /*
40  * Any key whose type gets unregistered will be re-typed to this if it can't be
41  * immediately unlinked.
42  */
43 struct key_type key_type_dead = {
44         .name = ".dead",
45 };
46
47 /*
48  * Schedule a garbage collection run.
49  * - time precision isn't particularly important
50  */
51 void key_schedule_gc(time64_t gc_at)
52 {
53         unsigned long expires;
54         time64_t now = ktime_get_real_seconds();
55
56         kenter("%lld", gc_at - now);
57
58         if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
59                 kdebug("IMMEDIATE");
60                 schedule_work(&key_gc_work);
61         } else if (gc_at < key_gc_next_run) {
62                 kdebug("DEFERRED");
63                 key_gc_next_run = gc_at;
64                 expires = jiffies + (gc_at - now) * HZ;
65                 mod_timer(&key_gc_timer, expires);
66         }
67 }
68
69 /*
70  * Schedule a dead links collection run.
71  */
72 void key_schedule_gc_links(void)
73 {
74         set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
75         schedule_work(&key_gc_work);
76 }
77
78 /*
79  * Some key's cleanup time was met after it expired, so we need to get the
80  * reaper to go through a cycle finding expired keys.
81  */
82 static void key_gc_timer_func(struct timer_list *unused)
83 {
84         kenter("");
85         key_gc_next_run = TIME64_MAX;
86         key_schedule_gc_links();
87 }
88
89 /*
90  * Reap keys of dead type.
91  *
92  * We use three flags to make sure we see three complete cycles of the garbage
93  * collector: the first to mark keys of that type as being dead, the second to
94  * collect dead links and the third to clean up the dead keys.  We have to be
95  * careful as there may already be a cycle in progress.
96  *
97  * The caller must be holding key_types_sem.
98  */
99 void key_gc_keytype(struct key_type *ktype)
100 {
101         kenter("%s", ktype->name);
102
103         key_gc_dead_keytype = ktype;
104         set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
105         smp_mb();
106         set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
107
108         kdebug("schedule");
109         schedule_work(&key_gc_work);
110
111         kdebug("sleep");
112         wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE,
113                     TASK_UNINTERRUPTIBLE);
114
115         key_gc_dead_keytype = NULL;
116         kleave("");
117 }
118
119 /*
120  * Garbage collect a list of unreferenced, detached keys
121  */
122 static noinline void key_gc_unused_keys(struct list_head *keys)
123 {
124         while (!list_empty(keys)) {
125                 struct key *key =
126                         list_entry(keys->next, struct key, graveyard_link);
127                 short state = key->state;
128
129                 list_del(&key->graveyard_link);
130
131                 kdebug("- %u", key->serial);
132                 key_check(key);
133
134                 /* Throw away the key data if the key is instantiated */
135                 if (state == KEY_IS_POSITIVE && key->type->destroy)
136                         key->type->destroy(key);
137
138                 security_key_free(key);
139
140                 /* deal with the user's key tracking and quota */
141                 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
142                         spin_lock(&key->user->lock);
143                         key->user->qnkeys--;
144                         key->user->qnbytes -= key->quotalen;
145                         spin_unlock(&key->user->lock);
146                 }
147
148                 atomic_dec(&key->user->nkeys);
149                 if (state != KEY_IS_UNINSTANTIATED)
150                         atomic_dec(&key->user->nikeys);
151
152                 key_user_put(key->user);
153                 key_put_tag(key->domain_tag);
154                 kfree(key->description);
155
156                 memzero_explicit(key, sizeof(*key));
157                 kmem_cache_free(key_jar, key);
158         }
159 }
160
161 /*
162  * Garbage collector for unused keys.
163  *
164  * This is done in process context so that we don't have to disable interrupts
165  * all over the place.  key_put() schedules this rather than trying to do the
166  * cleanup itself, which means key_put() doesn't have to sleep.
167  */
168 static void key_garbage_collector(struct work_struct *work)
169 {
170         static LIST_HEAD(graveyard);
171         static u8 gc_state;             /* Internal persistent state */
172 #define KEY_GC_REAP_AGAIN       0x01    /* - Need another cycle */
173 #define KEY_GC_REAPING_LINKS    0x02    /* - We need to reap links */
174 #define KEY_GC_SET_TIMER        0x04    /* - We need to restart the timer */
175 #define KEY_GC_REAPING_DEAD_1   0x10    /* - We need to mark dead keys */
176 #define KEY_GC_REAPING_DEAD_2   0x20    /* - We need to reap dead key links */
177 #define KEY_GC_REAPING_DEAD_3   0x40    /* - We need to reap dead keys */
178 #define KEY_GC_FOUND_DEAD_KEY   0x80    /* - We found at least one dead key */
179
180         struct rb_node *cursor;
181         struct key *key;
182         time64_t new_timer, limit;
183
184         kenter("[%lx,%x]", key_gc_flags, gc_state);
185
186         limit = ktime_get_real_seconds();
187         if (limit > key_gc_delay)
188                 limit -= key_gc_delay;
189         else
190                 limit = key_gc_delay;
191
192         /* Work out what we're going to be doing in this pass */
193         gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
194         gc_state <<= 1;
195         if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
196                 gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
197
198         if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
199                 gc_state |= KEY_GC_REAPING_DEAD_1;
200         kdebug("new pass %x", gc_state);
201
202         new_timer = TIME64_MAX;
203
204         /* As only this function is permitted to remove things from the key
205          * serial tree, if cursor is non-NULL then it will always point to a
206          * valid node in the tree - even if lock got dropped.
207          */
208         spin_lock(&key_serial_lock);
209         cursor = rb_first(&key_serial_tree);
210
211 continue_scanning:
212         while (cursor) {
213                 key = rb_entry(cursor, struct key, serial_node);
214                 cursor = rb_next(cursor);
215
216                 if (refcount_read(&key->usage) == 0)
217                         goto found_unreferenced_key;
218
219                 if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
220                         if (key->type == key_gc_dead_keytype) {
221                                 gc_state |= KEY_GC_FOUND_DEAD_KEY;
222                                 set_bit(KEY_FLAG_DEAD, &key->flags);
223                                 key->perm = 0;
224                                 goto skip_dead_key;
225                         } else if (key->type == &key_type_keyring &&
226                                    key->restrict_link) {
227                                 goto found_restricted_keyring;
228                         }
229                 }
230
231                 if (gc_state & KEY_GC_SET_TIMER) {
232                         if (key->expiry > limit && key->expiry < new_timer) {
233                                 kdebug("will expire %x in %lld",
234                                        key_serial(key), key->expiry - limit);
235                                 new_timer = key->expiry;
236                         }
237                 }
238
239                 if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
240                         if (key->type == key_gc_dead_keytype)
241                                 gc_state |= KEY_GC_FOUND_DEAD_KEY;
242
243                 if ((gc_state & KEY_GC_REAPING_LINKS) ||
244                     unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
245                         if (key->type == &key_type_keyring)
246                                 goto found_keyring;
247                 }
248
249                 if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
250                         if (key->type == key_gc_dead_keytype)
251                                 goto destroy_dead_key;
252
253         skip_dead_key:
254                 if (spin_is_contended(&key_serial_lock) || need_resched())
255                         goto contended;
256         }
257
258 contended:
259         spin_unlock(&key_serial_lock);
260
261 maybe_resched:
262         if (cursor) {
263                 cond_resched();
264                 spin_lock(&key_serial_lock);
265                 goto continue_scanning;
266         }
267
268         /* We've completed the pass.  Set the timer if we need to and queue a
269          * new cycle if necessary.  We keep executing cycles until we find one
270          * where we didn't reap any keys.
271          */
272         kdebug("pass complete");
273
274         if (gc_state & KEY_GC_SET_TIMER && new_timer != (time64_t)TIME64_MAX) {
275                 new_timer += key_gc_delay;
276                 key_schedule_gc(new_timer);
277         }
278
279         if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2) ||
280             !list_empty(&graveyard)) {
281                 /* Make sure that all pending keyring payload destructions are
282                  * fulfilled and that people aren't now looking at dead or
283                  * dying keys that they don't have a reference upon or a link
284                  * to.
285                  */
286                 kdebug("gc sync");
287                 synchronize_rcu();
288         }
289
290         if (!list_empty(&graveyard)) {
291                 kdebug("gc keys");
292                 key_gc_unused_keys(&graveyard);
293         }
294
295         if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
296                                  KEY_GC_REAPING_DEAD_2))) {
297                 if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
298                         /* No remaining dead keys: short circuit the remaining
299                          * keytype reap cycles.
300                          */
301                         kdebug("dead short");
302                         gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
303                         gc_state |= KEY_GC_REAPING_DEAD_3;
304                 } else {
305                         gc_state |= KEY_GC_REAP_AGAIN;
306                 }
307         }
308
309         if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
310                 kdebug("dead wake");
311                 smp_mb();
312                 clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
313                 wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
314         }
315
316         if (gc_state & KEY_GC_REAP_AGAIN)
317                 schedule_work(&key_gc_work);
318         kleave(" [end %x]", gc_state);
319         return;
320
321         /* We found an unreferenced key - once we've removed it from the tree,
322          * we can safely drop the lock.
323          */
324 found_unreferenced_key:
325         kdebug("unrefd key %d", key->serial);
326         rb_erase(&key->serial_node, &key_serial_tree);
327         spin_unlock(&key_serial_lock);
328
329         list_add_tail(&key->graveyard_link, &graveyard);
330         gc_state |= KEY_GC_REAP_AGAIN;
331         goto maybe_resched;
332
333         /* We found a restricted keyring and need to update the restriction if
334          * it is associated with the dead key type.
335          */
336 found_restricted_keyring:
337         spin_unlock(&key_serial_lock);
338         keyring_restriction_gc(key, key_gc_dead_keytype);
339         goto maybe_resched;
340
341         /* We found a keyring and we need to check the payload for links to
342          * dead or expired keys.  We don't flag another reap immediately as we
343          * have to wait for the old payload to be destroyed by RCU before we
344          * can reap the keys to which it refers.
345          */
346 found_keyring:
347         spin_unlock(&key_serial_lock);
348         keyring_gc(key, limit);
349         goto maybe_resched;
350
351         /* We found a dead key that is still referenced.  Reset its type and
352          * destroy its payload with its semaphore held.
353          */
354 destroy_dead_key:
355         spin_unlock(&key_serial_lock);
356         kdebug("destroy key %d", key->serial);
357         down_write(&key->sem);
358         key->type = &key_type_dead;
359         if (key_gc_dead_keytype->destroy)
360                 key_gc_dead_keytype->destroy(key);
361         memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
362         up_write(&key->sem);
363         goto maybe_resched;
364 }