Linux-libre 5.7.5-gnu
[librecmc/linux-libre.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return 2484;
85                 else if (chan < 14)
86                         return 2407 + chan * 5;
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return 4000 + chan * 5;
91                 else
92                         return 5000 + chan * 5;
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D4.1 27.3.22.2 */
96                 if (chan <= 253)
97                         return 5940 + chan * 5;
98                 break;
99         case NL80211_BAND_60GHZ:
100                 if (chan < 7)
101                         return 56160 + chan * 2160;
102                 break;
103         default:
104                 ;
105         }
106         return 0; /* not supported */
107 }
108 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109
110 int ieee80211_frequency_to_channel(int freq)
111 {
112         /* see 802.11 17.3.8.3.2 and Annex J */
113         if (freq == 2484)
114                 return 14;
115         else if (freq < 2484)
116                 return (freq - 2407) / 5;
117         else if (freq >= 4910 && freq <= 4980)
118                 return (freq - 4000) / 5;
119         else if (freq < 5945)
120                 return (freq - 5000) / 5;
121         else if (freq <= 45000) /* DMG band lower limit */
122                 /* see 802.11ax D4.1 27.3.22.2 */
123                 return (freq - 5940) / 5;
124         else if (freq >= 58320 && freq <= 70200)
125                 return (freq - 56160) / 2160;
126         else
127                 return 0;
128 }
129 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130
131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132 {
133         enum nl80211_band band;
134         struct ieee80211_supported_band *sband;
135         int i;
136
137         for (band = 0; band < NUM_NL80211_BANDS; band++) {
138                 sband = wiphy->bands[band];
139
140                 if (!sband)
141                         continue;
142
143                 for (i = 0; i < sband->n_channels; i++) {
144                         if (sband->channels[i].center_freq == freq)
145                                 return &sband->channels[i];
146                 }
147         }
148
149         return NULL;
150 }
151 EXPORT_SYMBOL(ieee80211_get_channel);
152
153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154 {
155         int i, want;
156
157         switch (sband->band) {
158         case NL80211_BAND_5GHZ:
159         case NL80211_BAND_6GHZ:
160                 want = 3;
161                 for (i = 0; i < sband->n_bitrates; i++) {
162                         if (sband->bitrates[i].bitrate == 60 ||
163                             sband->bitrates[i].bitrate == 120 ||
164                             sband->bitrates[i].bitrate == 240) {
165                                 sband->bitrates[i].flags |=
166                                         IEEE80211_RATE_MANDATORY_A;
167                                 want--;
168                         }
169                 }
170                 WARN_ON(want);
171                 break;
172         case NL80211_BAND_2GHZ:
173                 want = 7;
174                 for (i = 0; i < sband->n_bitrates; i++) {
175                         switch (sband->bitrates[i].bitrate) {
176                         case 10:
177                         case 20:
178                         case 55:
179                         case 110:
180                                 sband->bitrates[i].flags |=
181                                         IEEE80211_RATE_MANDATORY_B |
182                                         IEEE80211_RATE_MANDATORY_G;
183                                 want--;
184                                 break;
185                         case 60:
186                         case 120:
187                         case 240:
188                                 sband->bitrates[i].flags |=
189                                         IEEE80211_RATE_MANDATORY_G;
190                                 want--;
191                                 /* fall through */
192                         default:
193                                 sband->bitrates[i].flags |=
194                                         IEEE80211_RATE_ERP_G;
195                                 break;
196                         }
197                 }
198                 WARN_ON(want != 0 && want != 3);
199                 break;
200         case NL80211_BAND_60GHZ:
201                 /* check for mandatory HT MCS 1..4 */
202                 WARN_ON(!sband->ht_cap.ht_supported);
203                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204                 break;
205         case NUM_NL80211_BANDS:
206         default:
207                 WARN_ON(1);
208                 break;
209         }
210 }
211
212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213 {
214         enum nl80211_band band;
215
216         for (band = 0; band < NUM_NL80211_BANDS; band++)
217                 if (wiphy->bands[band])
218                         set_mandatory_flags_band(wiphy->bands[band]);
219 }
220
221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222 {
223         int i;
224         for (i = 0; i < wiphy->n_cipher_suites; i++)
225                 if (cipher == wiphy->cipher_suites[i])
226                         return true;
227         return false;
228 }
229
230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231                                    struct key_params *params, int key_idx,
232                                    bool pairwise, const u8 *mac_addr)
233 {
234         int max_key_idx = 5;
235
236         if (wiphy_ext_feature_isset(&rdev->wiphy,
237                                     NL80211_EXT_FEATURE_BEACON_PROTECTION))
238                 max_key_idx = 7;
239         if (key_idx < 0 || key_idx > max_key_idx)
240                 return -EINVAL;
241
242         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
243                 return -EINVAL;
244
245         if (pairwise && !mac_addr)
246                 return -EINVAL;
247
248         switch (params->cipher) {
249         case WLAN_CIPHER_SUITE_TKIP:
250                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
251                 if ((pairwise && key_idx) ||
252                     params->mode != NL80211_KEY_RX_TX)
253                         return -EINVAL;
254                 break;
255         case WLAN_CIPHER_SUITE_CCMP:
256         case WLAN_CIPHER_SUITE_CCMP_256:
257         case WLAN_CIPHER_SUITE_GCMP:
258         case WLAN_CIPHER_SUITE_GCMP_256:
259                 /* IEEE802.11-2016 allows only 0 and - when supporting
260                  * Extended Key ID - 1 as index for pairwise keys.
261                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
262                  * the driver supports Extended Key ID.
263                  * @NL80211_KEY_SET_TX can't be set when installing and
264                  * validating a key.
265                  */
266                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
267                     params->mode == NL80211_KEY_SET_TX)
268                         return -EINVAL;
269                 if (wiphy_ext_feature_isset(&rdev->wiphy,
270                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
271                         if (pairwise && (key_idx < 0 || key_idx > 1))
272                                 return -EINVAL;
273                 } else if (pairwise && key_idx) {
274                         return -EINVAL;
275                 }
276                 break;
277         case WLAN_CIPHER_SUITE_AES_CMAC:
278         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
279         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
280         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
281                 /* Disallow BIP (group-only) cipher as pairwise cipher */
282                 if (pairwise)
283                         return -EINVAL;
284                 if (key_idx < 4)
285                         return -EINVAL;
286                 break;
287         case WLAN_CIPHER_SUITE_WEP40:
288         case WLAN_CIPHER_SUITE_WEP104:
289                 if (key_idx > 3)
290                         return -EINVAL;
291         default:
292                 break;
293         }
294
295         switch (params->cipher) {
296         case WLAN_CIPHER_SUITE_WEP40:
297                 if (params->key_len != WLAN_KEY_LEN_WEP40)
298                         return -EINVAL;
299                 break;
300         case WLAN_CIPHER_SUITE_TKIP:
301                 if (params->key_len != WLAN_KEY_LEN_TKIP)
302                         return -EINVAL;
303                 break;
304         case WLAN_CIPHER_SUITE_CCMP:
305                 if (params->key_len != WLAN_KEY_LEN_CCMP)
306                         return -EINVAL;
307                 break;
308         case WLAN_CIPHER_SUITE_CCMP_256:
309                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
310                         return -EINVAL;
311                 break;
312         case WLAN_CIPHER_SUITE_GCMP:
313                 if (params->key_len != WLAN_KEY_LEN_GCMP)
314                         return -EINVAL;
315                 break;
316         case WLAN_CIPHER_SUITE_GCMP_256:
317                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
318                         return -EINVAL;
319                 break;
320         case WLAN_CIPHER_SUITE_WEP104:
321                 if (params->key_len != WLAN_KEY_LEN_WEP104)
322                         return -EINVAL;
323                 break;
324         case WLAN_CIPHER_SUITE_AES_CMAC:
325                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
326                         return -EINVAL;
327                 break;
328         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
329                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
330                         return -EINVAL;
331                 break;
332         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
334                         return -EINVAL;
335                 break;
336         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
337                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
338                         return -EINVAL;
339                 break;
340         default:
341                 /*
342                  * We don't know anything about this algorithm,
343                  * allow using it -- but the driver must check
344                  * all parameters! We still check below whether
345                  * or not the driver supports this algorithm,
346                  * of course.
347                  */
348                 break;
349         }
350
351         if (params->seq) {
352                 switch (params->cipher) {
353                 case WLAN_CIPHER_SUITE_WEP40:
354                 case WLAN_CIPHER_SUITE_WEP104:
355                         /* These ciphers do not use key sequence */
356                         return -EINVAL;
357                 case WLAN_CIPHER_SUITE_TKIP:
358                 case WLAN_CIPHER_SUITE_CCMP:
359                 case WLAN_CIPHER_SUITE_CCMP_256:
360                 case WLAN_CIPHER_SUITE_GCMP:
361                 case WLAN_CIPHER_SUITE_GCMP_256:
362                 case WLAN_CIPHER_SUITE_AES_CMAC:
363                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
364                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
365                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
366                         if (params->seq_len != 6)
367                                 return -EINVAL;
368                         break;
369                 }
370         }
371
372         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
373                 return -EINVAL;
374
375         return 0;
376 }
377
378 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
379 {
380         unsigned int hdrlen = 24;
381
382         if (ieee80211_is_data(fc)) {
383                 if (ieee80211_has_a4(fc))
384                         hdrlen = 30;
385                 if (ieee80211_is_data_qos(fc)) {
386                         hdrlen += IEEE80211_QOS_CTL_LEN;
387                         if (ieee80211_has_order(fc))
388                                 hdrlen += IEEE80211_HT_CTL_LEN;
389                 }
390                 goto out;
391         }
392
393         if (ieee80211_is_mgmt(fc)) {
394                 if (ieee80211_has_order(fc))
395                         hdrlen += IEEE80211_HT_CTL_LEN;
396                 goto out;
397         }
398
399         if (ieee80211_is_ctl(fc)) {
400                 /*
401                  * ACK and CTS are 10 bytes, all others 16. To see how
402                  * to get this condition consider
403                  *   subtype mask:   0b0000000011110000 (0x00F0)
404                  *   ACK subtype:    0b0000000011010000 (0x00D0)
405                  *   CTS subtype:    0b0000000011000000 (0x00C0)
406                  *   bits that matter:         ^^^      (0x00E0)
407                  *   value of those: 0b0000000011000000 (0x00C0)
408                  */
409                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
410                         hdrlen = 10;
411                 else
412                         hdrlen = 16;
413         }
414 out:
415         return hdrlen;
416 }
417 EXPORT_SYMBOL(ieee80211_hdrlen);
418
419 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
420 {
421         const struct ieee80211_hdr *hdr =
422                         (const struct ieee80211_hdr *)skb->data;
423         unsigned int hdrlen;
424
425         if (unlikely(skb->len < 10))
426                 return 0;
427         hdrlen = ieee80211_hdrlen(hdr->frame_control);
428         if (unlikely(hdrlen > skb->len))
429                 return 0;
430         return hdrlen;
431 }
432 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
433
434 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
435 {
436         int ae = flags & MESH_FLAGS_AE;
437         /* 802.11-2012, 8.2.4.7.3 */
438         switch (ae) {
439         default:
440         case 0:
441                 return 6;
442         case MESH_FLAGS_AE_A4:
443                 return 12;
444         case MESH_FLAGS_AE_A5_A6:
445                 return 18;
446         }
447 }
448
449 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
450 {
451         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
452 }
453 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
454
455 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
456                                   const u8 *addr, enum nl80211_iftype iftype,
457                                   u8 data_offset)
458 {
459         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
460         struct {
461                 u8 hdr[ETH_ALEN] __aligned(2);
462                 __be16 proto;
463         } payload;
464         struct ethhdr tmp;
465         u16 hdrlen;
466         u8 mesh_flags = 0;
467
468         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
469                 return -1;
470
471         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
472         if (skb->len < hdrlen + 8)
473                 return -1;
474
475         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
476          * header
477          * IEEE 802.11 address fields:
478          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
479          *   0     0   DA    SA    BSSID n/a
480          *   0     1   DA    BSSID SA    n/a
481          *   1     0   BSSID SA    DA    n/a
482          *   1     1   RA    TA    DA    SA
483          */
484         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
485         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
486
487         if (iftype == NL80211_IFTYPE_MESH_POINT)
488                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
489
490         mesh_flags &= MESH_FLAGS_AE;
491
492         switch (hdr->frame_control &
493                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
494         case cpu_to_le16(IEEE80211_FCTL_TODS):
495                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
496                              iftype != NL80211_IFTYPE_AP_VLAN &&
497                              iftype != NL80211_IFTYPE_P2P_GO))
498                         return -1;
499                 break;
500         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
501                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
502                              iftype != NL80211_IFTYPE_MESH_POINT &&
503                              iftype != NL80211_IFTYPE_AP_VLAN &&
504                              iftype != NL80211_IFTYPE_STATION))
505                         return -1;
506                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
507                         if (mesh_flags == MESH_FLAGS_AE_A4)
508                                 return -1;
509                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
510                                 skb_copy_bits(skb, hdrlen +
511                                         offsetof(struct ieee80211s_hdr, eaddr1),
512                                         tmp.h_dest, 2 * ETH_ALEN);
513                         }
514                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
515                 }
516                 break;
517         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
518                 if ((iftype != NL80211_IFTYPE_STATION &&
519                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
520                      iftype != NL80211_IFTYPE_MESH_POINT) ||
521                     (is_multicast_ether_addr(tmp.h_dest) &&
522                      ether_addr_equal(tmp.h_source, addr)))
523                         return -1;
524                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
525                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
526                                 return -1;
527                         if (mesh_flags == MESH_FLAGS_AE_A4)
528                                 skb_copy_bits(skb, hdrlen +
529                                         offsetof(struct ieee80211s_hdr, eaddr1),
530                                         tmp.h_source, ETH_ALEN);
531                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
532                 }
533                 break;
534         case cpu_to_le16(0):
535                 if (iftype != NL80211_IFTYPE_ADHOC &&
536                     iftype != NL80211_IFTYPE_STATION &&
537                     iftype != NL80211_IFTYPE_OCB)
538                                 return -1;
539                 break;
540         }
541
542         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
543         tmp.h_proto = payload.proto;
544
545         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
546                     tmp.h_proto != htons(ETH_P_AARP) &&
547                     tmp.h_proto != htons(ETH_P_IPX)) ||
548                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
549                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
550                  * replace EtherType */
551                 hdrlen += ETH_ALEN + 2;
552         else
553                 tmp.h_proto = htons(skb->len - hdrlen);
554
555         pskb_pull(skb, hdrlen);
556
557         if (!ehdr)
558                 ehdr = skb_push(skb, sizeof(struct ethhdr));
559         memcpy(ehdr, &tmp, sizeof(tmp));
560
561         return 0;
562 }
563 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
564
565 static void
566 __frame_add_frag(struct sk_buff *skb, struct page *page,
567                  void *ptr, int len, int size)
568 {
569         struct skb_shared_info *sh = skb_shinfo(skb);
570         int page_offset;
571
572         get_page(page);
573         page_offset = ptr - page_address(page);
574         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
575 }
576
577 static void
578 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
579                             int offset, int len)
580 {
581         struct skb_shared_info *sh = skb_shinfo(skb);
582         const skb_frag_t *frag = &sh->frags[0];
583         struct page *frag_page;
584         void *frag_ptr;
585         int frag_len, frag_size;
586         int head_size = skb->len - skb->data_len;
587         int cur_len;
588
589         frag_page = virt_to_head_page(skb->head);
590         frag_ptr = skb->data;
591         frag_size = head_size;
592
593         while (offset >= frag_size) {
594                 offset -= frag_size;
595                 frag_page = skb_frag_page(frag);
596                 frag_ptr = skb_frag_address(frag);
597                 frag_size = skb_frag_size(frag);
598                 frag++;
599         }
600
601         frag_ptr += offset;
602         frag_len = frag_size - offset;
603
604         cur_len = min(len, frag_len);
605
606         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
607         len -= cur_len;
608
609         while (len > 0) {
610                 frag_len = skb_frag_size(frag);
611                 cur_len = min(len, frag_len);
612                 __frame_add_frag(frame, skb_frag_page(frag),
613                                  skb_frag_address(frag), cur_len, frag_len);
614                 len -= cur_len;
615                 frag++;
616         }
617 }
618
619 static struct sk_buff *
620 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
621                        int offset, int len, bool reuse_frag)
622 {
623         struct sk_buff *frame;
624         int cur_len = len;
625
626         if (skb->len - offset < len)
627                 return NULL;
628
629         /*
630          * When reusing framents, copy some data to the head to simplify
631          * ethernet header handling and speed up protocol header processing
632          * in the stack later.
633          */
634         if (reuse_frag)
635                 cur_len = min_t(int, len, 32);
636
637         /*
638          * Allocate and reserve two bytes more for payload
639          * alignment since sizeof(struct ethhdr) is 14.
640          */
641         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
642         if (!frame)
643                 return NULL;
644
645         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
646         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
647
648         len -= cur_len;
649         if (!len)
650                 return frame;
651
652         offset += cur_len;
653         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
654
655         return frame;
656 }
657
658 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
659                               const u8 *addr, enum nl80211_iftype iftype,
660                               const unsigned int extra_headroom,
661                               const u8 *check_da, const u8 *check_sa)
662 {
663         unsigned int hlen = ALIGN(extra_headroom, 4);
664         struct sk_buff *frame = NULL;
665         u16 ethertype;
666         u8 *payload;
667         int offset = 0, remaining;
668         struct ethhdr eth;
669         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
670         bool reuse_skb = false;
671         bool last = false;
672
673         while (!last) {
674                 unsigned int subframe_len;
675                 int len;
676                 u8 padding;
677
678                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
679                 len = ntohs(eth.h_proto);
680                 subframe_len = sizeof(struct ethhdr) + len;
681                 padding = (4 - subframe_len) & 0x3;
682
683                 /* the last MSDU has no padding */
684                 remaining = skb->len - offset;
685                 if (subframe_len > remaining)
686                         goto purge;
687
688                 offset += sizeof(struct ethhdr);
689                 last = remaining <= subframe_len + padding;
690
691                 /* FIXME: should we really accept multicast DA? */
692                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
693                      !ether_addr_equal(check_da, eth.h_dest)) ||
694                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
695                         offset += len + padding;
696                         continue;
697                 }
698
699                 /* reuse skb for the last subframe */
700                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
701                         skb_pull(skb, offset);
702                         frame = skb;
703                         reuse_skb = true;
704                 } else {
705                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
706                                                        reuse_frag);
707                         if (!frame)
708                                 goto purge;
709
710                         offset += len + padding;
711                 }
712
713                 skb_reset_network_header(frame);
714                 frame->dev = skb->dev;
715                 frame->priority = skb->priority;
716
717                 payload = frame->data;
718                 ethertype = (payload[6] << 8) | payload[7];
719                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
720                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
721                            ether_addr_equal(payload, bridge_tunnel_header))) {
722                         eth.h_proto = htons(ethertype);
723                         skb_pull(frame, ETH_ALEN + 2);
724                 }
725
726                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
727                 __skb_queue_tail(list, frame);
728         }
729
730         if (!reuse_skb)
731                 dev_kfree_skb(skb);
732
733         return;
734
735  purge:
736         __skb_queue_purge(list);
737         dev_kfree_skb(skb);
738 }
739 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
740
741 /* Given a data frame determine the 802.1p/1d tag to use. */
742 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
743                                     struct cfg80211_qos_map *qos_map)
744 {
745         unsigned int dscp;
746         unsigned char vlan_priority;
747         unsigned int ret;
748
749         /* skb->priority values from 256->263 are magic values to
750          * directly indicate a specific 802.1d priority.  This is used
751          * to allow 802.1d priority to be passed directly in from VLAN
752          * tags, etc.
753          */
754         if (skb->priority >= 256 && skb->priority <= 263) {
755                 ret = skb->priority - 256;
756                 goto out;
757         }
758
759         if (skb_vlan_tag_present(skb)) {
760                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
761                         >> VLAN_PRIO_SHIFT;
762                 if (vlan_priority > 0) {
763                         ret = vlan_priority;
764                         goto out;
765                 }
766         }
767
768         switch (skb->protocol) {
769         case htons(ETH_P_IP):
770                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
771                 break;
772         case htons(ETH_P_IPV6):
773                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
774                 break;
775         case htons(ETH_P_MPLS_UC):
776         case htons(ETH_P_MPLS_MC): {
777                 struct mpls_label mpls_tmp, *mpls;
778
779                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
780                                           sizeof(*mpls), &mpls_tmp);
781                 if (!mpls)
782                         return 0;
783
784                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
785                         >> MPLS_LS_TC_SHIFT;
786                 goto out;
787         }
788         case htons(ETH_P_80221):
789                 /* 802.21 is always network control traffic */
790                 return 7;
791         default:
792                 return 0;
793         }
794
795         if (qos_map) {
796                 unsigned int i, tmp_dscp = dscp >> 2;
797
798                 for (i = 0; i < qos_map->num_des; i++) {
799                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
800                                 ret = qos_map->dscp_exception[i].up;
801                                 goto out;
802                         }
803                 }
804
805                 for (i = 0; i < 8; i++) {
806                         if (tmp_dscp >= qos_map->up[i].low &&
807                             tmp_dscp <= qos_map->up[i].high) {
808                                 ret = i;
809                                 goto out;
810                         }
811                 }
812         }
813
814         ret = dscp >> 5;
815 out:
816         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
817 }
818 EXPORT_SYMBOL(cfg80211_classify8021d);
819
820 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
821 {
822         const struct cfg80211_bss_ies *ies;
823
824         ies = rcu_dereference(bss->ies);
825         if (!ies)
826                 return NULL;
827
828         return cfg80211_find_elem(id, ies->data, ies->len);
829 }
830 EXPORT_SYMBOL(ieee80211_bss_get_elem);
831
832 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
833 {
834         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
835         struct net_device *dev = wdev->netdev;
836         int i;
837
838         if (!wdev->connect_keys)
839                 return;
840
841         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
842                 if (!wdev->connect_keys->params[i].cipher)
843                         continue;
844                 if (rdev_add_key(rdev, dev, i, false, NULL,
845                                  &wdev->connect_keys->params[i])) {
846                         netdev_err(dev, "failed to set key %d\n", i);
847                         continue;
848                 }
849                 if (wdev->connect_keys->def == i &&
850                     rdev_set_default_key(rdev, dev, i, true, true)) {
851                         netdev_err(dev, "failed to set defkey %d\n", i);
852                         continue;
853                 }
854         }
855
856         kzfree(wdev->connect_keys);
857         wdev->connect_keys = NULL;
858 }
859
860 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
861 {
862         struct cfg80211_event *ev;
863         unsigned long flags;
864
865         spin_lock_irqsave(&wdev->event_lock, flags);
866         while (!list_empty(&wdev->event_list)) {
867                 ev = list_first_entry(&wdev->event_list,
868                                       struct cfg80211_event, list);
869                 list_del(&ev->list);
870                 spin_unlock_irqrestore(&wdev->event_lock, flags);
871
872                 wdev_lock(wdev);
873                 switch (ev->type) {
874                 case EVENT_CONNECT_RESULT:
875                         __cfg80211_connect_result(
876                                 wdev->netdev,
877                                 &ev->cr,
878                                 ev->cr.status == WLAN_STATUS_SUCCESS);
879                         break;
880                 case EVENT_ROAMED:
881                         __cfg80211_roamed(wdev, &ev->rm);
882                         break;
883                 case EVENT_DISCONNECTED:
884                         __cfg80211_disconnected(wdev->netdev,
885                                                 ev->dc.ie, ev->dc.ie_len,
886                                                 ev->dc.reason,
887                                                 !ev->dc.locally_generated);
888                         break;
889                 case EVENT_IBSS_JOINED:
890                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
891                                                ev->ij.channel);
892                         break;
893                 case EVENT_STOPPED:
894                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
895                         break;
896                 case EVENT_PORT_AUTHORIZED:
897                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
898                         break;
899                 }
900                 wdev_unlock(wdev);
901
902                 kfree(ev);
903
904                 spin_lock_irqsave(&wdev->event_lock, flags);
905         }
906         spin_unlock_irqrestore(&wdev->event_lock, flags);
907 }
908
909 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
910 {
911         struct wireless_dev *wdev;
912
913         ASSERT_RTNL();
914
915         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
916                 cfg80211_process_wdev_events(wdev);
917 }
918
919 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
920                           struct net_device *dev, enum nl80211_iftype ntype,
921                           struct vif_params *params)
922 {
923         int err;
924         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
925
926         ASSERT_RTNL();
927
928         /* don't support changing VLANs, you just re-create them */
929         if (otype == NL80211_IFTYPE_AP_VLAN)
930                 return -EOPNOTSUPP;
931
932         /* cannot change into P2P device or NAN */
933         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
934             ntype == NL80211_IFTYPE_NAN)
935                 return -EOPNOTSUPP;
936
937         if (!rdev->ops->change_virtual_intf ||
938             !(rdev->wiphy.interface_modes & (1 << ntype)))
939                 return -EOPNOTSUPP;
940
941         /* if it's part of a bridge, reject changing type to station/ibss */
942         if (netif_is_bridge_port(dev) &&
943             (ntype == NL80211_IFTYPE_ADHOC ||
944              ntype == NL80211_IFTYPE_STATION ||
945              ntype == NL80211_IFTYPE_P2P_CLIENT))
946                 return -EBUSY;
947
948         if (ntype != otype) {
949                 dev->ieee80211_ptr->use_4addr = false;
950                 dev->ieee80211_ptr->mesh_id_up_len = 0;
951                 wdev_lock(dev->ieee80211_ptr);
952                 rdev_set_qos_map(rdev, dev, NULL);
953                 wdev_unlock(dev->ieee80211_ptr);
954
955                 switch (otype) {
956                 case NL80211_IFTYPE_AP:
957                         cfg80211_stop_ap(rdev, dev, true);
958                         break;
959                 case NL80211_IFTYPE_ADHOC:
960                         cfg80211_leave_ibss(rdev, dev, false);
961                         break;
962                 case NL80211_IFTYPE_STATION:
963                 case NL80211_IFTYPE_P2P_CLIENT:
964                         wdev_lock(dev->ieee80211_ptr);
965                         cfg80211_disconnect(rdev, dev,
966                                             WLAN_REASON_DEAUTH_LEAVING, true);
967                         wdev_unlock(dev->ieee80211_ptr);
968                         break;
969                 case NL80211_IFTYPE_MESH_POINT:
970                         /* mesh should be handled? */
971                         break;
972                 default:
973                         break;
974                 }
975
976                 cfg80211_process_rdev_events(rdev);
977                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
978         }
979
980         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
981
982         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
983
984         if (!err && params && params->use_4addr != -1)
985                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
986
987         if (!err) {
988                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
989                 switch (ntype) {
990                 case NL80211_IFTYPE_STATION:
991                         if (dev->ieee80211_ptr->use_4addr)
992                                 break;
993                         /* fall through */
994                 case NL80211_IFTYPE_OCB:
995                 case NL80211_IFTYPE_P2P_CLIENT:
996                 case NL80211_IFTYPE_ADHOC:
997                         dev->priv_flags |= IFF_DONT_BRIDGE;
998                         break;
999                 case NL80211_IFTYPE_P2P_GO:
1000                 case NL80211_IFTYPE_AP:
1001                 case NL80211_IFTYPE_AP_VLAN:
1002                 case NL80211_IFTYPE_WDS:
1003                 case NL80211_IFTYPE_MESH_POINT:
1004                         /* bridging OK */
1005                         break;
1006                 case NL80211_IFTYPE_MONITOR:
1007                         /* monitor can't bridge anyway */
1008                         break;
1009                 case NL80211_IFTYPE_UNSPECIFIED:
1010                 case NUM_NL80211_IFTYPES:
1011                         /* not happening */
1012                         break;
1013                 case NL80211_IFTYPE_P2P_DEVICE:
1014                 case NL80211_IFTYPE_NAN:
1015                         WARN_ON(1);
1016                         break;
1017                 }
1018         }
1019
1020         if (!err && ntype != otype && netif_running(dev)) {
1021                 cfg80211_update_iface_num(rdev, ntype, 1);
1022                 cfg80211_update_iface_num(rdev, otype, -1);
1023         }
1024
1025         return err;
1026 }
1027
1028 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1029 {
1030         int modulation, streams, bitrate;
1031
1032         /* the formula below does only work for MCS values smaller than 32 */
1033         if (WARN_ON_ONCE(rate->mcs >= 32))
1034                 return 0;
1035
1036         modulation = rate->mcs & 7;
1037         streams = (rate->mcs >> 3) + 1;
1038
1039         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1040
1041         if (modulation < 4)
1042                 bitrate *= (modulation + 1);
1043         else if (modulation == 4)
1044                 bitrate *= (modulation + 2);
1045         else
1046                 bitrate *= (modulation + 3);
1047
1048         bitrate *= streams;
1049
1050         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1051                 bitrate = (bitrate / 9) * 10;
1052
1053         /* do NOT round down here */
1054         return (bitrate + 50000) / 100000;
1055 }
1056
1057 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1058 {
1059         static const u32 __mcs2bitrate[] = {
1060                 /* control PHY */
1061                 [0] =   275,
1062                 /* SC PHY */
1063                 [1] =  3850,
1064                 [2] =  7700,
1065                 [3] =  9625,
1066                 [4] = 11550,
1067                 [5] = 12512, /* 1251.25 mbps */
1068                 [6] = 15400,
1069                 [7] = 19250,
1070                 [8] = 23100,
1071                 [9] = 25025,
1072                 [10] = 30800,
1073                 [11] = 38500,
1074                 [12] = 46200,
1075                 /* OFDM PHY */
1076                 [13] =  6930,
1077                 [14] =  8662, /* 866.25 mbps */
1078                 [15] = 13860,
1079                 [16] = 17325,
1080                 [17] = 20790,
1081                 [18] = 27720,
1082                 [19] = 34650,
1083                 [20] = 41580,
1084                 [21] = 45045,
1085                 [22] = 51975,
1086                 [23] = 62370,
1087                 [24] = 67568, /* 6756.75 mbps */
1088                 /* LP-SC PHY */
1089                 [25] =  6260,
1090                 [26] =  8340,
1091                 [27] = 11120,
1092                 [28] = 12510,
1093                 [29] = 16680,
1094                 [30] = 22240,
1095                 [31] = 25030,
1096         };
1097
1098         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1099                 return 0;
1100
1101         return __mcs2bitrate[rate->mcs];
1102 }
1103
1104 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1105 {
1106         static const u32 __mcs2bitrate[] = {
1107                 /* control PHY */
1108                 [0] =   275,
1109                 /* SC PHY */
1110                 [1] =  3850,
1111                 [2] =  7700,
1112                 [3] =  9625,
1113                 [4] = 11550,
1114                 [5] = 12512, /* 1251.25 mbps */
1115                 [6] = 13475,
1116                 [7] = 15400,
1117                 [8] = 19250,
1118                 [9] = 23100,
1119                 [10] = 25025,
1120                 [11] = 26950,
1121                 [12] = 30800,
1122                 [13] = 38500,
1123                 [14] = 46200,
1124                 [15] = 50050,
1125                 [16] = 53900,
1126                 [17] = 57750,
1127                 [18] = 69300,
1128                 [19] = 75075,
1129                 [20] = 80850,
1130         };
1131
1132         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1133                 return 0;
1134
1135         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1136 }
1137
1138 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1139 {
1140         static const u32 base[4][10] = {
1141                 {   6500000,
1142                    13000000,
1143                    19500000,
1144                    26000000,
1145                    39000000,
1146                    52000000,
1147                    58500000,
1148                    65000000,
1149                    78000000,
1150                 /* not in the spec, but some devices use this: */
1151                    86500000,
1152                 },
1153                 {  13500000,
1154                    27000000,
1155                    40500000,
1156                    54000000,
1157                    81000000,
1158                   108000000,
1159                   121500000,
1160                   135000000,
1161                   162000000,
1162                   180000000,
1163                 },
1164                 {  29300000,
1165                    58500000,
1166                    87800000,
1167                   117000000,
1168                   175500000,
1169                   234000000,
1170                   263300000,
1171                   292500000,
1172                   351000000,
1173                   390000000,
1174                 },
1175                 {  58500000,
1176                   117000000,
1177                   175500000,
1178                   234000000,
1179                   351000000,
1180                   468000000,
1181                   526500000,
1182                   585000000,
1183                   702000000,
1184                   780000000,
1185                 },
1186         };
1187         u32 bitrate;
1188         int idx;
1189
1190         if (rate->mcs > 9)
1191                 goto warn;
1192
1193         switch (rate->bw) {
1194         case RATE_INFO_BW_160:
1195                 idx = 3;
1196                 break;
1197         case RATE_INFO_BW_80:
1198                 idx = 2;
1199                 break;
1200         case RATE_INFO_BW_40:
1201                 idx = 1;
1202                 break;
1203         case RATE_INFO_BW_5:
1204         case RATE_INFO_BW_10:
1205         default:
1206                 goto warn;
1207         case RATE_INFO_BW_20:
1208                 idx = 0;
1209         }
1210
1211         bitrate = base[idx][rate->mcs];
1212         bitrate *= rate->nss;
1213
1214         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1215                 bitrate = (bitrate / 9) * 10;
1216
1217         /* do NOT round down here */
1218         return (bitrate + 50000) / 100000;
1219  warn:
1220         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1221                   rate->bw, rate->mcs, rate->nss);
1222         return 0;
1223 }
1224
1225 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1226 {
1227 #define SCALE 2048
1228         u16 mcs_divisors[12] = {
1229                 34133, /* 16.666666... */
1230                 17067, /*  8.333333... */
1231                 11378, /*  5.555555... */
1232                  8533, /*  4.166666... */
1233                  5689, /*  2.777777... */
1234                  4267, /*  2.083333... */
1235                  3923, /*  1.851851... */
1236                  3413, /*  1.666666... */
1237                  2844, /*  1.388888... */
1238                  2560, /*  1.250000... */
1239                  2276, /*  1.111111... */
1240                  2048, /*  1.000000... */
1241         };
1242         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1243         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1244         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1245         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1246         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1247         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1248         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1249         u64 tmp;
1250         u32 result;
1251
1252         if (WARN_ON_ONCE(rate->mcs > 11))
1253                 return 0;
1254
1255         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1256                 return 0;
1257         if (WARN_ON_ONCE(rate->he_ru_alloc >
1258                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1259                 return 0;
1260         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1261                 return 0;
1262
1263         if (rate->bw == RATE_INFO_BW_160)
1264                 result = rates_160M[rate->he_gi];
1265         else if (rate->bw == RATE_INFO_BW_80 ||
1266                  (rate->bw == RATE_INFO_BW_HE_RU &&
1267                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1268                 result = rates_969[rate->he_gi];
1269         else if (rate->bw == RATE_INFO_BW_40 ||
1270                  (rate->bw == RATE_INFO_BW_HE_RU &&
1271                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1272                 result = rates_484[rate->he_gi];
1273         else if (rate->bw == RATE_INFO_BW_20 ||
1274                  (rate->bw == RATE_INFO_BW_HE_RU &&
1275                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1276                 result = rates_242[rate->he_gi];
1277         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1278                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1279                 result = rates_106[rate->he_gi];
1280         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1281                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1282                 result = rates_52[rate->he_gi];
1283         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1284                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1285                 result = rates_26[rate->he_gi];
1286         else {
1287                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1288                      rate->bw, rate->he_ru_alloc);
1289                 return 0;
1290         }
1291
1292         /* now scale to the appropriate MCS */
1293         tmp = result;
1294         tmp *= SCALE;
1295         do_div(tmp, mcs_divisors[rate->mcs]);
1296         result = tmp;
1297
1298         /* and take NSS, DCM into account */
1299         result = (result * rate->nss) / 8;
1300         if (rate->he_dcm)
1301                 result /= 2;
1302
1303         return result / 10000;
1304 }
1305
1306 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1307 {
1308         if (rate->flags & RATE_INFO_FLAGS_MCS)
1309                 return cfg80211_calculate_bitrate_ht(rate);
1310         if (rate->flags & RATE_INFO_FLAGS_DMG)
1311                 return cfg80211_calculate_bitrate_dmg(rate);
1312         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1313                 return cfg80211_calculate_bitrate_edmg(rate);
1314         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1315                 return cfg80211_calculate_bitrate_vht(rate);
1316         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1317                 return cfg80211_calculate_bitrate_he(rate);
1318
1319         return rate->legacy;
1320 }
1321 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1322
1323 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1324                           enum ieee80211_p2p_attr_id attr,
1325                           u8 *buf, unsigned int bufsize)
1326 {
1327         u8 *out = buf;
1328         u16 attr_remaining = 0;
1329         bool desired_attr = false;
1330         u16 desired_len = 0;
1331
1332         while (len > 0) {
1333                 unsigned int iedatalen;
1334                 unsigned int copy;
1335                 const u8 *iedata;
1336
1337                 if (len < 2)
1338                         return -EILSEQ;
1339                 iedatalen = ies[1];
1340                 if (iedatalen + 2 > len)
1341                         return -EILSEQ;
1342
1343                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1344                         goto cont;
1345
1346                 if (iedatalen < 4)
1347                         goto cont;
1348
1349                 iedata = ies + 2;
1350
1351                 /* check WFA OUI, P2P subtype */
1352                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1353                     iedata[2] != 0x9a || iedata[3] != 0x09)
1354                         goto cont;
1355
1356                 iedatalen -= 4;
1357                 iedata += 4;
1358
1359                 /* check attribute continuation into this IE */
1360                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1361                 if (copy && desired_attr) {
1362                         desired_len += copy;
1363                         if (out) {
1364                                 memcpy(out, iedata, min(bufsize, copy));
1365                                 out += min(bufsize, copy);
1366                                 bufsize -= min(bufsize, copy);
1367                         }
1368
1369
1370                         if (copy == attr_remaining)
1371                                 return desired_len;
1372                 }
1373
1374                 attr_remaining -= copy;
1375                 if (attr_remaining)
1376                         goto cont;
1377
1378                 iedatalen -= copy;
1379                 iedata += copy;
1380
1381                 while (iedatalen > 0) {
1382                         u16 attr_len;
1383
1384                         /* P2P attribute ID & size must fit */
1385                         if (iedatalen < 3)
1386                                 return -EILSEQ;
1387                         desired_attr = iedata[0] == attr;
1388                         attr_len = get_unaligned_le16(iedata + 1);
1389                         iedatalen -= 3;
1390                         iedata += 3;
1391
1392                         copy = min_t(unsigned int, attr_len, iedatalen);
1393
1394                         if (desired_attr) {
1395                                 desired_len += copy;
1396                                 if (out) {
1397                                         memcpy(out, iedata, min(bufsize, copy));
1398                                         out += min(bufsize, copy);
1399                                         bufsize -= min(bufsize, copy);
1400                                 }
1401
1402                                 if (copy == attr_len)
1403                                         return desired_len;
1404                         }
1405
1406                         iedata += copy;
1407                         iedatalen -= copy;
1408                         attr_remaining = attr_len - copy;
1409                 }
1410
1411  cont:
1412                 len -= ies[1] + 2;
1413                 ies += ies[1] + 2;
1414         }
1415
1416         if (attr_remaining && desired_attr)
1417                 return -EILSEQ;
1418
1419         return -ENOENT;
1420 }
1421 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1422
1423 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1424 {
1425         int i;
1426
1427         /* Make sure array values are legal */
1428         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1429                 return false;
1430
1431         i = 0;
1432         while (i < n_ids) {
1433                 if (ids[i] == WLAN_EID_EXTENSION) {
1434                         if (id_ext && (ids[i + 1] == id))
1435                                 return true;
1436
1437                         i += 2;
1438                         continue;
1439                 }
1440
1441                 if (ids[i] == id && !id_ext)
1442                         return true;
1443
1444                 i++;
1445         }
1446         return false;
1447 }
1448
1449 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1450 {
1451         /* we assume a validly formed IEs buffer */
1452         u8 len = ies[pos + 1];
1453
1454         pos += 2 + len;
1455
1456         /* the IE itself must have 255 bytes for fragments to follow */
1457         if (len < 255)
1458                 return pos;
1459
1460         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1461                 len = ies[pos + 1];
1462                 pos += 2 + len;
1463         }
1464
1465         return pos;
1466 }
1467
1468 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1469                               const u8 *ids, int n_ids,
1470                               const u8 *after_ric, int n_after_ric,
1471                               size_t offset)
1472 {
1473         size_t pos = offset;
1474
1475         while (pos < ielen) {
1476                 u8 ext = 0;
1477
1478                 if (ies[pos] == WLAN_EID_EXTENSION)
1479                         ext = 2;
1480                 if ((pos + ext) >= ielen)
1481                         break;
1482
1483                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1484                                           ies[pos] == WLAN_EID_EXTENSION))
1485                         break;
1486
1487                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1488                         pos = skip_ie(ies, ielen, pos);
1489
1490                         while (pos < ielen) {
1491                                 if (ies[pos] == WLAN_EID_EXTENSION)
1492                                         ext = 2;
1493                                 else
1494                                         ext = 0;
1495
1496                                 if ((pos + ext) >= ielen)
1497                                         break;
1498
1499                                 if (!ieee80211_id_in_list(after_ric,
1500                                                           n_after_ric,
1501                                                           ies[pos + ext],
1502                                                           ext == 2))
1503                                         pos = skip_ie(ies, ielen, pos);
1504                                 else
1505                                         break;
1506                         }
1507                 } else {
1508                         pos = skip_ie(ies, ielen, pos);
1509                 }
1510         }
1511
1512         return pos;
1513 }
1514 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1515
1516 bool ieee80211_operating_class_to_band(u8 operating_class,
1517                                        enum nl80211_band *band)
1518 {
1519         switch (operating_class) {
1520         case 112:
1521         case 115 ... 127:
1522         case 128 ... 130:
1523                 *band = NL80211_BAND_5GHZ;
1524                 return true;
1525         case 131 ... 135:
1526                 *band = NL80211_BAND_6GHZ;
1527                 return true;
1528         case 81:
1529         case 82:
1530         case 83:
1531         case 84:
1532                 *band = NL80211_BAND_2GHZ;
1533                 return true;
1534         case 180:
1535                 *band = NL80211_BAND_60GHZ;
1536                 return true;
1537         }
1538
1539         return false;
1540 }
1541 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1542
1543 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1544                                           u8 *op_class)
1545 {
1546         u8 vht_opclass;
1547         u32 freq = chandef->center_freq1;
1548
1549         if (freq >= 2412 && freq <= 2472) {
1550                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1551                         return false;
1552
1553                 /* 2.407 GHz, channels 1..13 */
1554                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1555                         if (freq > chandef->chan->center_freq)
1556                                 *op_class = 83; /* HT40+ */
1557                         else
1558                                 *op_class = 84; /* HT40- */
1559                 } else {
1560                         *op_class = 81;
1561                 }
1562
1563                 return true;
1564         }
1565
1566         if (freq == 2484) {
1567                 /* channel 14 is only for IEEE 802.11b */
1568                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1569                         return false;
1570
1571                 *op_class = 82; /* channel 14 */
1572                 return true;
1573         }
1574
1575         switch (chandef->width) {
1576         case NL80211_CHAN_WIDTH_80:
1577                 vht_opclass = 128;
1578                 break;
1579         case NL80211_CHAN_WIDTH_160:
1580                 vht_opclass = 129;
1581                 break;
1582         case NL80211_CHAN_WIDTH_80P80:
1583                 vht_opclass = 130;
1584                 break;
1585         case NL80211_CHAN_WIDTH_10:
1586         case NL80211_CHAN_WIDTH_5:
1587                 return false; /* unsupported for now */
1588         default:
1589                 vht_opclass = 0;
1590                 break;
1591         }
1592
1593         /* 5 GHz, channels 36..48 */
1594         if (freq >= 5180 && freq <= 5240) {
1595                 if (vht_opclass) {
1596                         *op_class = vht_opclass;
1597                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1598                         if (freq > chandef->chan->center_freq)
1599                                 *op_class = 116;
1600                         else
1601                                 *op_class = 117;
1602                 } else {
1603                         *op_class = 115;
1604                 }
1605
1606                 return true;
1607         }
1608
1609         /* 5 GHz, channels 52..64 */
1610         if (freq >= 5260 && freq <= 5320) {
1611                 if (vht_opclass) {
1612                         *op_class = vht_opclass;
1613                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1614                         if (freq > chandef->chan->center_freq)
1615                                 *op_class = 119;
1616                         else
1617                                 *op_class = 120;
1618                 } else {
1619                         *op_class = 118;
1620                 }
1621
1622                 return true;
1623         }
1624
1625         /* 5 GHz, channels 100..144 */
1626         if (freq >= 5500 && freq <= 5720) {
1627                 if (vht_opclass) {
1628                         *op_class = vht_opclass;
1629                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1630                         if (freq > chandef->chan->center_freq)
1631                                 *op_class = 122;
1632                         else
1633                                 *op_class = 123;
1634                 } else {
1635                         *op_class = 121;
1636                 }
1637
1638                 return true;
1639         }
1640
1641         /* 5 GHz, channels 149..169 */
1642         if (freq >= 5745 && freq <= 5845) {
1643                 if (vht_opclass) {
1644                         *op_class = vht_opclass;
1645                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1646                         if (freq > chandef->chan->center_freq)
1647                                 *op_class = 126;
1648                         else
1649                                 *op_class = 127;
1650                 } else if (freq <= 5805) {
1651                         *op_class = 124;
1652                 } else {
1653                         *op_class = 125;
1654                 }
1655
1656                 return true;
1657         }
1658
1659         /* 56.16 GHz, channel 1..4 */
1660         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1661                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1662                         return false;
1663
1664                 *op_class = 180;
1665                 return true;
1666         }
1667
1668         /* not supported yet */
1669         return false;
1670 }
1671 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1672
1673 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1674                                        u32 *beacon_int_gcd,
1675                                        bool *beacon_int_different)
1676 {
1677         struct wireless_dev *wdev;
1678
1679         *beacon_int_gcd = 0;
1680         *beacon_int_different = false;
1681
1682         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1683                 if (!wdev->beacon_interval)
1684                         continue;
1685
1686                 if (!*beacon_int_gcd) {
1687                         *beacon_int_gcd = wdev->beacon_interval;
1688                         continue;
1689                 }
1690
1691                 if (wdev->beacon_interval == *beacon_int_gcd)
1692                         continue;
1693
1694                 *beacon_int_different = true;
1695                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1696         }
1697
1698         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1699                 if (*beacon_int_gcd)
1700                         *beacon_int_different = true;
1701                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1702         }
1703 }
1704
1705 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1706                                  enum nl80211_iftype iftype, u32 beacon_int)
1707 {
1708         /*
1709          * This is just a basic pre-condition check; if interface combinations
1710          * are possible the driver must already be checking those with a call
1711          * to cfg80211_check_combinations(), in which case we'll validate more
1712          * through the cfg80211_calculate_bi_data() call and code in
1713          * cfg80211_iter_combinations().
1714          */
1715
1716         if (beacon_int < 10 || beacon_int > 10000)
1717                 return -EINVAL;
1718
1719         return 0;
1720 }
1721
1722 int cfg80211_iter_combinations(struct wiphy *wiphy,
1723                                struct iface_combination_params *params,
1724                                void (*iter)(const struct ieee80211_iface_combination *c,
1725                                             void *data),
1726                                void *data)
1727 {
1728         const struct ieee80211_regdomain *regdom;
1729         enum nl80211_dfs_regions region = 0;
1730         int i, j, iftype;
1731         int num_interfaces = 0;
1732         u32 used_iftypes = 0;
1733         u32 beacon_int_gcd;
1734         bool beacon_int_different;
1735
1736         /*
1737          * This is a bit strange, since the iteration used to rely only on
1738          * the data given by the driver, but here it now relies on context,
1739          * in form of the currently operating interfaces.
1740          * This is OK for all current users, and saves us from having to
1741          * push the GCD calculations into all the drivers.
1742          * In the future, this should probably rely more on data that's in
1743          * cfg80211 already - the only thing not would appear to be any new
1744          * interfaces (while being brought up) and channel/radar data.
1745          */
1746         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1747                                    &beacon_int_gcd, &beacon_int_different);
1748
1749         if (params->radar_detect) {
1750                 rcu_read_lock();
1751                 regdom = rcu_dereference(cfg80211_regdomain);
1752                 if (regdom)
1753                         region = regdom->dfs_region;
1754                 rcu_read_unlock();
1755         }
1756
1757         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1758                 num_interfaces += params->iftype_num[iftype];
1759                 if (params->iftype_num[iftype] > 0 &&
1760                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1761                         used_iftypes |= BIT(iftype);
1762         }
1763
1764         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1765                 const struct ieee80211_iface_combination *c;
1766                 struct ieee80211_iface_limit *limits;
1767                 u32 all_iftypes = 0;
1768
1769                 c = &wiphy->iface_combinations[i];
1770
1771                 if (num_interfaces > c->max_interfaces)
1772                         continue;
1773                 if (params->num_different_channels > c->num_different_channels)
1774                         continue;
1775
1776                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1777                                  GFP_KERNEL);
1778                 if (!limits)
1779                         return -ENOMEM;
1780
1781                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1782                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1783                                 continue;
1784                         for (j = 0; j < c->n_limits; j++) {
1785                                 all_iftypes |= limits[j].types;
1786                                 if (!(limits[j].types & BIT(iftype)))
1787                                         continue;
1788                                 if (limits[j].max < params->iftype_num[iftype])
1789                                         goto cont;
1790                                 limits[j].max -= params->iftype_num[iftype];
1791                         }
1792                 }
1793
1794                 if (params->radar_detect !=
1795                         (c->radar_detect_widths & params->radar_detect))
1796                         goto cont;
1797
1798                 if (params->radar_detect && c->radar_detect_regions &&
1799                     !(c->radar_detect_regions & BIT(region)))
1800                         goto cont;
1801
1802                 /* Finally check that all iftypes that we're currently
1803                  * using are actually part of this combination. If they
1804                  * aren't then we can't use this combination and have
1805                  * to continue to the next.
1806                  */
1807                 if ((all_iftypes & used_iftypes) != used_iftypes)
1808                         goto cont;
1809
1810                 if (beacon_int_gcd) {
1811                         if (c->beacon_int_min_gcd &&
1812                             beacon_int_gcd < c->beacon_int_min_gcd)
1813                                 goto cont;
1814                         if (!c->beacon_int_min_gcd && beacon_int_different)
1815                                 goto cont;
1816                 }
1817
1818                 /* This combination covered all interface types and
1819                  * supported the requested numbers, so we're good.
1820                  */
1821
1822                 (*iter)(c, data);
1823  cont:
1824                 kfree(limits);
1825         }
1826
1827         return 0;
1828 }
1829 EXPORT_SYMBOL(cfg80211_iter_combinations);
1830
1831 static void
1832 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1833                           void *data)
1834 {
1835         int *num = data;
1836         (*num)++;
1837 }
1838
1839 int cfg80211_check_combinations(struct wiphy *wiphy,
1840                                 struct iface_combination_params *params)
1841 {
1842         int err, num = 0;
1843
1844         err = cfg80211_iter_combinations(wiphy, params,
1845                                          cfg80211_iter_sum_ifcombs, &num);
1846         if (err)
1847                 return err;
1848         if (num == 0)
1849                 return -EBUSY;
1850
1851         return 0;
1852 }
1853 EXPORT_SYMBOL(cfg80211_check_combinations);
1854
1855 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1856                            const u8 *rates, unsigned int n_rates,
1857                            u32 *mask)
1858 {
1859         int i, j;
1860
1861         if (!sband)
1862                 return -EINVAL;
1863
1864         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1865                 return -EINVAL;
1866
1867         *mask = 0;
1868
1869         for (i = 0; i < n_rates; i++) {
1870                 int rate = (rates[i] & 0x7f) * 5;
1871                 bool found = false;
1872
1873                 for (j = 0; j < sband->n_bitrates; j++) {
1874                         if (sband->bitrates[j].bitrate == rate) {
1875                                 found = true;
1876                                 *mask |= BIT(j);
1877                                 break;
1878                         }
1879                 }
1880                 if (!found)
1881                         return -EINVAL;
1882         }
1883
1884         /*
1885          * mask must have at least one bit set here since we
1886          * didn't accept a 0-length rates array nor allowed
1887          * entries in the array that didn't exist
1888          */
1889
1890         return 0;
1891 }
1892
1893 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1894 {
1895         enum nl80211_band band;
1896         unsigned int n_channels = 0;
1897
1898         for (band = 0; band < NUM_NL80211_BANDS; band++)
1899                 if (wiphy->bands[band])
1900                         n_channels += wiphy->bands[band]->n_channels;
1901
1902         return n_channels;
1903 }
1904 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1905
1906 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1907                          struct station_info *sinfo)
1908 {
1909         struct cfg80211_registered_device *rdev;
1910         struct wireless_dev *wdev;
1911
1912         wdev = dev->ieee80211_ptr;
1913         if (!wdev)
1914                 return -EOPNOTSUPP;
1915
1916         rdev = wiphy_to_rdev(wdev->wiphy);
1917         if (!rdev->ops->get_station)
1918                 return -EOPNOTSUPP;
1919
1920         memset(sinfo, 0, sizeof(*sinfo));
1921
1922         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1923 }
1924 EXPORT_SYMBOL(cfg80211_get_station);
1925
1926 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1927 {
1928         int i;
1929
1930         if (!f)
1931                 return;
1932
1933         kfree(f->serv_spec_info);
1934         kfree(f->srf_bf);
1935         kfree(f->srf_macs);
1936         for (i = 0; i < f->num_rx_filters; i++)
1937                 kfree(f->rx_filters[i].filter);
1938
1939         for (i = 0; i < f->num_tx_filters; i++)
1940                 kfree(f->tx_filters[i].filter);
1941
1942         kfree(f->rx_filters);
1943         kfree(f->tx_filters);
1944         kfree(f);
1945 }
1946 EXPORT_SYMBOL(cfg80211_free_nan_func);
1947
1948 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1949                                 u32 center_freq_khz, u32 bw_khz)
1950 {
1951         u32 start_freq_khz, end_freq_khz;
1952
1953         start_freq_khz = center_freq_khz - (bw_khz / 2);
1954         end_freq_khz = center_freq_khz + (bw_khz / 2);
1955
1956         if (start_freq_khz >= freq_range->start_freq_khz &&
1957             end_freq_khz <= freq_range->end_freq_khz)
1958                 return true;
1959
1960         return false;
1961 }
1962
1963 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1964 {
1965         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1966                                 sizeof(*(sinfo->pertid)),
1967                                 gfp);
1968         if (!sinfo->pertid)
1969                 return -ENOMEM;
1970
1971         return 0;
1972 }
1973 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1974
1975 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1976 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1977 const unsigned char rfc1042_header[] __aligned(2) =
1978         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1979 EXPORT_SYMBOL(rfc1042_header);
1980
1981 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1982 const unsigned char bridge_tunnel_header[] __aligned(2) =
1983         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1984 EXPORT_SYMBOL(bridge_tunnel_header);
1985
1986 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1987 struct iapp_layer2_update {
1988         u8 da[ETH_ALEN];        /* broadcast */
1989         u8 sa[ETH_ALEN];        /* STA addr */
1990         __be16 len;             /* 6 */
1991         u8 dsap;                /* 0 */
1992         u8 ssap;                /* 0 */
1993         u8 control;
1994         u8 xid_info[3];
1995 } __packed;
1996
1997 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1998 {
1999         struct iapp_layer2_update *msg;
2000         struct sk_buff *skb;
2001
2002         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2003          * bridge devices */
2004
2005         skb = dev_alloc_skb(sizeof(*msg));
2006         if (!skb)
2007                 return;
2008         msg = skb_put(skb, sizeof(*msg));
2009
2010         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2011          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2012
2013         eth_broadcast_addr(msg->da);
2014         ether_addr_copy(msg->sa, addr);
2015         msg->len = htons(6);
2016         msg->dsap = 0;
2017         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2018         msg->control = 0xaf;    /* XID response lsb.1111F101.
2019                                  * F=0 (no poll command; unsolicited frame) */
2020         msg->xid_info[0] = 0x81;        /* XID format identifier */
2021         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2022         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2023
2024         skb->dev = dev;
2025         skb->protocol = eth_type_trans(skb, dev);
2026         memset(skb->cb, 0, sizeof(skb->cb));
2027         netif_rx_ni(skb);
2028 }
2029 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2030
2031 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2032                               enum ieee80211_vht_chanwidth bw,
2033                               int mcs, bool ext_nss_bw_capable)
2034 {
2035         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2036         int max_vht_nss = 0;
2037         int ext_nss_bw;
2038         int supp_width;
2039         int i, mcs_encoding;
2040
2041         if (map == 0xffff)
2042                 return 0;
2043
2044         if (WARN_ON(mcs > 9))
2045                 return 0;
2046         if (mcs <= 7)
2047                 mcs_encoding = 0;
2048         else if (mcs == 8)
2049                 mcs_encoding = 1;
2050         else
2051                 mcs_encoding = 2;
2052
2053         /* find max_vht_nss for the given MCS */
2054         for (i = 7; i >= 0; i--) {
2055                 int supp = (map >> (2 * i)) & 3;
2056
2057                 if (supp == 3)
2058                         continue;
2059
2060                 if (supp >= mcs_encoding) {
2061                         max_vht_nss = i + 1;
2062                         break;
2063                 }
2064         }
2065
2066         if (!(cap->supp_mcs.tx_mcs_map &
2067                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2068                 return max_vht_nss;
2069
2070         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2071                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2072         supp_width = le32_get_bits(cap->vht_cap_info,
2073                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2074
2075         /* if not capable, treat ext_nss_bw as 0 */
2076         if (!ext_nss_bw_capable)
2077                 ext_nss_bw = 0;
2078
2079         /* This is invalid */
2080         if (supp_width == 3)
2081                 return 0;
2082
2083         /* This is an invalid combination so pretend nothing is supported */
2084         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2085                 return 0;
2086
2087         /*
2088          * Cover all the special cases according to IEEE 802.11-2016
2089          * Table 9-250. All other cases are either factor of 1 or not
2090          * valid/supported.
2091          */
2092         switch (bw) {
2093         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2094         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2095                 if ((supp_width == 1 || supp_width == 2) &&
2096                     ext_nss_bw == 3)
2097                         return 2 * max_vht_nss;
2098                 break;
2099         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2100                 if (supp_width == 0 &&
2101                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2102                         return max_vht_nss / 2;
2103                 if (supp_width == 0 &&
2104                     ext_nss_bw == 3)
2105                         return (3 * max_vht_nss) / 4;
2106                 if (supp_width == 1 &&
2107                     ext_nss_bw == 3)
2108                         return 2 * max_vht_nss;
2109                 break;
2110         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2111                 if (supp_width == 0 && ext_nss_bw == 1)
2112                         return 0; /* not possible */
2113                 if (supp_width == 0 &&
2114                     ext_nss_bw == 2)
2115                         return max_vht_nss / 2;
2116                 if (supp_width == 0 &&
2117                     ext_nss_bw == 3)
2118                         return (3 * max_vht_nss) / 4;
2119                 if (supp_width == 1 &&
2120                     ext_nss_bw == 0)
2121                         return 0; /* not possible */
2122                 if (supp_width == 1 &&
2123                     ext_nss_bw == 1)
2124                         return max_vht_nss / 2;
2125                 if (supp_width == 1 &&
2126                     ext_nss_bw == 2)
2127                         return (3 * max_vht_nss) / 4;
2128                 break;
2129         }
2130
2131         /* not covered or invalid combination received */
2132         return max_vht_nss;
2133 }
2134 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2135
2136 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2137                              bool is_4addr, u8 check_swif)
2138
2139 {
2140         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2141
2142         switch (check_swif) {
2143         case 0:
2144                 if (is_vlan && is_4addr)
2145                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2146                 return wiphy->interface_modes & BIT(iftype);
2147         case 1:
2148                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2149                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2150                 return wiphy->software_iftypes & BIT(iftype);
2151         default:
2152                 break;
2153         }
2154
2155         return false;
2156 }
2157 EXPORT_SYMBOL(cfg80211_iftype_allowed);