fixes ifxmips uboot compile, adds uart uploadable image and fix for wippies homebox...
[oweals/openwrt.git] / package / uboot-ifxmips / files / drivers / ifx_sw.c
1 /*
2  * DANUBE internal switch ethernet driver.
3  *
4  * (C) Copyright 2003
5  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6  *
7  * See file CREDITS for list of people who contributed to this
8  * project.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of
13  * the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23  * MA 02111-1307 USA
24  */
25
26
27 #include <common.h>
28
29 #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
30         && defined(CONFIG_DANUBE_SWITCH)
31
32 #include <malloc.h>
33 #include <net.h>
34 #include <asm/danube.h>
35 #include <asm/addrspace.h>
36 #include <asm/pinstrap.h>
37
38 #define MII_MODE 1
39 #define REV_MII_MODE 2
40
41 #define TX_CHAN_NO   7
42 #define RX_CHAN_NO   6
43
44 #define NUM_RX_DESC     PKTBUFSRX
45 #define NUM_TX_DESC     8
46 #define MAX_PACKET_SIZE         1536
47 #define TOUT_LOOP       100
48 #define PHY0_ADDR       1 /*fixme: set the correct value here*/
49
50 #define DMA_WRITE_REG(reg, value) *((volatile u32 *)reg) = (u32)value
51 #define DMA_READ_REG(reg, value)    value = (u32)*((volatile u32*)reg)
52
53 #define SW_WRITE_REG(reg, value)  *((volatile u32*)reg) = (u32)value
54 #define SW_READ_REG(reg, value)   value = (u32)*((volatile u32*)reg)
55
56 #define TANTOS_CHIP_ID 0x2599
57
58 typedef struct
59 {
60         union
61         {
62                 struct
63                 {
64                         volatile u32 OWN        :1;
65                         volatile u32 C          :1;
66                         volatile u32 Sop        :1;
67                         volatile u32 Eop        :1;
68                         volatile u32 reserved   :3;
69                         volatile u32 Byteoffset :2;
70                         volatile u32 reserve    :7;
71                         volatile u32 DataLen    :16;
72                 }field;
73
74                 volatile u32 word;
75         }status;
76
77         volatile u32 DataPtr;
78 } danube_rx_descriptor_t;
79
80 typedef struct
81 {
82         union
83         {
84                 struct
85                 {
86                         volatile u32 OWN        :1;
87                         volatile u32 C          :1;
88                         volatile u32 Sop        :1;
89                         volatile u32 Eop        :1;
90                         volatile u32 Byteoffset :5;
91                         volatile u32 reserved   :7;
92                         volatile u32 DataLen    :16;
93                 }field;
94
95                 volatile u32 word;
96         }status;
97
98         volatile u32 DataPtr;
99 } danube_tx_descriptor_t;
100
101
102
103
104 static danube_rx_descriptor_t rx_des_ring[NUM_RX_DESC] __attribute__ ((aligned(8)));
105 static danube_tx_descriptor_t tx_des_ring[NUM_TX_DESC] __attribute__ ((aligned(8)));
106 static int tx_num, rx_num;
107
108 int danube_switch_init(struct eth_device *dev, bd_t * bis);
109 int danube_switch_send(struct eth_device *dev, volatile void *packet,int length);
110 int danube_switch_recv(struct eth_device *dev);
111 void danube_switch_halt(struct eth_device *dev);
112 static void danube_init_switch_chip(int mode);
113 static void danube_dma_init(void);
114
115
116
117 int danube_switch_initialize(bd_t * bis)
118 {
119         struct eth_device *dev;
120         unsigned short chipid;
121
122 #if 0
123         printf("Entered danube_switch_initialize()\n");
124 #endif
125
126         if (!(dev = (struct eth_device *) malloc (sizeof *dev)))
127         {
128                 printf("Failed to allocate memory\n");
129                 return 0;
130         }
131         memset(dev, 0, sizeof(*dev));
132
133         danube_dma_init();
134         danube_init_switch_chip(REV_MII_MODE);
135
136 #ifdef CLK_OUT2_25MHZ
137         *DANUBE_GPIO_P0_DIR=0x0000ae78;
138         *DANUBE_GPIO_P0_ALTSEL0=0x00008078;
139         //joelin for Mii-1       *DANUBE_GPIO_P0_ALTSEL1=0x80000080;
140         *DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1
141         *DANUBE_CGU_IFCCR=0x00400010;
142         *DANUBE_GPIO_P0_OD=0x0000ae78;
143 #endif
144
145         /*patch for 6996*/
146
147         *DANUBE_RCU_RST_REQ |=1;
148         mdelay(200);
149         *DANUBE_RCU_RST_REQ &=(unsigned long)~1;
150         mdelay(1);
151         /*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
152         *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
153         */
154         /*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
155         *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
156         */
157         /***************/
158         sprintf(dev->name, "danube Switch");
159         dev->init = danube_switch_init;
160         dev->halt = danube_switch_halt;
161         dev->send = danube_switch_send;
162         dev->recv = danube_switch_recv;
163
164         eth_register(dev);
165
166         while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
167         *DANUBE_PPE_ETOP_MDIO_ACC =0xc1010000;
168         while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
169         chipid = (unsigned short)(*DANUBE_PPE_ETOP_MDIO_ACC & 0xffff);
170
171         if (chipid != TANTOS_CHIP_ID) // not tantos switch.
172         {
173                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
174                 *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
175                 while((*DANUBE_PPE_ETOP_MDIO_ACC)&0x80000000);
176                 *DANUBE_PPE_ETOP_MDIO_ACC =0x8003840F;
177                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
178                 *DANUBE_PPE_ETOP_MDIO_ACC =0x8005840F;
179                 //while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
180                 //*DANUBE_PPE_ETOP_MDIO_ACC =0x8006840F;
181                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
182                 *DANUBE_PPE_ETOP_MDIO_ACC =0x8007840F;
183                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
184                 *DANUBE_PPE_ETOP_MDIO_ACC =0x8008840F;
185                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
186                 *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
187                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
188                 *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
189 #ifdef CLK_OUT2_25MHZ
190                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
191                 *DANUBE_PPE_ETOP_MDIO_ACC =0x80334000;
192 #endif
193         }
194         else // Tantos switch chip
195         {
196                 //printf("Tantos Switch detected!!\n\r");
197
198                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
199                 *DANUBE_PPE_ETOP_MDIO_ACC =0x80a10004;
200
201                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
202                 *DANUBE_PPE_ETOP_MDIO_ACC =0x80c10004;
203
204                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
205                 *DANUBE_PPE_ETOP_MDIO_ACC =0x80f50773;
206
207                 /* Software workaround. */
208                 /* PHY reset from P0 to P4. */
209                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
210
211                 mdelay(1);
212                 *DANUBE_PPE_ETOP_MDIO_ACC =0x81218000;
213                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
214                 mdelay(1);
215                 /* P0 */
216                 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200400;
217                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
218                 mdelay(1);
219                 /* P1 */
220                 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200420;
221                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
222                 mdelay(1);
223                 /* P2 */
224                 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200440;
225                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
226                 mdelay(1);
227                 /* P3 */
228                 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200460;
229                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
230                 mdelay(1);
231                 /* p4 */
232                 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200480;
233                 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
234                 mdelay(1);
235         }
236
237         return 1;
238 }
239
240 int danube_switch_init(struct eth_device *dev, bd_t * bis)
241 {
242         int i;
243
244         tx_num=0;
245         rx_num=0;
246
247         /* Reset DMA */
248 //      serial_puts("i \n\0");
249
250         *DANUBE_DMA_CS=RX_CHAN_NO;
251         *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
252         *DANUBE_DMA_CPOLL= 0x80000040;
253         /*set descriptor base*/
254         *DANUBE_DMA_CDBA=(u32)rx_des_ring;
255         *DANUBE_DMA_CDLEN=NUM_RX_DESC;
256         *DANUBE_DMA_CIE = 0;
257         *DANUBE_DMA_CCTRL=0x30000;
258
259         *DANUBE_DMA_CS=TX_CHAN_NO;
260         *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
261         *DANUBE_DMA_CPOLL= 0x80000040;
262         *DANUBE_DMA_CDBA=(u32)tx_des_ring;
263         *DANUBE_DMA_CDLEN=NUM_TX_DESC;
264         *DANUBE_DMA_CIE = 0;
265         *DANUBE_DMA_CCTRL=0x30100;
266
267         for(i=0;i < NUM_RX_DESC; i++)
268         {
269                 danube_rx_descriptor_t * rx_desc = KSEG1ADDR(&rx_des_ring[i]);
270                 rx_desc->status.word=0;
271                 rx_desc->status.field.OWN=1;
272                 rx_desc->status.field.DataLen=PKTSIZE_ALIGN;   /* 1536  */
273                 rx_desc->DataPtr=(u32)KSEG1ADDR(NetRxPackets[i]);
274         }
275
276         for(i=0;i < NUM_TX_DESC; i++)
277         {
278                 danube_tx_descriptor_t * tx_desc = KSEG1ADDR(&tx_des_ring[i]);
279                 memset(tx_desc, 0, sizeof(tx_des_ring[0]));
280         }
281                 /* turn on DMA rx & tx channel
282                 */
283         *DANUBE_DMA_CS=RX_CHAN_NO;
284         *DANUBE_DMA_CCTRL|=1;/*reset and turn on the channel*/
285
286         return 0;
287 }
288
289 void danube_switch_halt(struct eth_device *dev)
290 {
291         int i;
292         for(i=0;i<8;i++)
293         {
294                 *DANUBE_DMA_CS=i;
295                 *DANUBE_DMA_CCTRL&=~1;/*stop the dma channel*/
296         }
297 //      udelay(1000000);
298 }
299
300 int danube_switch_send(struct eth_device *dev, volatile void *packet,int length)
301 {
302
303         int i;
304         int res = -1;
305
306         danube_tx_descriptor_t * tx_desc= KSEG1ADDR(&tx_des_ring[tx_num]);
307
308         if (length <= 0)
309         {
310                 printf ("%s: bad packet size: %d\n", dev->name, length);
311                 goto Done;
312         }
313
314         for(i=0; tx_desc->status.field.OWN==1; i++)
315         {
316                 if(i>=TOUT_LOOP)
317                 {
318                         printf("NO Tx Descriptor...");
319                         goto Done;
320                 }
321         }
322
323         //serial_putc('s');
324
325         tx_desc->status.field.Sop=1;
326         tx_desc->status.field.Eop=1;
327         tx_desc->status.field.C=0;
328         tx_desc->DataPtr = (u32)KSEG1ADDR(packet);
329         if(length<60)
330                 tx_desc->status.field.DataLen = 60;
331         else
332                 tx_desc->status.field.DataLen = (u32)length;
333
334         asm("SYNC");
335         tx_desc->status.field.OWN=1;
336
337         res=length;
338         tx_num++;
339         if(tx_num==NUM_TX_DESC) tx_num=0;
340         *DANUBE_DMA_CS=TX_CHAN_NO;
341
342         if(!(*DANUBE_DMA_CCTRL & 1))
343                 *DANUBE_DMA_CCTRL|=1;
344
345 Done:
346         return res;
347 }
348
349 int danube_switch_recv(struct eth_device *dev)
350 {
351         int length  = 0;
352         danube_rx_descriptor_t * rx_desc;
353
354         for (;;)
355         {
356                 rx_desc = KSEG1ADDR(&rx_des_ring[rx_num]);
357
358                 if ((rx_desc->status.field.C == 0) || (rx_desc->status.field.OWN == 1))
359                 {
360                         break;
361                 }
362
363                 length = rx_desc->status.field.DataLen;
364                 if (length)
365                 {
366                         NetReceive((void*)KSEG1ADDR(NetRxPackets[rx_num]), length - 4);
367                 //      serial_putc('*');
368                 }
369                 else
370                 {
371                         printf("Zero length!!!\n");
372                 }
373
374                 rx_desc->status.field.Sop=0;
375                 rx_desc->status.field.Eop=0;
376                 rx_desc->status.field.C=0;
377                 rx_desc->status.field.DataLen=PKTSIZE_ALIGN;
378                 rx_desc->status.field.OWN=1;
379                 rx_num++;
380                 if(rx_num==NUM_RX_DESC) rx_num=0;
381
382         }
383
384         return length;
385 }
386
387
388 static void danube_init_switch_chip(int mode)
389 {
390         /*get and set mac address for MAC*/
391         char *tmp;
392         tmp = getenv ("ethaddr");
393         if (NULL == tmp) {
394                 printf("Can't get environment ethaddr!!!\n");
395         //      return NULL;
396         } else {
397                 printf("ethaddr=%s\n", tmp);
398         }
399         *DANUBE_PMU_PWDCR = *DANUBE_PMU_PWDCR & 0xFFFFEFDF;
400         *DANUBE_PPE32_ETOP_MDIO_CFG &= ~0x6;
401         *DANUBE_PPE32_ENET_MAC_CFG = 0x187;
402
403         // turn on port0, set to rmii and turn off port1.
404         if (mode==REV_MII_MODE)
405         {
406                 *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x0000000a;
407         }
408         else if (mode == MII_MODE)
409         {
410                 *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x00000008;
411         }
412
413         *DANUBE_PPE32_ETOP_IG_PLEN_CTRL = 0x4005ee; // set packetlen.
414         *ENET_MAC_CFG |= 1<<11; /*enable the crc*/
415         return;
416 }
417
418
419 static void danube_dma_init(void)
420 {
421 //      serial_puts("d \n\0");
422
423         *DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/
424         /* Reset DMA */
425         *DANUBE_DMA_CTRL|=1;
426         *DANUBE_DMA_IRNEN=0;/*disable all the interrupts first*/
427
428         /* Clear Interrupt Status Register */
429         *DANUBE_DMA_IRNCR=0xfffff;
430         /*disable all the dma interrupts*/
431         *DANUBE_DMA_IRNEN=0;
432         /*disable channel 0 and channel 1 interrupts*/
433
434         *DANUBE_DMA_CS=RX_CHAN_NO;
435         *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
436         *DANUBE_DMA_CPOLL= 0x80000040;
437         /*set descriptor base*/
438         *DANUBE_DMA_CDBA=(u32)rx_des_ring;
439         *DANUBE_DMA_CDLEN=NUM_RX_DESC;
440         *DANUBE_DMA_CIE = 0;
441         *DANUBE_DMA_CCTRL=0x30000;
442
443         *DANUBE_DMA_CS=TX_CHAN_NO;
444         *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
445         *DANUBE_DMA_CPOLL= 0x80000040;
446         *DANUBE_DMA_CDBA=(u32)tx_des_ring;
447         *DANUBE_DMA_CDLEN=NUM_TX_DESC;
448         *DANUBE_DMA_CIE = 0;
449         *DANUBE_DMA_CCTRL=0x30100;
450         /*enable the poll function and set the poll counter*/
451         //*DANUBE_DMA_CPOLL=DANUBE_DMA_POLL_EN | (DANUBE_DMA_POLL_COUNT<<4);
452         /*set port properties, enable endian conversion for switch*/
453         *DANUBE_DMA_PS=0;
454         *DANUBE_DMA_PCTRL|=0xf<<8;/*enable 32 bit endian conversion*/
455
456         return;
457 }
458
459 #endif