dnsdomainname,hostname: make NOEXEC
[oweals/busybox.git] / networking / tls.c
1 /*
2  * Copyright (C) 2017 Denys Vlasenko
3  *
4  * Licensed under GPLv2, see file LICENSE in this source tree.
5  */
6 //config:config TLS
7 //config:       bool #No description makes it a hidden option
8 //config:       default n
9
10 //kbuild:lib-$(CONFIG_TLS) += tls.o
11 //kbuild:lib-$(CONFIG_TLS) += tls_pstm.o
12 //kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o
13 //kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o
14 //kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o
15 //kbuild:lib-$(CONFIG_TLS) += tls_rsa.o
16 //kbuild:lib-$(CONFIG_TLS) += tls_aes.o
17 ////kbuild:lib-$(CONFIG_TLS) += tls_aes_gcm.o
18
19 #include "tls.h"
20
21 //Tested against kernel.org:
22 //TLS 1.2
23 #define TLS_MAJ 3
24 #define TLS_MIN 3
25 //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA // ok, recvs SERVER_KEY_EXCHANGE *** matrixssl uses this on my box
26 //#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE
27 //#define CIPHER_ID TLS_DH_anon_WITH_AES_256_CBC_SHA // SSL_ALERT_HANDSHAKE_FAILURE
28 //^^^^^^^^^^^^^^^^^^^^^^^ (tested b/c this one doesn't req server certs... no luck, server refuses it)
29 //#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 // SSL_ALERT_HANDSHAKE_FAILURE
30 //#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
31 //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 // ok, recvs SERVER_KEY_EXCHANGE
32 //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
33 //#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
34 //#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
35 //#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
36 //#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
37 //#define CIPHER_ID TLS_RSA_WITH_AES_256_GCM_SHA384 // ok, no SERVER_KEY_EXCHANGE
38 //#define CIPHER_ID TLS_RSA_WITH_AES_128_GCM_SHA256 // ok, no SERVER_KEY_EXCHANGE *** select this?
39
40 // works against "openssl s_server -cipher NULL"
41 // and against wolfssl-3.9.10-stable/examples/server/server.c:
42 //#define CIPHER_ID1 TLS_RSA_WITH_NULL_SHA256 // for testing (does everything except encrypting)
43
44 // works against wolfssl-3.9.10-stable/examples/server/server.c
45 // works for kernel.org
46 // does not work for cdn.kernel.org (e.g. downloading an actual tarball, not a web page)
47 //  getting alert 40 "handshake failure" at once
48 //  with GNU Wget 1.18, they agree on TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC02F) cipher
49 //  fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES256-SHA256
50 //  fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES256-GCM-SHA384
51 //  fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-SHA256
52 //  ok:   openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-GCM-SHA256
53 //  ok:   openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-SHA
54 //        (TLS_RSA_WITH_AES_128_CBC_SHA - in TLS 1.2 it's mandated to be always supported)
55 #define CIPHER_ID1  TLS_RSA_WITH_AES_256_CBC_SHA256 // no SERVER_KEY_EXCHANGE from peer
56 // Works with "wget https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.5.tar.xz"
57 #define CIPHER_ID2  TLS_RSA_WITH_AES_128_CBC_SHA
58
59
60 #define TLS_DEBUG      0
61 #define TLS_DEBUG_HASH 0
62 #define TLS_DEBUG_DER  0
63 #define TLS_DEBUG_FIXED_SECRETS 0
64 #if 0
65 # define dump_raw_out(...) dump_hex(__VA_ARGS__)
66 #else
67 # define dump_raw_out(...) ((void)0)
68 #endif
69 #if 0
70 # define dump_raw_in(...) dump_hex(__VA_ARGS__)
71 #else
72 # define dump_raw_in(...) ((void)0)
73 #endif
74
75 #if TLS_DEBUG
76 # define dbg(...) fprintf(stderr, __VA_ARGS__)
77 #else
78 # define dbg(...) ((void)0)
79 #endif
80
81 #if TLS_DEBUG_DER
82 # define dbg_der(...) fprintf(stderr, __VA_ARGS__)
83 #else
84 # define dbg_der(...) ((void)0)
85 #endif
86
87 #define RECORD_TYPE_CHANGE_CIPHER_SPEC  20
88 #define RECORD_TYPE_ALERT               21
89 #define RECORD_TYPE_HANDSHAKE           22
90 #define RECORD_TYPE_APPLICATION_DATA    23
91
92 #define HANDSHAKE_HELLO_REQUEST         0
93 #define HANDSHAKE_CLIENT_HELLO          1
94 #define HANDSHAKE_SERVER_HELLO          2
95 #define HANDSHAKE_HELLO_VERIFY_REQUEST  3
96 #define HANDSHAKE_NEW_SESSION_TICKET    4
97 #define HANDSHAKE_CERTIFICATE           11
98 #define HANDSHAKE_SERVER_KEY_EXCHANGE   12
99 #define HANDSHAKE_CERTIFICATE_REQUEST   13
100 #define HANDSHAKE_SERVER_HELLO_DONE     14
101 #define HANDSHAKE_CERTIFICATE_VERIFY    15
102 #define HANDSHAKE_CLIENT_KEY_EXCHANGE   16
103 #define HANDSHAKE_FINISHED              20
104
105 #define SSL_NULL_WITH_NULL_NULL                 0x0000
106 #define SSL_RSA_WITH_NULL_MD5                   0x0001
107 #define SSL_RSA_WITH_NULL_SHA                   0x0002
108 #define SSL_RSA_WITH_RC4_128_MD5                0x0004
109 #define SSL_RSA_WITH_RC4_128_SHA                0x0005
110 #define SSL_RSA_WITH_3DES_EDE_CBC_SHA           0x000A  /* 10 */
111 #define TLS_RSA_WITH_AES_128_CBC_SHA            0x002F  /* 47 */
112 #define TLS_RSA_WITH_AES_256_CBC_SHA            0x0035  /* 53 */
113 #define TLS_RSA_WITH_NULL_SHA256                0x003B  /* 59 */
114
115 #define TLS_EMPTY_RENEGOTIATION_INFO_SCSV       0x00FF
116
117 #define TLS_RSA_WITH_IDEA_CBC_SHA               0x0007  /* 7 */
118 #define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA       0x0016  /* 22 */
119 #define SSL_DH_anon_WITH_RC4_128_MD5            0x0018  /* 24 */
120 #define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA       0x001B  /* 27 */
121 #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA        0x0033  /* 51 */
122 #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA        0x0039  /* 57 */
123 #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256     0x0067  /* 103 */
124 #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256     0x006B  /* 107 */
125 #define TLS_DH_anon_WITH_AES_128_CBC_SHA        0x0034  /* 52 */
126 #define TLS_DH_anon_WITH_AES_256_CBC_SHA        0x003A  /* 58 */
127 #define TLS_RSA_WITH_AES_128_CBC_SHA256         0x003C  /* 60 */
128 #define TLS_RSA_WITH_AES_256_CBC_SHA256         0x003D  /* 61 */
129 #define TLS_RSA_WITH_SEED_CBC_SHA               0x0096  /* 150 */
130 #define TLS_PSK_WITH_AES_128_CBC_SHA            0x008C  /* 140 */
131 #define TLS_PSK_WITH_AES_128_CBC_SHA256         0x00AE  /* 174 */
132 #define TLS_PSK_WITH_AES_256_CBC_SHA384         0x00AF  /* 175 */
133 #define TLS_PSK_WITH_AES_256_CBC_SHA            0x008D  /* 141 */
134 #define TLS_DHE_PSK_WITH_AES_128_CBC_SHA        0x0090  /* 144 */
135 #define TLS_DHE_PSK_WITH_AES_256_CBC_SHA        0x0091  /* 145 */
136 #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA     0xC004  /* 49156 */
137 #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA     0xC005  /* 49157 */
138 #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA    0xC009  /* 49161 */
139 #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA    0xC00A  /* 49162 */
140 #define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA     0xC012  /* 49170 */
141 #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA      0xC013  /* 49171 */
142 #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA      0xC014  /* 49172 */
143 #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA       0xC00E  /* 49166 */
144 #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA       0xC00F  /* 49167 */
145 #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023  /* 49187 */
146 #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024  /* 49188 */
147 #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256  0xC025  /* 49189 */
148 #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384  0xC026  /* 49190 */
149 #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256   0xC027  /* 49191 */
150 #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384   0xC028  /* 49192 */
151 #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256    0xC029  /* 49193 */
152 #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384    0xC02A  /* 49194 */
153
154 /* RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS" */
155 #define TLS_RSA_WITH_AES_128_GCM_SHA256         0x009C  /* 156 */
156 #define TLS_RSA_WITH_AES_256_GCM_SHA384         0x009D  /* 157 */
157 #define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B  /* 49195 */
158 #define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C  /* 49196 */
159 #define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256  0xC02D  /* 49197 */
160 #define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384  0xC02E  /* 49198 */
161 #define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256   0xC02F  /* 49199 */
162 #define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384   0xC030  /* 49200 */
163 #define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256    0xC031  /* 49201 */
164 #define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384    0xC032  /* 49202 */
165
166 /* Might go to libbb.h */
167 #define TLS_MAX_CRYPTBLOCK_SIZE 16
168 #define TLS_MAX_OUTBUF          (1 << 14)
169
170 enum {
171         SHA_INSIZE     = 64,
172         SHA1_OUTSIZE   = 20,
173         SHA256_OUTSIZE = 32,
174
175         AES_BLOCKSIZE  = 16,
176         AES128_KEYSIZE = 16,
177         AES256_KEYSIZE = 32,
178
179         RSA_PREMASTER_SIZE = 48,
180
181         RECHDR_LEN = 5,
182
183         /* 8 = 3+5. 3 extra bytes result in record data being 32-bit aligned */
184         OUTBUF_PFX = 8 + AES_BLOCKSIZE, /* header + IV */
185         OUTBUF_SFX = TLS_MAX_MAC_SIZE + TLS_MAX_CRYPTBLOCK_SIZE, /* MAC + padding */
186
187         // RFC 5246
188         // | 6.2.1. Fragmentation
189         // |  The record layer fragments information blocks into TLSPlaintext
190         // |  records carrying data in chunks of 2^14 bytes or less.  Client
191         // |  message boundaries are not preserved in the record layer (i.e.,
192         // |  multiple client messages of the same ContentType MAY be coalesced
193         // |  into a single TLSPlaintext record, or a single message MAY be
194         // |  fragmented across several records)
195         // |...
196         // |  length
197         // |    The length (in bytes) of the following TLSPlaintext.fragment.
198         // |    The length MUST NOT exceed 2^14.
199         // |...
200         // | 6.2.2. Record Compression and Decompression
201         // |...
202         // |  Compression must be lossless and may not increase the content length
203         // |  by more than 1024 bytes.  If the decompression function encounters a
204         // |  TLSCompressed.fragment that would decompress to a length in excess of
205         // |  2^14 bytes, it MUST report a fatal decompression failure error.
206         // |...
207         // |  length
208         // |    The length (in bytes) of the following TLSCompressed.fragment.
209         // |    The length MUST NOT exceed 2^14 + 1024.
210         // |...
211         // | 6.2.3.  Record Payload Protection
212         // |  The encryption and MAC functions translate a TLSCompressed
213         // |  structure into a TLSCiphertext.  The decryption functions reverse
214         // |  the process.  The MAC of the record also includes a sequence
215         // |  number so that missing, extra, or repeated messages are
216         // |  detectable.
217         // |...
218         // |  length
219         // |    The length (in bytes) of the following TLSCiphertext.fragment.
220         // |    The length MUST NOT exceed 2^14 + 2048.
221         MAX_INBUF = RECHDR_LEN + (1 << 14) + 2048,
222 };
223
224 struct record_hdr {
225         uint8_t type;
226         uint8_t proto_maj, proto_min;
227         uint8_t len16_hi, len16_lo;
228 };
229
230 struct tls_handshake_data {
231         /* In bbox, md5/sha1/sha256 ctx's are the same structure */
232         md5sha_ctx_t handshake_hash_ctx;
233
234         uint8_t client_and_server_rand32[2 * 32];
235         uint8_t master_secret[48];
236 //TODO: store just the DER key here, parse/use/delete it when sending client key
237 //this way it will stay key type agnostic here.
238         psRsaKey_t server_rsa_pub_key;
239
240         unsigned saved_client_hello_size;
241         uint8_t saved_client_hello[1];
242 };
243
244
245 static unsigned get24be(const uint8_t *p)
246 {
247         return 0x100*(0x100*p[0] + p[1]) + p[2];
248 }
249
250 #if TLS_DEBUG
251 static void dump_hex(const char *fmt, const void *vp, int len)
252 {
253         char hexbuf[32 * 1024 + 4];
254         const uint8_t *p = vp;
255
256         bin2hex(hexbuf, (void*)p, len)[0] = '\0';
257         dbg(fmt, hexbuf);
258 }
259
260 static void dump_tls_record(const void *vp, int len)
261 {
262         const uint8_t *p = vp;
263
264         while (len > 0) {
265                 unsigned xhdr_len;
266                 if (len < RECHDR_LEN) {
267                         dump_hex("< |%s|\n", p, len);
268                         return;
269                 }
270                 xhdr_len = 0x100*p[3] + p[4];
271                 dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len);
272                 p += RECHDR_LEN;
273                 len -= RECHDR_LEN;
274                 if (len >= 4 && p[-RECHDR_LEN] == RECORD_TYPE_HANDSHAKE) {
275                         unsigned len24 = get24be(p + 1);
276                         dbg(" type:%u len24:%u", p[0], len24);
277                 }
278                 if (xhdr_len > len)
279                         xhdr_len = len;
280                 dump_hex(" |%s|\n", p, xhdr_len);
281                 p += xhdr_len;
282                 len -= xhdr_len;
283         }
284 }
285 #else
286 # define dump_hex(...) ((void)0)
287 # define dump_tls_record(...) ((void)0)
288 #endif
289
290 void tls_get_random(void *buf, unsigned len)
291 {
292         if (len != open_read_close("/dev/urandom", buf, len))
293                 xfunc_die();
294 }
295
296 /* Nondestructively see the current hash value */
297 static unsigned sha_peek(md5sha_ctx_t *ctx, void *buffer)
298 {
299         md5sha_ctx_t ctx_copy = *ctx; /* struct copy */
300         return sha_end(&ctx_copy, buffer);
301 }
302
303 static ALWAYS_INLINE unsigned get_handshake_hash(tls_state_t *tls, void *buffer)
304 {
305         return sha_peek(&tls->hsd->handshake_hash_ctx, buffer);
306 }
307
308 #if !TLS_DEBUG_HASH
309 # define hash_handshake(tls, fmt, buffer, len) \
310          hash_handshake(tls, buffer, len)
311 #endif
312 static void hash_handshake(tls_state_t *tls, const char *fmt, const void *buffer, unsigned len)
313 {
314         md5sha_hash(&tls->hsd->handshake_hash_ctx, buffer, len);
315 #if TLS_DEBUG_HASH
316         {
317                 uint8_t h[TLS_MAX_MAC_SIZE];
318                 dump_hex(fmt, buffer, len);
319                 dbg(" (%u bytes) ", (int)len);
320                 len = sha_peek(&tls->hsd->handshake_hash_ctx, h);
321                 if (len == SHA1_OUTSIZE)
322                         dump_hex("sha1:%s\n", h, len);
323                 else
324                 if (len == SHA256_OUTSIZE)
325                         dump_hex("sha256:%s\n", h, len);
326                 else
327                         dump_hex("sha???:%s\n", h, len);
328         }
329 #endif
330 }
331
332 // RFC 2104
333 // HMAC(key, text) based on a hash H (say, sha256) is:
334 // ipad = [0x36 x INSIZE]
335 // opad = [0x5c x INSIZE]
336 // HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text))
337 //
338 // H(key XOR opad) and H(key XOR ipad) can be precomputed
339 // if we often need HMAC hmac with the same key.
340 //
341 // text is often given in disjoint pieces.
342 typedef struct hmac_precomputed {
343         md5sha_ctx_t hashed_key_xor_ipad;
344         md5sha_ctx_t hashed_key_xor_opad;
345 } hmac_precomputed_t;
346
347 static unsigned hmac_sha_precomputed_v(
348                 hmac_precomputed_t *pre,
349                 uint8_t *out,
350                 va_list va)
351 {
352         uint8_t *text;
353         unsigned len;
354
355         /* pre->hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */
356         /* pre->hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */
357
358         /* calculate out = H((key XOR ipad) + text) */
359         while ((text = va_arg(va, uint8_t*)) != NULL) {
360                 unsigned text_size = va_arg(va, unsigned);
361                 md5sha_hash(&pre->hashed_key_xor_ipad, text, text_size);
362         }
363         len = sha_end(&pre->hashed_key_xor_ipad, out);
364
365         /* out = H((key XOR opad) + out) */
366         md5sha_hash(&pre->hashed_key_xor_opad, out, len);
367         return sha_end(&pre->hashed_key_xor_opad, out);
368 }
369
370 typedef void md5sha_begin_func(md5sha_ctx_t *ctx) FAST_FUNC;
371 static void hmac_begin(hmac_precomputed_t *pre, uint8_t *key, unsigned key_size, md5sha_begin_func *begin)
372 {
373         uint8_t key_xor_ipad[SHA_INSIZE];
374         uint8_t key_xor_opad[SHA_INSIZE];
375         uint8_t tempkey[SHA1_OUTSIZE < SHA256_OUTSIZE ? SHA256_OUTSIZE : SHA1_OUTSIZE];
376         unsigned i;
377
378         // "The authentication key can be of any length up to INSIZE, the
379         // block length of the hash function.  Applications that use keys longer
380         // than INSIZE bytes will first hash the key using H and then use the
381         // resultant OUTSIZE byte string as the actual key to HMAC."
382         if (key_size > SHA_INSIZE) {
383                 md5sha_ctx_t ctx;
384                 begin(&ctx);
385                 md5sha_hash(&ctx, key, key_size);
386                 key_size = sha_end(&ctx, tempkey);
387         }
388
389         for (i = 0; i < key_size; i++) {
390                 key_xor_ipad[i] = key[i] ^ 0x36;
391                 key_xor_opad[i] = key[i] ^ 0x5c;
392         }
393         for (; i < SHA_INSIZE; i++) {
394                 key_xor_ipad[i] = 0x36;
395                 key_xor_opad[i] = 0x5c;
396         }
397
398         begin(&pre->hashed_key_xor_ipad);
399         begin(&pre->hashed_key_xor_opad);
400         md5sha_hash(&pre->hashed_key_xor_ipad, key_xor_ipad, SHA_INSIZE);
401         md5sha_hash(&pre->hashed_key_xor_opad, key_xor_opad, SHA_INSIZE);
402 }
403
404 static unsigned hmac(tls_state_t *tls, uint8_t *out, uint8_t *key, unsigned key_size, ...)
405 {
406         hmac_precomputed_t pre;
407         va_list va;
408         unsigned len;
409
410         va_start(va, key_size);
411
412         hmac_begin(&pre, key, key_size,
413                         (tls->MAC_size == SHA256_OUTSIZE)
414                                 ? sha256_begin
415                                 : sha1_begin
416         );
417         len = hmac_sha_precomputed_v(&pre, out, va);
418
419         va_end(va);
420         return len;
421 }
422
423 static unsigned hmac_sha256(/*tls_state_t *tls,*/ uint8_t *out, uint8_t *key, unsigned key_size, ...)
424 {
425         hmac_precomputed_t pre;
426         va_list va;
427         unsigned len;
428
429         va_start(va, key_size);
430
431         hmac_begin(&pre, key, key_size, sha256_begin);
432         len = hmac_sha_precomputed_v(&pre, out, va);
433
434         va_end(va);
435         return len;
436 }
437
438 // RFC 5246:
439 // 5.  HMAC and the Pseudorandom Function
440 //...
441 // In this section, we define one PRF, based on HMAC.  This PRF with the
442 // SHA-256 hash function is used for all cipher suites defined in this
443 // document and in TLS documents published prior to this document when
444 // TLS 1.2 is negotiated.
445 // ^^^^^^^^^^^^^ IMPORTANT!
446 //               PRF uses sha256 regardless of cipher (at least for all ciphers
447 //               defined by RFC5246). It's not sha1 for AES_128_CBC_SHA!
448 //...
449 //    P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
450 //                           HMAC_hash(secret, A(2) + seed) +
451 //                           HMAC_hash(secret, A(3) + seed) + ...
452 // where + indicates concatenation.
453 // A() is defined as:
454 //    A(0) = seed
455 //    A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed)
456 //    A(i) = HMAC_hash(secret, A(i-1))
457 // P_hash can be iterated as many times as necessary to produce the
458 // required quantity of data.  For example, if P_SHA256 is being used to
459 // create 80 bytes of data, it will have to be iterated three times
460 // (through A(3)), creating 96 bytes of output data; the last 16 bytes
461 // of the final iteration will then be discarded, leaving 80 bytes of
462 // output data.
463 //
464 // TLS's PRF is created by applying P_hash to the secret as:
465 //
466 //    PRF(secret, label, seed) = P_<hash>(secret, label + seed)
467 //
468 // The label is an ASCII string.
469 static void prf_hmac_sha256(/*tls_state_t *tls,*/
470                 uint8_t *outbuf, unsigned outbuf_size,
471                 uint8_t *secret, unsigned secret_size,
472                 const char *label,
473                 uint8_t *seed, unsigned seed_size)
474 {
475         uint8_t a[TLS_MAX_MAC_SIZE];
476         uint8_t *out_p = outbuf;
477         unsigned label_size = strlen(label);
478         unsigned MAC_size = SHA256_OUTSIZE;
479
480         /* In P_hash() calculation, "seed" is "label + seed": */
481 #define SEED   label, label_size, seed, seed_size
482 #define SECRET secret, secret_size
483 #define A      a, MAC_size
484
485         /* A(1) = HMAC_hash(secret, seed) */
486         hmac_sha256(/*tls,*/ a, SECRET, SEED, NULL);
487 //TODO: convert hmac to precomputed
488
489         for (;;) {
490                 /* HMAC_hash(secret, A(1) + seed) */
491                 if (outbuf_size <= MAC_size) {
492                         /* Last, possibly incomplete, block */
493                         /* (use a[] as temp buffer) */
494                         hmac_sha256(/*tls,*/ a, SECRET, A, SEED, NULL);
495                         memcpy(out_p, a, outbuf_size);
496                         return;
497                 }
498                 /* Not last block. Store directly to result buffer */
499                 hmac_sha256(/*tls,*/ out_p, SECRET, A, SEED, NULL);
500                 out_p += MAC_size;
501                 outbuf_size -= MAC_size;
502                 /* A(2) = HMAC_hash(secret, A(1)) */
503                 hmac_sha256(/*tls,*/ a, SECRET, A, NULL);
504         }
505 #undef A
506 #undef SECRET
507 #undef SEED
508 }
509
510 static void bad_record_die(tls_state_t *tls, const char *expected, int len)
511 {
512         bb_error_msg("got bad TLS record (len:%d) while expecting %s", len, expected);
513         if (len > 0) {
514                 uint8_t *p = tls->inbuf;
515                 while (len > 0) {
516                         fprintf(stderr, " %02x", *p++);
517                         len--;
518                 }
519                 fputc('\n', stderr);
520         }
521         xfunc_die();
522 }
523
524 static void tls_error_die(tls_state_t *tls, int line)
525 {
526         dump_tls_record(tls->inbuf, tls->ofs_to_buffered + tls->buffered_size);
527         bb_error_msg_and_die("tls error at line %d cipher:%04x", line, tls->cipher_id);
528 }
529 #define tls_error_die(tls) tls_error_die(tls, __LINE__)
530
531 #if 0 //UNUSED
532 static void tls_free_inbuf(tls_state_t *tls)
533 {
534         if (tls->buffered_size == 0) {
535                 free(tls->inbuf);
536                 tls->inbuf_size = 0;
537                 tls->inbuf = NULL;
538         }
539 }
540 #endif
541
542 static void tls_free_outbuf(tls_state_t *tls)
543 {
544         free(tls->outbuf);
545         tls->outbuf_size = 0;
546         tls->outbuf = NULL;
547 }
548
549 static void *tls_get_outbuf(tls_state_t *tls, int len)
550 {
551         if (len > TLS_MAX_OUTBUF)
552                 xfunc_die();
553         len += OUTBUF_PFX + OUTBUF_SFX;
554         if (tls->outbuf_size < len) {
555                 tls->outbuf_size = len;
556                 tls->outbuf = xrealloc(tls->outbuf, len);
557         }
558         return tls->outbuf + OUTBUF_PFX;
559 }
560
561 static void xwrite_encrypted(tls_state_t *tls, unsigned size, unsigned type)
562 {
563         uint8_t *buf = tls->outbuf + OUTBUF_PFX;
564         struct record_hdr *xhdr;
565         uint8_t padding_length;
566
567         xhdr = (void*)(buf - RECHDR_LEN);
568         if (CIPHER_ID1 != TLS_RSA_WITH_NULL_SHA256 /* if "no encryption" can't be selected */
569          || tls->cipher_id != TLS_RSA_WITH_NULL_SHA256 /* or if it wasn't selected */
570         ) {
571                 xhdr = (void*)(buf - RECHDR_LEN - AES_BLOCKSIZE); /* place for IV */
572         }
573
574         xhdr->type = type;
575         xhdr->proto_maj = TLS_MAJ;
576         xhdr->proto_min = TLS_MIN;
577         /* fake unencrypted record len for MAC calculation */
578         xhdr->len16_hi = size >> 8;
579         xhdr->len16_lo = size & 0xff;
580
581         /* Calculate MAC signature */
582         hmac(tls, buf + size, /* result */
583                 tls->client_write_MAC_key, tls->MAC_size,
584                 &tls->write_seq64_be, sizeof(tls->write_seq64_be),
585                 xhdr, RECHDR_LEN,
586                 buf, size,
587                 NULL
588         );
589         tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be));
590
591         size += tls->MAC_size;
592
593         // RFC 5246
594         // 6.2.3.1.  Null or Standard Stream Cipher
595         //
596         // Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
597         // convert TLSCompressed.fragment structures to and from stream
598         // TLSCiphertext.fragment structures.
599         //
600         //    stream-ciphered struct {
601         //        opaque content[TLSCompressed.length];
602         //        opaque MAC[SecurityParameters.mac_length];
603         //    } GenericStreamCipher;
604         //
605         // The MAC is generated as:
606         //    MAC(MAC_write_key, seq_num +
607         //                          TLSCompressed.type +
608         //                          TLSCompressed.version +
609         //                          TLSCompressed.length +
610         //                          TLSCompressed.fragment);
611         // where "+" denotes concatenation.
612         // seq_num
613         //    The sequence number for this record.
614         // MAC
615         //    The MAC algorithm specified by SecurityParameters.mac_algorithm.
616         //
617         // Note that the MAC is computed before encryption.  The stream cipher
618         // encrypts the entire block, including the MAC.
619         //...
620         // Appendix C.  Cipher Suite Definitions
621         //...
622         // MAC       Algorithm    mac_length  mac_key_length
623         // --------  -----------  ----------  --------------
624         // SHA       HMAC-SHA1       20            20
625         // SHA256    HMAC-SHA256     32            32
626         if (CIPHER_ID1 == TLS_RSA_WITH_NULL_SHA256
627          && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
628         ) {
629                 /* No encryption, only signing */
630                 xhdr->len16_hi = size >> 8;
631                 xhdr->len16_lo = size & 0xff;
632                 dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
633                 xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
634                 dbg("wrote %u bytes (NULL crypt, SHA256 hash)\n", size);
635                 return;
636         }
637
638         // 6.2.3.2.  CBC Block Cipher
639         // For block ciphers (such as 3DES or AES), the encryption and MAC
640         // functions convert TLSCompressed.fragment structures to and from block
641         // TLSCiphertext.fragment structures.
642         //    struct {
643         //        opaque IV[SecurityParameters.record_iv_length];
644         //        block-ciphered struct {
645         //            opaque content[TLSCompressed.length];
646         //            opaque MAC[SecurityParameters.mac_length];
647         //            uint8 padding[GenericBlockCipher.padding_length];
648         //            uint8 padding_length;
649         //        };
650         //    } GenericBlockCipher;
651         //...
652         // IV
653         //    The Initialization Vector (IV) SHOULD be chosen at random, and
654         //    MUST be unpredictable.  Note that in versions of TLS prior to 1.1,
655         //    there was no IV field (...).  For block ciphers, the IV length is
656         //    of length SecurityParameters.record_iv_length, which is equal to the
657         //    SecurityParameters.block_size.
658         // padding
659         //    Padding that is added to force the length of the plaintext to be
660         //    an integral multiple of the block cipher's block length.
661         // padding_length
662         //    The padding length MUST be such that the total size of the
663         //    GenericBlockCipher structure is a multiple of the cipher's block
664         //    length.  Legal values range from zero to 255, inclusive.
665         //...
666         // Appendix C.  Cipher Suite Definitions
667         //...
668         //                         Key      IV   Block
669         // Cipher        Type    Material  Size  Size
670         // ------------  ------  --------  ----  -----
671         // AES_128_CBC   Block      16      16     16
672         // AES_256_CBC   Block      32      16     16
673
674         /* Fill IV and padding in outbuf */
675         tls_get_random(buf - AES_BLOCKSIZE, AES_BLOCKSIZE); /* IV */
676         dbg("before crypt: 5 hdr + %u data + %u hash bytes\n", size, tls->MAC_size);
677         // RFC is talking nonsense:
678         //    "Padding that is added to force the length of the plaintext to be
679         //    an integral multiple of the block cipher's block length."
680         // WRONG. _padding+padding_length_, not just _padding_,
681         // pads the data.
682         // IOW: padding_length is the last byte of padding[] array,
683         // contrary to what RFC depicts.
684         //
685         // What actually happens is that there is always padding.
686         // If you need one byte to reach BLOCKSIZE, this byte is 0x00.
687         // If you need two bytes, they are both 0x01.
688         // If you need three, they are 0x02,0x02,0x02. And so on.
689         // If you need no bytes to reach BLOCKSIZE, you have to pad a full
690         // BLOCKSIZE with bytes of value (BLOCKSIZE-1).
691         // It's ok to have more than minimum padding, but we do minimum.
692         padding_length = (~size) & (AES_BLOCKSIZE - 1);
693         do {
694                 buf[size++] = padding_length; /* padding */
695         } while ((size & (AES_BLOCKSIZE - 1)) != 0);
696
697         /* Encrypt content+MAC+padding in place */
698         aes_cbc_encrypt(
699                 tls->client_write_key, tls->key_size, /* selects 128/256 */
700                 buf - AES_BLOCKSIZE, /* IV */
701                 buf, size, /* plaintext */
702                 buf /* ciphertext */
703         );
704
705         /* Write out */
706         dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n",
707                         AES_BLOCKSIZE, size, padding_length);
708         size += AES_BLOCKSIZE;     /* + IV */
709         xhdr->len16_hi = size >> 8;
710         xhdr->len16_lo = size & 0xff;
711         dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
712         xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
713         dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
714 }
715
716 static void xwrite_handshake_record(tls_state_t *tls, unsigned size)
717 {
718         //if (!tls->encrypt_on_write) {
719                 uint8_t *buf = tls->outbuf + OUTBUF_PFX;
720                 struct record_hdr *xhdr = (void*)(buf - RECHDR_LEN);
721
722                 xhdr->type = RECORD_TYPE_HANDSHAKE;
723                 xhdr->proto_maj = TLS_MAJ;
724                 xhdr->proto_min = TLS_MIN;
725                 xhdr->len16_hi = size >> 8;
726                 xhdr->len16_lo = size & 0xff;
727                 dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
728                 xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
729                 dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
730         //      return;
731         //}
732         //xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE);
733 }
734
735 static void xwrite_and_update_handshake_hash(tls_state_t *tls, unsigned size)
736 {
737         if (!tls->encrypt_on_write) {
738                 uint8_t *buf;
739
740                 xwrite_handshake_record(tls, size);
741                 /* Handshake hash does not include record headers */
742                 buf = tls->outbuf + OUTBUF_PFX;
743                 hash_handshake(tls, ">> hash:%s", buf, size);
744                 return;
745         }
746         xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE);
747 }
748
749 static int tls_has_buffered_record(tls_state_t *tls)
750 {
751         int buffered = tls->buffered_size;
752         struct record_hdr *xhdr;
753         int rec_size;
754
755         if (buffered < RECHDR_LEN)
756                 return 0;
757         xhdr = (void*)(tls->inbuf + tls->ofs_to_buffered);
758         rec_size = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
759         if (buffered < rec_size)
760                 return 0;
761         return rec_size;
762 }
763
764 static const char *alert_text(int code)
765 {
766         switch (code) {
767         case 20:  return "bad MAC";
768         case 50:  return "decode error";
769         case 51:  return "decrypt error";
770         case 40:  return "handshake failure";
771         case 112: return "unrecognized name";
772         }
773         return itoa(code);
774 }
775
776 static int tls_xread_record(tls_state_t *tls)
777 {
778         struct record_hdr *xhdr;
779         int sz;
780         int total;
781         int target;
782
783  again:
784         dbg("ofs_to_buffered:%u buffered_size:%u\n", tls->ofs_to_buffered, tls->buffered_size);
785         total = tls->buffered_size;
786         if (total != 0) {
787                 memmove(tls->inbuf, tls->inbuf + tls->ofs_to_buffered, total);
788                 //dbg("<< remaining at %d [%d] ", tls->ofs_to_buffered, total);
789                 //dump_raw_in("<< %s\n", tls->inbuf, total);
790         }
791         errno = 0;
792         target = MAX_INBUF;
793         for (;;) {
794                 int rem;
795
796                 if (total >= RECHDR_LEN && target == MAX_INBUF) {
797                         xhdr = (void*)tls->inbuf;
798                         target = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
799                         if (target > MAX_INBUF) {
800                                 /* malformed input (too long): yell and die */
801                                 tls->buffered_size = 0;
802                                 tls->ofs_to_buffered = total;
803                                 tls_error_die(tls);
804                         }
805                         /* can also check type/proto_maj/proto_min here */
806                         dbg("xhdr type:%d ver:%d.%d len:%d\n",
807                                 xhdr->type, xhdr->proto_maj, xhdr->proto_min,
808                                 0x100 * xhdr->len16_hi + xhdr->len16_lo
809                         );
810                 }
811                 /* if total >= target, we have a full packet (and possibly more)... */
812                 if (total - target >= 0)
813                         break;
814                 /* input buffer is grown only as needed */
815                 rem = tls->inbuf_size - total;
816                 if (rem == 0) {
817                         tls->inbuf_size += MAX_INBUF / 8;
818                         if (tls->inbuf_size > MAX_INBUF)
819                                 tls->inbuf_size = MAX_INBUF;
820                         dbg("inbuf_size:%d\n", tls->inbuf_size);
821                         rem = tls->inbuf_size - total;
822                         tls->inbuf = xrealloc(tls->inbuf, tls->inbuf_size);
823                 }
824                 sz = safe_read(tls->ifd, tls->inbuf + total, rem);
825                 if (sz <= 0) {
826                         if (sz == 0 && total == 0) {
827                                 /* "Abrupt" EOF, no TLS shutdown (seen from kernel.org) */
828                                 dbg("EOF (without TLS shutdown) from peer\n");
829                                 tls->buffered_size = 0;
830                                 goto end;
831                         }
832                         bb_perror_msg_and_die("short read, have only %d", total);
833                 }
834                 dump_raw_in("<< %s\n", tls->inbuf + total, sz);
835                 total += sz;
836         }
837         tls->buffered_size = total - target;
838         tls->ofs_to_buffered = target;
839         //dbg("<< stashing at %d [%d] ", tls->ofs_to_buffered, tls->buffered_size);
840         //dump_hex("<< %s\n", tls->inbuf + tls->ofs_to_buffered, tls->buffered_size);
841
842         sz = target - RECHDR_LEN;
843
844         /* Needs to be decrypted? */
845         if (tls->min_encrypted_len_on_read > tls->MAC_size) {
846                 uint8_t *p = tls->inbuf + RECHDR_LEN;
847                 int padding_len;
848
849                 if (sz & (AES_BLOCKSIZE-1)
850                  || sz < (int)tls->min_encrypted_len_on_read
851                 ) {
852                         bb_error_msg_and_die("bad encrypted len:%u < %u",
853                                 sz, tls->min_encrypted_len_on_read);
854                 }
855                 /* Decrypt content+MAC+padding, moving it over IV in the process */
856                 sz -= AES_BLOCKSIZE; /* we will overwrite IV now */
857                 aes_cbc_decrypt(
858                         tls->server_write_key, tls->key_size, /* selects 128/256 */
859                         p, /* IV */
860                         p + AES_BLOCKSIZE, sz, /* ciphertext */
861                         p /* plaintext */
862                 );
863                 padding_len = p[sz - 1];
864                 dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[0], padding_len);
865                 padding_len++;
866                 sz -= tls->MAC_size + padding_len; /* drop MAC and padding */
867                 //if (sz < 0)
868                 //      bb_error_msg_and_die("bad padding size:%u", padding_len);
869         } else {
870                 /* if nonzero, then it's TLS_RSA_WITH_NULL_SHA256: drop MAC */
871                 /* else: no encryption yet on input, subtract zero = NOP */
872                 sz -= tls->min_encrypted_len_on_read;
873         }
874         if (sz < 0)
875                 bb_error_msg_and_die("encrypted data too short");
876
877         //dump_hex("<< %s\n", tls->inbuf, RECHDR_LEN + sz);
878
879         xhdr = (void*)tls->inbuf;
880         if (xhdr->type == RECORD_TYPE_ALERT && sz >= 2) {
881                 uint8_t *p = tls->inbuf + RECHDR_LEN;
882                 dbg("ALERT size:%d level:%d description:%d\n", sz, p[0], p[1]);
883                 if (p[0] == 2) { /* fatal */
884                         bb_error_msg_and_die("TLS %s from peer (alert code %d): %s",
885                                 "error",
886                                 p[1], alert_text(p[1])
887                         );
888                 }
889                 if (p[0] == 1) { /* warning */
890                         if (p[1] == 0) { /* "close_notify" warning: it's EOF */
891                                 dbg("EOF (TLS encoded) from peer\n");
892                                 sz = 0;
893                                 goto end;
894                         }
895 //This possibly needs to be cached and shown only if
896 //a fatal alert follows
897 //                      bb_error_msg("TLS %s from peer (alert code %d): %s",
898 //                              "warning",
899 //                              p[1], alert_text(p[1])
900 //                      );
901                         /* discard it, get next record */
902                         goto again;
903                 }
904                 /* p[0] not 1 or 2: not defined in protocol */
905                 sz = 0;
906                 goto end;
907         }
908
909         /* RFC 5246 is not saying it explicitly, but sha256 hash
910          * in our FINISHED record must include data of incoming packets too!
911          */
912         if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE
913          && tls->MAC_size != 0 /* do we know which hash to use? (server_hello() does not!) */
914         ) {
915                 hash_handshake(tls, "<< hash:%s", tls->inbuf + RECHDR_LEN, sz);
916         }
917  end:
918         dbg("got block len:%u\n", sz);
919         return sz;
920 }
921
922 /*
923  * DER parsing routines
924  */
925 static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end)
926 {
927         unsigned len, len1;
928
929         if (end - der < 2)
930                 xfunc_die();
931 //      if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */
932 //              xfunc_die();
933
934         len = der[1]; /* maybe it's short len */
935         if (len >= 0x80) {
936                 /* no, it's long */
937
938                 if (len == 0x80 || end - der < (int)(len - 0x7e)) {
939                         /* 0x80 is "0 bytes of len", invalid DER: must use short len if can */
940                         /* need 3 or 4 bytes for 81, 82 */
941                         xfunc_die();
942                 }
943
944                 len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */
945                 if (len > 0x82) {
946                         /* >0x82 is "3+ bytes of len", should not happen realistically */
947                         xfunc_die();
948                 }
949                 if (len == 0x82) { /* it's "ii 82 xx yy" */
950                         len1 = 0x100*len1 + der[3];
951                         der += 1; /* skip [yy] */
952                 }
953                 der += 1; /* skip [xx] */
954                 len = len1;
955 //              if (len < 0x80)
956 //                      xfunc_die(); /* invalid DER: must use short len if can */
957         }
958         der += 2; /* skip [code]+[1byte] */
959
960         if (end - der < (int)len)
961                 xfunc_die();
962         *bodyp = der;
963
964         return len;
965 }
966
967 static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp)
968 {
969         uint8_t *new_der;
970         unsigned len = get_der_len(&new_der, der, *endp);
971         dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]);
972         /* Move "end" position to cover only this item */
973         *endp = new_der + len;
974         return new_der;
975 }
976
977 static uint8_t *skip_der_item(uint8_t *der, uint8_t *end)
978 {
979         uint8_t *new_der;
980         unsigned len = get_der_len(&new_der, der, end);
981         /* Skip body */
982         new_der += len;
983         dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]);
984         return new_der;
985 }
986
987 static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end)
988 {
989         uint8_t *bin_ptr;
990         unsigned len = get_der_len(&bin_ptr, der, end);
991
992         dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]);
993         pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len);
994         pstm_read_unsigned_bin(pstm_n, bin_ptr, len);
995         //return bin + len;
996 }
997
998 static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len)
999 {
1000 /* Certificate is a DER-encoded data structure. Each DER element has a length,
1001  * which makes it easy to skip over large compound elements of any complexity
1002  * without parsing them. Example: partial decode of kernel.org certificate:
1003  *  SEQ 0x05ac/1452 bytes (Certificate): 308205ac
1004  *    SEQ 0x0494/1172 bytes (tbsCertificate): 30820494
1005  *      [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003
1006  *        INTEGER (version): 0201 02
1007  *      INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4
1008  *      //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type
1009  *      SEQ 0x0d bytes (signatureAlgo): 300d
1010  *        OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11)
1011  *        NULL: 0500
1012  *      SEQ 0x5f bytes (issuer): 305f
1013  *        SET 11 bytes: 310b
1014  *          SEQ 9 bytes: 3009
1015  *            OID 3 bytes: 0603 550406
1016  *            Printable string "FR": 1302 4652
1017  *        SET 14 bytes: 310e
1018  *          SEQ 12 bytes: 300c
1019  *            OID 3 bytes: 0603 550408
1020  *            Printable string "Paris": 1305 5061726973
1021  *        SET 14 bytes: 310e
1022  *          SEQ 12 bytes: 300c
1023  *            OID 3 bytes: 0603 550407
1024  *            Printable string "Paris": 1305 5061726973
1025  *        SET 14 bytes: 310e
1026  *          SEQ 12 bytes: 300c
1027  *            OID 3 bytes: 0603 55040a
1028  *            Printable string "Gandi": 1305 47616e6469
1029  *        SET 32 bytes: 3120
1030  *          SEQ 30 bytes: 301e
1031  *            OID 3 bytes: 0603 550403
1032  *            Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032
1033  *      SEQ 30 bytes (validity): 301e
1034  *        TIME "161011000000Z": 170d 3136313031313030303030305a
1035  *        TIME "191011235959Z": 170d 3139313031313233353935395a
1036  *      SEQ 0x5b/91 bytes (subject): 305b //I did not decode this
1037  *          3121301f060355040b1318446f6d61696e20436f
1038  *          6e74726f6c2056616c6964617465643121301f06
1039  *          0355040b1318506f73697469766553534c204d75
1040  *          6c74692d446f6d61696e31133011060355040313
1041  *          0a6b65726e656c2e6f7267
1042  *      SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2
1043  *        SEQ 13 bytes (algorithm): 300d
1044  *          OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1)
1045  *          NULL: 0500
1046  *        BITSTRING 0x018f/399 bytes (publicKey): 0382018f
1047  *          ????: 00
1048  *          //after the zero byte, it appears key itself uses DER encoding:
1049  *          SEQ 0x018a/394 bytes: 3082018a
1050  *            INTEGER 0x0181/385 bytes (modulus): 02820181
1051  *                  00b1ab2fc727a3bef76780c9349bf3
1052  *                  ...24 more blocks of 15 bytes each...
1053  *                  90e895291c6bc8693b65
1054  *            INTEGER 3 bytes (exponent): 0203 010001
1055  *      [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5
1056  *        SEQ 0x01e1 bytes: 308201e1
1057  *        ...
1058  * Certificate is a sequence of three elements:
1059  *      tbsCertificate (SEQ)
1060  *      signatureAlgorithm (AlgorithmIdentifier)
1061  *      signatureValue (BIT STRING)
1062  *
1063  * In turn, tbsCertificate is a sequence of:
1064  *      version
1065  *      serialNumber
1066  *      signatureAlgo (AlgorithmIdentifier)
1067  *      issuer (Name, has complex structure)
1068  *      validity (Validity, SEQ of two Times)
1069  *      subject (Name)
1070  *      subjectPublicKeyInfo (SEQ)
1071  *      ...
1072  *
1073  * subjectPublicKeyInfo is a sequence of:
1074  *      algorithm (AlgorithmIdentifier)
1075  *      publicKey (BIT STRING)
1076  *
1077  * We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey
1078  */
1079         uint8_t *end = der + len;
1080
1081         /* enter "Certificate" item: [der, end) will be only Cert */
1082         der = enter_der_item(der, &end);
1083
1084         /* enter "tbsCertificate" item: [der, end) will be only tbsCert */
1085         der = enter_der_item(der, &end);
1086
1087         /* skip up to subjectPublicKeyInfo */
1088         der = skip_der_item(der, end); /* version */
1089         der = skip_der_item(der, end); /* serialNumber */
1090         der = skip_der_item(der, end); /* signatureAlgo */
1091         der = skip_der_item(der, end); /* issuer */
1092         der = skip_der_item(der, end); /* validity */
1093         der = skip_der_item(der, end); /* subject */
1094
1095         /* enter subjectPublicKeyInfo */
1096         der = enter_der_item(der, &end);
1097         { /* check subjectPublicKeyInfo.algorithm */
1098                 static const uint8_t expected[] = {
1099                         0x30,0x0d, // SEQ 13 bytes
1100                         0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, // OID RSA_KEY_ALG 42.134.72.134.247.13.1.1.1
1101                         //0x05,0x00, // NULL
1102                 };
1103                 if (memcmp(der, expected, sizeof(expected)) != 0)
1104                         bb_error_msg_and_die("not RSA key");
1105         }
1106         /* skip subjectPublicKeyInfo.algorithm */
1107         der = skip_der_item(der, end);
1108         /* enter subjectPublicKeyInfo.publicKey */
1109 //      die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */
1110         der = enter_der_item(der, &end);
1111
1112         /* parse RSA key: */
1113 //based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note
1114         dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]);
1115         if (end - der < 14) xfunc_die();
1116         /* example format:
1117          * ignore bits: 00
1118          * SEQ 0x018a/394 bytes: 3082018a
1119          *   INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX
1120          *   INTEGER 3 bytes (exponent): 0203 010001
1121          */
1122         if (*der != 0) /* "ignore bits", should be 0 */
1123                 xfunc_die();
1124         der++;
1125         der = enter_der_item(der, &end); /* enter SEQ */
1126         /* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */
1127         der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */
1128         der = skip_der_item(der, end);
1129         der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */
1130         tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N);
1131         dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size);
1132 }
1133
1134 /*
1135  * TLS Handshake routines
1136  */
1137 static int tls_xread_handshake_block(tls_state_t *tls, int min_len)
1138 {
1139         struct record_hdr *xhdr;
1140         int len = tls_xread_record(tls);
1141
1142         xhdr = (void*)tls->inbuf;
1143         if (len < min_len
1144          || xhdr->type != RECORD_TYPE_HANDSHAKE
1145          || xhdr->proto_maj != TLS_MAJ
1146          || xhdr->proto_min != TLS_MIN
1147         ) {
1148                 bad_record_die(tls, "handshake record", len);
1149         }
1150         dbg("got HANDSHAKE\n");
1151         return len;
1152 }
1153
1154 static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, unsigned len)
1155 {
1156         struct handshake_hdr {
1157                 uint8_t type;
1158                 uint8_t len24_hi, len24_mid, len24_lo;
1159         } *h = buf;
1160
1161         len -= 4;
1162         h->type = type;
1163         h->len24_hi  = len >> 16;
1164         h->len24_mid = len >> 8;
1165         h->len24_lo  = len & 0xff;
1166 }
1167
1168 static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni)
1169 {
1170         struct client_hello {
1171                 uint8_t type;
1172                 uint8_t len24_hi, len24_mid, len24_lo;
1173                 uint8_t proto_maj, proto_min;
1174                 uint8_t rand32[32];
1175                 uint8_t session_id_len;
1176                 /* uint8_t session_id[]; */
1177                 uint8_t cipherid_len16_hi, cipherid_len16_lo;
1178                 uint8_t cipherid[2 * (2 + !!CIPHER_ID2)]; /* actually variable */
1179                 uint8_t comprtypes_len;
1180                 uint8_t comprtypes[1]; /* actually variable */
1181                 /* Extensions (SNI shown):
1182                  * hi,lo // len of all extensions
1183                  *   00,00 // extension_type: "Server Name"
1184                  *   00,0e // list len (there can be more than one SNI)
1185                  *     00,0c // len of 1st Server Name Indication
1186                  *       00    // name type: host_name
1187                  *       00,09   // name len
1188                  *       "localhost" // name
1189                  */
1190 // GNU Wget 1.18 to cdn.kernel.org sends these extensions:
1191 // 0055
1192 //   0005 0005 0100000000 - status_request
1193 //   0000 0013 0011 00 000e 63646e 2e 6b65726e656c 2e 6f7267 - server_name
1194 //   ff01 0001 00 - renegotiation_info
1195 //   0023 0000 - session_ticket
1196 //   000a 0008 0006001700180019 - supported_groups
1197 //   000b 0002 0100 - ec_point_formats
1198 //   000d 0016 00140401040305010503060106030301030302010203 - signature_algorithms
1199         };
1200         struct client_hello *record;
1201         int len;
1202         int sni_len = sni ? strnlen(sni, 127 - 9) : 0;
1203
1204         len = sizeof(*record);
1205         if (sni_len)
1206                 len += 11 + sni_len;
1207         record = tls_get_outbuf(tls, len);
1208         memset(record, 0, len);
1209
1210         fill_handshake_record_hdr(record, HANDSHAKE_CLIENT_HELLO, len);
1211         record->proto_maj = TLS_MAJ;    /* the "requested" version of the protocol, */
1212         record->proto_min = TLS_MIN;    /* can be higher than one in record headers */
1213         tls_get_random(record->rand32, sizeof(record->rand32));
1214         if (TLS_DEBUG_FIXED_SECRETS)
1215                 memset(record->rand32, 0x11, sizeof(record->rand32));
1216         /* record->session_id_len = 0; - already is */
1217
1218         /* record->cipherid_len16_hi = 0; */
1219         record->cipherid_len16_lo = sizeof(record->cipherid);
1220         /* RFC 5746 Renegotiation Indication Extension - some servers will refuse to work with us otherwise */
1221         /*record->cipherid[0] = TLS_EMPTY_RENEGOTIATION_INFO_SCSV >> 8; - zero */
1222         record->cipherid[1] = TLS_EMPTY_RENEGOTIATION_INFO_SCSV & 0xff;
1223         if ((CIPHER_ID1 >> 8) != 0) record->cipherid[2] = CIPHER_ID1 >> 8;
1224         /*************************/ record->cipherid[3] = CIPHER_ID1 & 0xff;
1225 #if CIPHER_ID2
1226         if ((CIPHER_ID2 >> 8) != 0) record->cipherid[4] = CIPHER_ID2 >> 8;
1227         /*************************/ record->cipherid[5] = CIPHER_ID2 & 0xff;
1228 #endif
1229
1230         record->comprtypes_len = 1;
1231         /* record->comprtypes[0] = 0; */
1232
1233         if (sni_len) {
1234                 uint8_t *p = (void*)(record + 1);
1235                 //p[0] = 0;         //
1236                 p[1] = sni_len + 9; //ext_len
1237                 //p[2] = 0;             //
1238                 //p[3] = 0;             //extension_type
1239                 //p[4] = 0;         //
1240                 p[5] = sni_len + 5; //list len
1241                 //p[6] = 0;             //
1242                 p[7] = sni_len + 3;     //len of 1st SNI
1243                 //p[8] = 0;         //name type
1244                 //p[9] = 0;             //
1245                 p[10] = sni_len;        //name len
1246                 memcpy(&p[11], sni, sni_len);
1247         }
1248
1249         dbg(">> CLIENT_HELLO\n");
1250         /* Can hash it only when we know which MAC hash to use */
1251         /*xwrite_and_update_handshake_hash(tls, len); - WRONG! */
1252         xwrite_handshake_record(tls, len);
1253
1254         tls->hsd = xzalloc(sizeof(*tls->hsd) + len);
1255         tls->hsd->saved_client_hello_size = len;
1256         memcpy(tls->hsd->saved_client_hello, record, len);
1257         memcpy(tls->hsd->client_and_server_rand32, record->rand32, sizeof(record->rand32));
1258 }
1259
1260 static void get_server_hello(tls_state_t *tls)
1261 {
1262         struct server_hello {
1263                 struct record_hdr xhdr;
1264                 uint8_t type;
1265                 uint8_t len24_hi, len24_mid, len24_lo;
1266                 uint8_t proto_maj, proto_min;
1267                 uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */
1268                 uint8_t session_id_len;
1269                 uint8_t session_id[32];
1270                 uint8_t cipherid_hi, cipherid_lo;
1271                 uint8_t comprtype;
1272                 /* extensions may follow, but only those which client offered in its Hello */
1273         };
1274
1275         struct server_hello *hp;
1276         uint8_t *cipherid;
1277         unsigned cipher;
1278         int len, len24;
1279
1280         len = tls_xread_handshake_block(tls, 74 - 32);
1281
1282         hp = (void*)tls->inbuf;
1283         // 74 bytes:
1284         // 02  000046 03|03   58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20  |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00|
1285         //SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel
1286         if (hp->type != HANDSHAKE_SERVER_HELLO
1287          || hp->len24_hi  != 0
1288          || hp->len24_mid != 0
1289          /* hp->len24_lo checked later */
1290          || hp->proto_maj != TLS_MAJ
1291          || hp->proto_min != TLS_MIN
1292         ) {
1293                 bad_record_die(tls, "'server hello'", len);
1294         }
1295
1296         cipherid = &hp->cipherid_hi;
1297         len24 = hp->len24_lo;
1298         if (hp->session_id_len != 32) {
1299                 if (hp->session_id_len != 0)
1300                         bad_record_die(tls, "'server hello'", len);
1301
1302                 // session_id_len == 0: no session id
1303                 // "The server
1304                 // may return an empty session_id to indicate that the session will
1305                 // not be cached and therefore cannot be resumed."
1306                 cipherid -= 32;
1307                 len24 += 32; /* what len would be if session id would be present */
1308         }
1309
1310         if (len24 < 70
1311 //       || cipherid[0]  != (CIPHER_ID >> 8)
1312 //       || cipherid[1]  != (CIPHER_ID & 0xff)
1313 //       || cipherid[2]  != 0 /* comprtype */
1314         ) {
1315                 bad_record_die(tls, "'server hello'", len);
1316         }
1317         dbg("<< SERVER_HELLO\n");
1318
1319         memcpy(tls->hsd->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32));
1320
1321         tls->cipher_id = cipher = 0x100 * cipherid[0] + cipherid[1];
1322         dbg("server chose cipher %04x\n", cipher);
1323
1324         if (cipher == TLS_RSA_WITH_AES_128_CBC_SHA) {
1325                 tls->key_size = AES128_KEYSIZE;
1326                 tls->MAC_size = SHA1_OUTSIZE;
1327         }
1328         else { /* TLS_RSA_WITH_AES_256_CBC_SHA256 */
1329                 tls->key_size = AES256_KEYSIZE;
1330                 tls->MAC_size = SHA256_OUTSIZE;
1331         }
1332         /* Handshake hash eventually destined to FINISHED record
1333          * is sha256 regardless of cipher
1334          * (at least for all ciphers defined by RFC5246).
1335          * It's not sha1 for AES_128_CBC_SHA - only MAC is sha1, not this hash.
1336          */
1337         sha256_begin(&tls->hsd->handshake_hash_ctx);
1338         hash_handshake(tls, ">> client hello hash:%s",
1339                 tls->hsd->saved_client_hello, tls->hsd->saved_client_hello_size
1340         );
1341         hash_handshake(tls, "<< server hello hash:%s",
1342                 tls->inbuf + RECHDR_LEN, len
1343         );
1344 }
1345
1346 static void get_server_cert(tls_state_t *tls)
1347 {
1348         struct record_hdr *xhdr;
1349         uint8_t *certbuf;
1350         int len, len1;
1351
1352         len = tls_xread_handshake_block(tls, 10);
1353
1354         xhdr = (void*)tls->inbuf;
1355         certbuf = (void*)(xhdr + 1);
1356         if (certbuf[0] != HANDSHAKE_CERTIFICATE)
1357                 tls_error_die(tls);
1358         dbg("<< CERTIFICATE\n");
1359         // 4392 bytes:
1360         // 0b  00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d...
1361         //Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text
1362         len1 = get24be(certbuf + 1);
1363         if (len1 > len - 4) tls_error_die(tls);
1364         len = len1;
1365         len1 = get24be(certbuf + 4);
1366         if (len1 > len - 3) tls_error_die(tls);
1367         len = len1;
1368         len1 = get24be(certbuf + 7);
1369         if (len1 > len - 3) tls_error_die(tls);
1370         len = len1;
1371
1372         if (len)
1373                 find_key_in_der_cert(tls, certbuf + 10, len);
1374 }
1375
1376 static void send_empty_client_cert(tls_state_t *tls)
1377 {
1378         struct client_empty_cert {
1379                 uint8_t type;
1380                 uint8_t len24_hi, len24_mid, len24_lo;
1381                 uint8_t cert_chain_len24_hi, cert_chain_len24_mid, cert_chain_len24_lo;
1382         };
1383         struct client_empty_cert *record;
1384
1385         record = tls_get_outbuf(tls, sizeof(*record));
1386 //FIXME: can just memcpy a ready-made one.
1387         fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record));
1388         record->cert_chain_len24_hi = 0;
1389         record->cert_chain_len24_mid = 0;
1390         record->cert_chain_len24_lo = 0;
1391
1392         dbg(">> CERTIFICATE\n");
1393         xwrite_and_update_handshake_hash(tls, sizeof(*record));
1394 }
1395
1396 static void send_client_key_exchange(tls_state_t *tls)
1397 {
1398         struct client_key_exchange {
1399                 uint8_t type;
1400                 uint8_t len24_hi, len24_mid, len24_lo;
1401                 /* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */
1402                 uint8_t keylen16_hi, keylen16_lo;
1403                 uint8_t key[4 * 1024]; // size??
1404         };
1405 //FIXME: better size estimate
1406         struct client_key_exchange *record = tls_get_outbuf(tls, sizeof(*record));
1407         uint8_t rsa_premaster[RSA_PREMASTER_SIZE];
1408         int len;
1409
1410         tls_get_random(rsa_premaster, sizeof(rsa_premaster));
1411         if (TLS_DEBUG_FIXED_SECRETS)
1412                 memset(rsa_premaster, 0x44, sizeof(rsa_premaster));
1413         // RFC 5246
1414         // "Note: The version number in the PreMasterSecret is the version
1415         // offered by the client in the ClientHello.client_version, not the
1416         // version negotiated for the connection."
1417         rsa_premaster[0] = TLS_MAJ;
1418         rsa_premaster[1] = TLS_MIN;
1419         dump_hex("premaster:%s\n", rsa_premaster, sizeof(rsa_premaster));
1420         len = psRsaEncryptPub(/*pool:*/ NULL,
1421                 /* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key,
1422                 rsa_premaster, /*inlen:*/ sizeof(rsa_premaster),
1423                 record->key, sizeof(record->key),
1424                 data_param_ignored
1425         );
1426         record->keylen16_hi = len >> 8;
1427         record->keylen16_lo = len & 0xff;
1428         len += 2;
1429         record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE;
1430         record->len24_hi  = 0;
1431         record->len24_mid = len >> 8;
1432         record->len24_lo  = len & 0xff;
1433         len += 4;
1434
1435         dbg(">> CLIENT_KEY_EXCHANGE\n");
1436         xwrite_and_update_handshake_hash(tls, len);
1437
1438         // RFC 5246
1439         // For all key exchange methods, the same algorithm is used to convert
1440         // the pre_master_secret into the master_secret.  The pre_master_secret
1441         // should be deleted from memory once the master_secret has been
1442         // computed.
1443         //      master_secret = PRF(pre_master_secret, "master secret",
1444         //                          ClientHello.random + ServerHello.random)
1445         //                          [0..47];
1446         // The master secret is always exactly 48 bytes in length.  The length
1447         // of the premaster secret will vary depending on key exchange method.
1448         prf_hmac_sha256(/*tls,*/
1449                 tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
1450                 rsa_premaster, sizeof(rsa_premaster),
1451                 "master secret",
1452                 tls->hsd->client_and_server_rand32, sizeof(tls->hsd->client_and_server_rand32)
1453         );
1454         dump_hex("master secret:%s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
1455
1456         // RFC 5246
1457         // 6.3.  Key Calculation
1458         //
1459         // The Record Protocol requires an algorithm to generate keys required
1460         // by the current connection state (see Appendix A.6) from the security
1461         // parameters provided by the handshake protocol.
1462         //
1463         // The master secret is expanded into a sequence of secure bytes, which
1464         // is then split to a client write MAC key, a server write MAC key, a
1465         // client write encryption key, and a server write encryption key.  Each
1466         // of these is generated from the byte sequence in that order.  Unused
1467         // values are empty.  Some AEAD ciphers may additionally require a
1468         // client write IV and a server write IV (see Section 6.2.3.3).
1469         //
1470         // When keys and MAC keys are generated, the master secret is used as an
1471         // entropy source.
1472         //
1473         // To generate the key material, compute
1474         //
1475         //    key_block = PRF(SecurityParameters.master_secret,
1476         //                    "key expansion",
1477         //                    SecurityParameters.server_random +
1478         //                    SecurityParameters.client_random);
1479         //
1480         // until enough output has been generated.  Then, the key_block is
1481         // partitioned as follows:
1482         //
1483         //    client_write_MAC_key[SecurityParameters.mac_key_length]
1484         //    server_write_MAC_key[SecurityParameters.mac_key_length]
1485         //    client_write_key[SecurityParameters.enc_key_length]
1486         //    server_write_key[SecurityParameters.enc_key_length]
1487         //    client_write_IV[SecurityParameters.fixed_iv_length]
1488         //    server_write_IV[SecurityParameters.fixed_iv_length]
1489         {
1490                 uint8_t tmp64[64];
1491
1492                 /* make "server_rand32 + client_rand32" */
1493                 memcpy(&tmp64[0] , &tls->hsd->client_and_server_rand32[32], 32);
1494                 memcpy(&tmp64[32], &tls->hsd->client_and_server_rand32[0] , 32);
1495
1496                 prf_hmac_sha256(/*tls,*/
1497                         tls->client_write_MAC_key, 2 * (tls->MAC_size + tls->key_size),
1498                         // also fills:
1499                         // server_write_MAC_key[]
1500                         // client_write_key[]
1501                         // server_write_key[]
1502                         tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
1503                         "key expansion",
1504                         tmp64, 64
1505                 );
1506                 tls->client_write_key = tls->client_write_MAC_key + (2 * tls->MAC_size);
1507                 tls->server_write_key = tls->client_write_key + tls->key_size;
1508                 dump_hex("client_write_MAC_key:%s\n",
1509                         tls->client_write_MAC_key, tls->MAC_size
1510                 );
1511                 dump_hex("client_write_key:%s\n",
1512                         tls->client_write_key, tls->key_size
1513                 );
1514         }
1515 }
1516
1517 static const uint8_t rec_CHANGE_CIPHER_SPEC[] = {
1518         RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01,
1519         01
1520 };
1521
1522 static void send_change_cipher_spec(tls_state_t *tls)
1523 {
1524         dbg(">> CHANGE_CIPHER_SPEC\n");
1525         xwrite(tls->ofd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC));
1526 }
1527
1528 // 7.4.9.  Finished
1529 // A Finished message is always sent immediately after a change
1530 // cipher spec message to verify that the key exchange and
1531 // authentication processes were successful.  It is essential that a
1532 // change cipher spec message be received between the other handshake
1533 // messages and the Finished message.
1534 //...
1535 // The Finished message is the first one protected with the just
1536 // negotiated algorithms, keys, and secrets.  Recipients of Finished
1537 // messages MUST verify that the contents are correct.  Once a side
1538 // has sent its Finished message and received and validated the
1539 // Finished message from its peer, it may begin to send and receive
1540 // application data over the connection.
1541 //...
1542 // struct {
1543 //     opaque verify_data[verify_data_length];
1544 // } Finished;
1545 //
1546 // verify_data
1547 //    PRF(master_secret, finished_label, Hash(handshake_messages))
1548 //       [0..verify_data_length-1];
1549 //
1550 // finished_label
1551 //    For Finished messages sent by the client, the string
1552 //    "client finished".  For Finished messages sent by the server,
1553 //    the string "server finished".
1554 //
1555 // Hash denotes a Hash of the handshake messages.  For the PRF
1556 // defined in Section 5, the Hash MUST be the Hash used as the basis
1557 // for the PRF.  Any cipher suite which defines a different PRF MUST
1558 // also define the Hash to use in the Finished computation.
1559 //
1560 // In previous versions of TLS, the verify_data was always 12 octets
1561 // long.  In the current version of TLS, it depends on the cipher
1562 // suite.  Any cipher suite which does not explicitly specify
1563 // verify_data_length has a verify_data_length equal to 12.  This
1564 // includes all existing cipher suites.
1565 static void send_client_finished(tls_state_t *tls)
1566 {
1567         struct finished {
1568                 uint8_t type;
1569                 uint8_t len24_hi, len24_mid, len24_lo;
1570                 uint8_t prf_result[12];
1571         };
1572         struct finished *record = tls_get_outbuf(tls, sizeof(*record));
1573         uint8_t handshake_hash[TLS_MAX_MAC_SIZE];
1574         unsigned len;
1575
1576         fill_handshake_record_hdr(record, HANDSHAKE_FINISHED, sizeof(*record));
1577
1578         len = get_handshake_hash(tls, handshake_hash);
1579         prf_hmac_sha256(/*tls,*/
1580                 record->prf_result, sizeof(record->prf_result),
1581                 tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
1582                 "client finished",
1583                 handshake_hash, len
1584         );
1585         dump_hex("from secret: %s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
1586         dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1);
1587         dump_hex("%s\n", handshake_hash, sizeof(handshake_hash));
1588         dump_hex("=> digest: %s\n", record->prf_result, sizeof(record->prf_result));
1589
1590         dbg(">> FINISHED\n");
1591         xwrite_encrypted(tls, sizeof(*record), RECORD_TYPE_HANDSHAKE);
1592 }
1593
1594 void FAST_FUNC tls_handshake(tls_state_t *tls, const char *sni)
1595 {
1596         // Client              RFC 5246                Server
1597         // (*) - optional messages, not always sent
1598         //
1599         // ClientHello          ------->
1600         //                                        ServerHello
1601         //                                       Certificate*
1602         //                                 ServerKeyExchange*
1603         //                                CertificateRequest*
1604         //                      <-------      ServerHelloDone
1605         // Certificate*
1606         // ClientKeyExchange
1607         // CertificateVerify*
1608         // [ChangeCipherSpec]
1609         // Finished             ------->
1610         //                                 [ChangeCipherSpec]
1611         //                      <-------             Finished
1612         // Application Data     <------>     Application Data
1613         int len;
1614
1615         send_client_hello_and_alloc_hsd(tls, sni);
1616         get_server_hello(tls);
1617
1618         // RFC 5246
1619         // The server MUST send a Certificate message whenever the agreed-
1620         // upon key exchange method uses certificates for authentication
1621         // (this includes all key exchange methods defined in this document
1622         // except DH_anon).  This message will always immediately follow the
1623         // ServerHello message.
1624         //
1625         // IOW: in practice, Certificate *always* follows.
1626         // (for example, kernel.org does not even accept DH_anon cipher id)
1627         get_server_cert(tls);
1628
1629         len = tls_xread_handshake_block(tls, 4);
1630         if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_SERVER_KEY_EXCHANGE) {
1631                 // 459 bytes:
1632                 // 0c   00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a...
1633                 //SvKey len=455^
1634                 // with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes:
1635                 // 0c   00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75...
1636                 dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len);
1637 //probably need to save it
1638                 len = tls_xread_handshake_block(tls, 4);
1639         }
1640
1641         if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_CERTIFICATE_REQUEST) {
1642                 dbg("<< CERTIFICATE_REQUEST\n");
1643                 // RFC 5246: "If no suitable certificate is available,
1644                 // the client MUST send a certificate message containing no
1645                 // certificates.  That is, the certificate_list structure has a
1646                 // length of zero. ...
1647                 // Client certificates are sent using the Certificate structure
1648                 // defined in Section 7.4.2."
1649                 // (i.e. the same format as server certs)
1650                 send_empty_client_cert(tls);
1651                 len = tls_xread_handshake_block(tls, 4);
1652         }
1653
1654         if (tls->inbuf[RECHDR_LEN] != HANDSHAKE_SERVER_HELLO_DONE) {
1655                 bad_record_die(tls, "'server hello done'", len);
1656         }
1657         // 0e 000000 (len:0)
1658         dbg("<< SERVER_HELLO_DONE\n");
1659
1660         send_client_key_exchange(tls);
1661
1662         send_change_cipher_spec(tls);
1663         /* from now on we should send encrypted */
1664         /* tls->write_seq64_be = 0; - already is */
1665         tls->encrypt_on_write = 1;
1666
1667         send_client_finished(tls);
1668
1669         /* Get CHANGE_CIPHER_SPEC */
1670         len = tls_xread_record(tls);
1671         if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0)
1672                 bad_record_die(tls, "switch to encrypted traffic", len);
1673         dbg("<< CHANGE_CIPHER_SPEC\n");
1674         if (CIPHER_ID1 == TLS_RSA_WITH_NULL_SHA256
1675          && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
1676         ) {
1677                 tls->min_encrypted_len_on_read = tls->MAC_size;
1678         } else {
1679                 unsigned mac_blocks = (unsigned)(tls->MAC_size + AES_BLOCKSIZE-1) / AES_BLOCKSIZE;
1680                 /* all incoming packets now should be encrypted and have
1681                  * at least IV + (MAC padded to blocksize):
1682                  */
1683                 tls->min_encrypted_len_on_read = AES_BLOCKSIZE + (mac_blocks * AES_BLOCKSIZE);
1684                 dbg("min_encrypted_len_on_read: %u", tls->min_encrypted_len_on_read);
1685         }
1686
1687         /* Get (encrypted) FINISHED from the server */
1688         len = tls_xread_record(tls);
1689         if (len < 4 || tls->inbuf[RECHDR_LEN] != HANDSHAKE_FINISHED)
1690                 tls_error_die(tls);
1691         dbg("<< FINISHED\n");
1692         /* application data can be sent/received */
1693
1694         /* free handshake data */
1695 //      if (PARANOIA)
1696 //              memset(tls->hsd, 0, tls->hsd->hsd_size);
1697         free(tls->hsd);
1698         tls->hsd = NULL;
1699 }
1700
1701 static void tls_xwrite(tls_state_t *tls, int len)
1702 {
1703         dbg(">> DATA\n");
1704         xwrite_encrypted(tls, len, RECORD_TYPE_APPLICATION_DATA);
1705 }
1706
1707 // To run a test server using openssl:
1708 // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
1709 // openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1
1710 //
1711 // Unencryped SHA256 example:
1712 // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
1713 // openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL
1714 // openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL-SHA256
1715
1716 void FAST_FUNC tls_run_copy_loop(tls_state_t *tls)
1717 {
1718         int inbuf_size;
1719         const int INBUF_STEP = 4 * 1024;
1720         struct pollfd pfds[2];
1721
1722         pfds[0].fd = STDIN_FILENO;
1723         pfds[0].events = POLLIN;
1724         pfds[1].fd = tls->ifd;
1725         pfds[1].events = POLLIN;
1726
1727         inbuf_size = INBUF_STEP;
1728         for (;;) {
1729                 int nread;
1730
1731                 if (safe_poll(pfds, 2, -1) < 0)
1732                         bb_perror_msg_and_die("poll");
1733
1734                 if (pfds[0].revents) {
1735                         void *buf;
1736
1737                         dbg("STDIN HAS DATA\n");
1738                         buf = tls_get_outbuf(tls, inbuf_size);
1739                         nread = safe_read(STDIN_FILENO, buf, inbuf_size);
1740                         if (nread < 1) {
1741                                 /* We'd want to do this: */
1742                                 /* Close outgoing half-connection so they get EOF,
1743                                  * but leave incoming alone so we can see response
1744                                  */
1745                                 //shutdown(tls->ofd, SHUT_WR);
1746                                 /* But TLS has no way to encode this,
1747                                  * doubt it's ok to do it "raw"
1748                                  */
1749                                 pfds[0].fd = -1;
1750                                 tls_free_outbuf(tls); /* mem usage optimization */
1751                         } else {
1752                                 if (nread == inbuf_size) {
1753                                         /* TLS has per record overhead, if input comes fast,
1754                                          * read, encrypt and send bigger chunks
1755                                          */
1756                                         inbuf_size += INBUF_STEP;
1757                                         if (inbuf_size > TLS_MAX_OUTBUF)
1758                                                 inbuf_size = TLS_MAX_OUTBUF;
1759                                 }
1760                                 tls_xwrite(tls, nread);
1761                         }
1762                 }
1763                 if (pfds[1].revents) {
1764                         dbg("NETWORK HAS DATA\n");
1765  read_record:
1766                         nread = tls_xread_record(tls);
1767                         if (nread < 1) {
1768                                 /* TLS protocol has no real concept of one-sided shutdowns:
1769                                  * if we get "TLS EOF" from the peer, writes will fail too
1770                                  */
1771                                 //pfds[1].fd = -1;
1772                                 //close(STDOUT_FILENO);
1773                                 //tls_free_inbuf(tls); /* mem usage optimization */
1774                                 //continue;
1775                                 break;
1776                         }
1777                         if (tls->inbuf[0] != RECORD_TYPE_APPLICATION_DATA)
1778                                 bb_error_msg_and_die("unexpected record type %d", tls->inbuf[0]);
1779                         xwrite(STDOUT_FILENO, tls->inbuf + RECHDR_LEN, nread);
1780                         /* We may already have a complete next record buffered,
1781                          * can process it without network reads (and possible blocking)
1782                          */
1783                         if (tls_has_buffered_record(tls))
1784                                 goto read_record;
1785                 }
1786         }
1787 }