Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY         RPCDBG_SCHED
32 #endif
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36
37 /*
38  * RPC slabs and memory pools
39  */
40 #define RPC_BUFFER_MAXSIZE      (2048)
41 #define RPC_BUFFER_POOLSIZE     (8)
42 #define RPC_TASK_POOLSIZE       (8)
43 static struct kmem_cache        *rpc_task_slabp __read_mostly;
44 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
45 static mempool_t        *rpc_task_mempool __read_mostly;
46 static mempool_t        *rpc_buffer_mempool __read_mostly;
47
48 static void                     rpc_async_schedule(struct work_struct *);
49 static void                      rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static struct rpc_wait_queue delay_queue;
56
57 /*
58  * rpciod-related stuff
59  */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67         unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69         if (timeout != 0) {
70                 unsigned long now = jiffies;
71                 if (time_before(now, timeout))
72                         return timeout - now;
73         }
74         return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78 /*
79  * Disable the timer for a given RPC task. Should be called with
80  * queue->lock and bh_disabled in order to avoid races within
81  * rpc_run_timer().
82  */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86         if (list_empty(&task->u.tk_wait.timer_list))
87                 return;
88         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89         task->tk_timeout = 0;
90         list_del(&task->u.tk_wait.timer_list);
91         if (list_empty(&queue->timer_list.list))
92                 cancel_delayed_work(&queue->timer_list.dwork);
93 }
94
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98         unsigned long now = jiffies;
99         queue->timer_list.expires = expires;
100         if (time_before_eq(expires, now))
101                 expires = 0;
102         else
103                 expires -= now;
104         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106
107 /*
108  * Set up a timer for the current task.
109  */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112                 unsigned long timeout)
113 {
114         dprintk("RPC: %5u setting alarm for %u ms\n",
115                 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117         task->tk_timeout = timeout;
118         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119                 rpc_set_queue_timer(queue, timeout);
120         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125         if (queue->priority != priority) {
126                 queue->priority = priority;
127                 queue->nr = 1U << priority;
128         }
129 }
130
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133         rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142         struct rpc_task *t;
143
144         list_for_each_entry(t, q, u.tk_wait.list) {
145                 if (t->tk_owner == task->tk_owner) {
146                         list_add_tail(&task->u.tk_wait.links,
147                                         &t->u.tk_wait.links);
148                         /* Cache the queue head in task->u.tk_wait.list */
149                         task->u.tk_wait.list.next = q;
150                         task->u.tk_wait.list.prev = NULL;
151                         return;
152                 }
153         }
154         INIT_LIST_HEAD(&task->u.tk_wait.links);
155         list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164         struct list_head *q;
165         struct rpc_task *t;
166
167         if (task->u.tk_wait.list.prev == NULL) {
168                 list_del(&task->u.tk_wait.links);
169                 return;
170         }
171         if (!list_empty(&task->u.tk_wait.links)) {
172                 t = list_first_entry(&task->u.tk_wait.links,
173                                 struct rpc_task,
174                                 u.tk_wait.links);
175                 /* Assume __rpc_list_enqueue_task() cached the queue head */
176                 q = t->u.tk_wait.list.next;
177                 list_add_tail(&t->u.tk_wait.list, q);
178                 list_del(&task->u.tk_wait.links);
179         }
180         list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187                 struct rpc_task *task,
188                 unsigned char queue_priority)
189 {
190         if (unlikely(queue_priority > queue->maxpriority))
191                 queue_priority = queue->maxpriority;
192         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196  * Add new request to wait queue.
197  *
198  * Swapper tasks always get inserted at the head of the queue.
199  * This should avoid many nasty memory deadlocks and hopefully
200  * improve overall performance.
201  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202  */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204                 struct rpc_task *task,
205                 unsigned char queue_priority)
206 {
207         WARN_ON_ONCE(RPC_IS_QUEUED(task));
208         if (RPC_IS_QUEUED(task))
209                 return;
210
211         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212         if (RPC_IS_PRIORITY(queue))
213                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
214         else if (RPC_IS_SWAPPER(task))
215                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216         else
217                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218         task->tk_waitqueue = queue;
219         queue->qlen++;
220         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
221         smp_wmb();
222         rpc_set_queued(task);
223
224         dprintk("RPC: %5u added to queue %p \"%s\"\n",
225                         task->tk_pid, queue, rpc_qname(queue));
226 }
227
228 /*
229  * Remove request from a priority queue.
230  */
231 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
232 {
233         __rpc_list_dequeue_task(task);
234 }
235
236 /*
237  * Remove request from queue.
238  * Note: must be called with spin lock held.
239  */
240 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
241 {
242         __rpc_disable_timer(queue, task);
243         if (RPC_IS_PRIORITY(queue))
244                 __rpc_remove_wait_queue_priority(task);
245         else
246                 list_del(&task->u.tk_wait.list);
247         queue->qlen--;
248         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249                         task->tk_pid, queue, rpc_qname(queue));
250 }
251
252 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
253 {
254         int i;
255
256         spin_lock_init(&queue->lock);
257         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258                 INIT_LIST_HEAD(&queue->tasks[i]);
259         queue->maxpriority = nr_queues - 1;
260         rpc_reset_waitqueue_priority(queue);
261         queue->qlen = 0;
262         queue->timer_list.expires = 0;
263         INIT_DEFERRABLE_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264         INIT_LIST_HEAD(&queue->timer_list.list);
265         rpc_assign_waitqueue_name(queue, qname);
266 }
267
268 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
269 {
270         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
271 }
272 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
273
274 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
275 {
276         __rpc_init_priority_wait_queue(queue, qname, 1);
277 }
278 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
279
280 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
281 {
282         cancel_delayed_work_sync(&queue->timer_list.dwork);
283 }
284 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
285
286 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
287 {
288         freezable_schedule_unsafe();
289         if (signal_pending_state(mode, current))
290                 return -ERESTARTSYS;
291         return 0;
292 }
293
294 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
295 static void rpc_task_set_debuginfo(struct rpc_task *task)
296 {
297         static atomic_t rpc_pid;
298
299         task->tk_pid = atomic_inc_return(&rpc_pid);
300 }
301 #else
302 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
303 {
304 }
305 #endif
306
307 static void rpc_set_active(struct rpc_task *task)
308 {
309         rpc_task_set_debuginfo(task);
310         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311         trace_rpc_task_begin(task, NULL);
312 }
313
314 /*
315  * Mark an RPC call as having completed by clearing the 'active' bit
316  * and then waking up all tasks that were sleeping.
317  */
318 static int rpc_complete_task(struct rpc_task *task)
319 {
320         void *m = &task->tk_runstate;
321         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323         unsigned long flags;
324         int ret;
325
326         trace_rpc_task_complete(task, NULL);
327
328         spin_lock_irqsave(&wq->lock, flags);
329         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330         ret = atomic_dec_and_test(&task->tk_count);
331         if (waitqueue_active(wq))
332                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
333         spin_unlock_irqrestore(&wq->lock, flags);
334         return ret;
335 }
336
337 /*
338  * Allow callers to wait for completion of an RPC call
339  *
340  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341  * to enforce taking of the wq->lock and hence avoid races with
342  * rpc_complete_task().
343  */
344 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
345 {
346         if (action == NULL)
347                 action = rpc_wait_bit_killable;
348         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349                         action, TASK_KILLABLE);
350 }
351 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
352
353 /*
354  * Make an RPC task runnable.
355  *
356  * Note: If the task is ASYNC, and is being made runnable after sitting on an
357  * rpc_wait_queue, this must be called with the queue spinlock held to protect
358  * the wait queue operation.
359  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362  * the RPC_TASK_RUNNING flag.
363  */
364 static void rpc_make_runnable(struct workqueue_struct *wq,
365                 struct rpc_task *task)
366 {
367         bool need_wakeup = !rpc_test_and_set_running(task);
368
369         rpc_clear_queued(task);
370         if (!need_wakeup)
371                 return;
372         if (RPC_IS_ASYNC(task)) {
373                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374                 queue_work(wq, &task->u.tk_work);
375         } else
376                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
377 }
378
379 /*
380  * Prepare for sleeping on a wait queue.
381  * By always appending tasks to the list we ensure FIFO behavior.
382  * NB: An RPC task will only receive interrupt-driven events as long
383  * as it's on a wait queue.
384  */
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386                 struct rpc_task *task,
387                 unsigned char queue_priority)
388 {
389         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390                         task->tk_pid, rpc_qname(q), jiffies);
391
392         trace_rpc_task_sleep(task, q);
393
394         __rpc_add_wait_queue(q, task, queue_priority);
395
396 }
397
398 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399                 struct rpc_task *task, unsigned long timeout,
400                 unsigned char queue_priority)
401 {
402         if (time_is_after_jiffies(timeout)) {
403                 __rpc_sleep_on_priority(q, task, queue_priority);
404                 __rpc_add_timer(q, task, timeout);
405         } else
406                 task->tk_status = -ETIMEDOUT;
407 }
408
409 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
410 {
411         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412                 task->tk_callback = action;
413 }
414
415 static bool rpc_sleep_check_activated(struct rpc_task *task)
416 {
417         /* We shouldn't ever put an inactive task to sleep */
418         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419                 task->tk_status = -EIO;
420                 rpc_put_task_async(task);
421                 return false;
422         }
423         return true;
424 }
425
426 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427                                 rpc_action action, unsigned long timeout)
428 {
429         if (!rpc_sleep_check_activated(task))
430                 return;
431
432         rpc_set_tk_callback(task, action);
433
434         /*
435          * Protect the queue operations.
436          */
437         spin_lock(&q->lock);
438         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439         spin_unlock(&q->lock);
440 }
441 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
442
443 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444                                 rpc_action action)
445 {
446         if (!rpc_sleep_check_activated(task))
447                 return;
448
449         rpc_set_tk_callback(task, action);
450
451         WARN_ON_ONCE(task->tk_timeout != 0);
452         /*
453          * Protect the queue operations.
454          */
455         spin_lock(&q->lock);
456         __rpc_sleep_on_priority(q, task, task->tk_priority);
457         spin_unlock(&q->lock);
458 }
459 EXPORT_SYMBOL_GPL(rpc_sleep_on);
460
461 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462                 struct rpc_task *task, unsigned long timeout, int priority)
463 {
464         if (!rpc_sleep_check_activated(task))
465                 return;
466
467         priority -= RPC_PRIORITY_LOW;
468         /*
469          * Protect the queue operations.
470          */
471         spin_lock(&q->lock);
472         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473         spin_unlock(&q->lock);
474 }
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
476
477 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478                 int priority)
479 {
480         if (!rpc_sleep_check_activated(task))
481                 return;
482
483         WARN_ON_ONCE(task->tk_timeout != 0);
484         priority -= RPC_PRIORITY_LOW;
485         /*
486          * Protect the queue operations.
487          */
488         spin_lock(&q->lock);
489         __rpc_sleep_on_priority(q, task, priority);
490         spin_unlock(&q->lock);
491 }
492 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
493
494 /**
495  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496  * @wq: workqueue on which to run task
497  * @queue: wait queue
498  * @task: task to be woken up
499  *
500  * Caller must hold queue->lock, and have cleared the task queued flag.
501  */
502 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503                 struct rpc_wait_queue *queue,
504                 struct rpc_task *task)
505 {
506         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507                         task->tk_pid, jiffies);
508
509         /* Has the task been executed yet? If not, we cannot wake it up! */
510         if (!RPC_IS_ACTIVATED(task)) {
511                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512                 return;
513         }
514
515         trace_rpc_task_wakeup(task, queue);
516
517         __rpc_remove_wait_queue(queue, task);
518
519         rpc_make_runnable(wq, task);
520
521         dprintk("RPC:       __rpc_wake_up_task done\n");
522 }
523
524 /*
525  * Wake up a queued task while the queue lock is being held
526  */
527 static struct rpc_task *
528 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529                 struct rpc_wait_queue *queue, struct rpc_task *task,
530                 bool (*action)(struct rpc_task *, void *), void *data)
531 {
532         if (RPC_IS_QUEUED(task)) {
533                 smp_rmb();
534                 if (task->tk_waitqueue == queue) {
535                         if (action == NULL || action(task, data)) {
536                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
537                                 return task;
538                         }
539                 }
540         }
541         return NULL;
542 }
543
544 static void
545 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
546                 struct rpc_wait_queue *queue, struct rpc_task *task)
547 {
548         rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
549 }
550
551 /*
552  * Wake up a queued task while the queue lock is being held
553  */
554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
555 {
556         rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
557 }
558
559 /*
560  * Wake up a task on a specific queue
561  */
562 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
563                 struct rpc_wait_queue *queue,
564                 struct rpc_task *task)
565 {
566         if (!RPC_IS_QUEUED(task))
567                 return;
568         spin_lock(&queue->lock);
569         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
570         spin_unlock(&queue->lock);
571 }
572
573 /*
574  * Wake up a task on a specific queue
575  */
576 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
577 {
578         if (!RPC_IS_QUEUED(task))
579                 return;
580         spin_lock(&queue->lock);
581         rpc_wake_up_task_queue_locked(queue, task);
582         spin_unlock(&queue->lock);
583 }
584 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
585
586 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
587 {
588         task->tk_status = *(int *)status;
589         return true;
590 }
591
592 static void
593 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
594                 struct rpc_task *task, int status)
595 {
596         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
597                         task, rpc_task_action_set_status, &status);
598 }
599
600 /**
601  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
602  * @queue: pointer to rpc_wait_queue
603  * @task: pointer to rpc_task
604  * @status: integer error value
605  *
606  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
607  * set to the value of @status.
608  */
609 void
610 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
611                 struct rpc_task *task, int status)
612 {
613         if (!RPC_IS_QUEUED(task))
614                 return;
615         spin_lock(&queue->lock);
616         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
617         spin_unlock(&queue->lock);
618 }
619
620 /*
621  * Wake up the next task on a priority queue.
622  */
623 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
624 {
625         struct list_head *q;
626         struct rpc_task *task;
627
628         /*
629          * Service a batch of tasks from a single owner.
630          */
631         q = &queue->tasks[queue->priority];
632         if (!list_empty(q) && --queue->nr) {
633                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
634                 goto out;
635         }
636
637         /*
638          * Service the next queue.
639          */
640         do {
641                 if (q == &queue->tasks[0])
642                         q = &queue->tasks[queue->maxpriority];
643                 else
644                         q = q - 1;
645                 if (!list_empty(q)) {
646                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
647                         goto new_queue;
648                 }
649         } while (q != &queue->tasks[queue->priority]);
650
651         rpc_reset_waitqueue_priority(queue);
652         return NULL;
653
654 new_queue:
655         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
656 out:
657         return task;
658 }
659
660 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
661 {
662         if (RPC_IS_PRIORITY(queue))
663                 return __rpc_find_next_queued_priority(queue);
664         if (!list_empty(&queue->tasks[0]))
665                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
666         return NULL;
667 }
668
669 /*
670  * Wake up the first task on the wait queue.
671  */
672 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
673                 struct rpc_wait_queue *queue,
674                 bool (*func)(struct rpc_task *, void *), void *data)
675 {
676         struct rpc_task *task = NULL;
677
678         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
679                         queue, rpc_qname(queue));
680         spin_lock(&queue->lock);
681         task = __rpc_find_next_queued(queue);
682         if (task != NULL)
683                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
684                                 task, func, data);
685         spin_unlock(&queue->lock);
686
687         return task;
688 }
689
690 /*
691  * Wake up the first task on the wait queue.
692  */
693 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
694                 bool (*func)(struct rpc_task *, void *), void *data)
695 {
696         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
697 }
698 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
699
700 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
701 {
702         return true;
703 }
704
705 /*
706  * Wake up the next task on the wait queue.
707 */
708 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
709 {
710         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
711 }
712 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
713
714 /**
715  * rpc_wake_up - wake up all rpc_tasks
716  * @queue: rpc_wait_queue on which the tasks are sleeping
717  *
718  * Grabs queue->lock
719  */
720 void rpc_wake_up(struct rpc_wait_queue *queue)
721 {
722         struct list_head *head;
723
724         spin_lock(&queue->lock);
725         head = &queue->tasks[queue->maxpriority];
726         for (;;) {
727                 while (!list_empty(head)) {
728                         struct rpc_task *task;
729                         task = list_first_entry(head,
730                                         struct rpc_task,
731                                         u.tk_wait.list);
732                         rpc_wake_up_task_queue_locked(queue, task);
733                 }
734                 if (head == &queue->tasks[0])
735                         break;
736                 head--;
737         }
738         spin_unlock(&queue->lock);
739 }
740 EXPORT_SYMBOL_GPL(rpc_wake_up);
741
742 /**
743  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
744  * @queue: rpc_wait_queue on which the tasks are sleeping
745  * @status: status value to set
746  *
747  * Grabs queue->lock
748  */
749 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
750 {
751         struct list_head *head;
752
753         spin_lock(&queue->lock);
754         head = &queue->tasks[queue->maxpriority];
755         for (;;) {
756                 while (!list_empty(head)) {
757                         struct rpc_task *task;
758                         task = list_first_entry(head,
759                                         struct rpc_task,
760                                         u.tk_wait.list);
761                         task->tk_status = status;
762                         rpc_wake_up_task_queue_locked(queue, task);
763                 }
764                 if (head == &queue->tasks[0])
765                         break;
766                 head--;
767         }
768         spin_unlock(&queue->lock);
769 }
770 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
771
772 static void __rpc_queue_timer_fn(struct work_struct *work)
773 {
774         struct rpc_wait_queue *queue = container_of(work,
775                         struct rpc_wait_queue,
776                         timer_list.dwork.work);
777         struct rpc_task *task, *n;
778         unsigned long expires, now, timeo;
779
780         spin_lock(&queue->lock);
781         expires = now = jiffies;
782         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
783                 timeo = task->tk_timeout;
784                 if (time_after_eq(now, timeo)) {
785                         dprintk("RPC: %5u timeout\n", task->tk_pid);
786                         task->tk_status = -ETIMEDOUT;
787                         rpc_wake_up_task_queue_locked(queue, task);
788                         continue;
789                 }
790                 if (expires == now || time_after(expires, timeo))
791                         expires = timeo;
792         }
793         if (!list_empty(&queue->timer_list.list))
794                 rpc_set_queue_timer(queue, expires);
795         spin_unlock(&queue->lock);
796 }
797
798 static void __rpc_atrun(struct rpc_task *task)
799 {
800         if (task->tk_status == -ETIMEDOUT)
801                 task->tk_status = 0;
802 }
803
804 /*
805  * Run a task at a later time
806  */
807 void rpc_delay(struct rpc_task *task, unsigned long delay)
808 {
809         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
810 }
811 EXPORT_SYMBOL_GPL(rpc_delay);
812
813 /*
814  * Helper to call task->tk_ops->rpc_call_prepare
815  */
816 void rpc_prepare_task(struct rpc_task *task)
817 {
818         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
819 }
820
821 static void
822 rpc_init_task_statistics(struct rpc_task *task)
823 {
824         /* Initialize retry counters */
825         task->tk_garb_retry = 2;
826         task->tk_cred_retry = 2;
827         task->tk_rebind_retry = 2;
828
829         /* starting timestamp */
830         task->tk_start = ktime_get();
831 }
832
833 static void
834 rpc_reset_task_statistics(struct rpc_task *task)
835 {
836         task->tk_timeouts = 0;
837         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
838         rpc_init_task_statistics(task);
839 }
840
841 /*
842  * Helper that calls task->tk_ops->rpc_call_done if it exists
843  */
844 void rpc_exit_task(struct rpc_task *task)
845 {
846         task->tk_action = NULL;
847         if (task->tk_ops->rpc_count_stats)
848                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
849         else if (task->tk_client)
850                 rpc_count_iostats(task, task->tk_client->cl_metrics);
851         if (task->tk_ops->rpc_call_done != NULL) {
852                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
853                 if (task->tk_action != NULL) {
854                         /* Always release the RPC slot and buffer memory */
855                         xprt_release(task);
856                         rpc_reset_task_statistics(task);
857                 }
858         }
859 }
860
861 void rpc_signal_task(struct rpc_task *task)
862 {
863         struct rpc_wait_queue *queue;
864
865         if (!RPC_IS_ACTIVATED(task))
866                 return;
867         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
868         smp_mb__after_atomic();
869         queue = READ_ONCE(task->tk_waitqueue);
870         if (queue)
871                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
872 }
873
874 void rpc_exit(struct rpc_task *task, int status)
875 {
876         task->tk_status = status;
877         task->tk_action = rpc_exit_task;
878         rpc_wake_up_queued_task(task->tk_waitqueue, task);
879 }
880 EXPORT_SYMBOL_GPL(rpc_exit);
881
882 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
883 {
884         if (ops->rpc_release != NULL)
885                 ops->rpc_release(calldata);
886 }
887
888 /*
889  * This is the RPC `scheduler' (or rather, the finite state machine).
890  */
891 static void __rpc_execute(struct rpc_task *task)
892 {
893         struct rpc_wait_queue *queue;
894         int task_is_async = RPC_IS_ASYNC(task);
895         int status = 0;
896
897         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
898                         task->tk_pid, task->tk_flags);
899
900         WARN_ON_ONCE(RPC_IS_QUEUED(task));
901         if (RPC_IS_QUEUED(task))
902                 return;
903
904         for (;;) {
905                 void (*do_action)(struct rpc_task *);
906
907                 /*
908                  * Perform the next FSM step or a pending callback.
909                  *
910                  * tk_action may be NULL if the task has been killed.
911                  * In particular, note that rpc_killall_tasks may
912                  * do this at any time, so beware when dereferencing.
913                  */
914                 do_action = task->tk_action;
915                 if (task->tk_callback) {
916                         do_action = task->tk_callback;
917                         task->tk_callback = NULL;
918                 }
919                 if (!do_action)
920                         break;
921                 trace_rpc_task_run_action(task, do_action);
922                 do_action(task);
923
924                 /*
925                  * Lockless check for whether task is sleeping or not.
926                  */
927                 if (!RPC_IS_QUEUED(task))
928                         continue;
929
930                 /*
931                  * Signalled tasks should exit rather than sleep.
932                  */
933                 if (RPC_SIGNALLED(task)) {
934                         task->tk_rpc_status = -ERESTARTSYS;
935                         rpc_exit(task, -ERESTARTSYS);
936                 }
937
938                 /*
939                  * The queue->lock protects against races with
940                  * rpc_make_runnable().
941                  *
942                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
943                  * rpc_task, rpc_make_runnable() can assign it to a
944                  * different workqueue. We therefore cannot assume that the
945                  * rpc_task pointer may still be dereferenced.
946                  */
947                 queue = task->tk_waitqueue;
948                 spin_lock(&queue->lock);
949                 if (!RPC_IS_QUEUED(task)) {
950                         spin_unlock(&queue->lock);
951                         continue;
952                 }
953                 rpc_clear_running(task);
954                 spin_unlock(&queue->lock);
955                 if (task_is_async)
956                         return;
957
958                 /* sync task: sleep here */
959                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
960                 status = out_of_line_wait_on_bit(&task->tk_runstate,
961                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
962                                 TASK_KILLABLE);
963                 if (status < 0) {
964                         /*
965                          * When a sync task receives a signal, it exits with
966                          * -ERESTARTSYS. In order to catch any callbacks that
967                          * clean up after sleeping on some queue, we don't
968                          * break the loop here, but go around once more.
969                          */
970                         dprintk("RPC: %5u got signal\n", task->tk_pid);
971                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
972                         task->tk_rpc_status = -ERESTARTSYS;
973                         rpc_exit(task, -ERESTARTSYS);
974                 }
975                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
976         }
977
978         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
979                         task->tk_status);
980         /* Release all resources associated with the task */
981         rpc_release_task(task);
982 }
983
984 /*
985  * User-visible entry point to the scheduler.
986  *
987  * This may be called recursively if e.g. an async NFS task updates
988  * the attributes and finds that dirty pages must be flushed.
989  * NOTE: Upon exit of this function the task is guaranteed to be
990  *       released. In particular note that tk_release() will have
991  *       been called, so your task memory may have been freed.
992  */
993 void rpc_execute(struct rpc_task *task)
994 {
995         bool is_async = RPC_IS_ASYNC(task);
996
997         rpc_set_active(task);
998         rpc_make_runnable(rpciod_workqueue, task);
999         if (!is_async)
1000                 __rpc_execute(task);
1001 }
1002
1003 static void rpc_async_schedule(struct work_struct *work)
1004 {
1005         unsigned int pflags = memalloc_nofs_save();
1006
1007         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1008         memalloc_nofs_restore(pflags);
1009 }
1010
1011 /**
1012  * rpc_malloc - allocate RPC buffer resources
1013  * @task: RPC task
1014  *
1015  * A single memory region is allocated, which is split between the
1016  * RPC call and RPC reply that this task is being used for. When
1017  * this RPC is retired, the memory is released by calling rpc_free.
1018  *
1019  * To prevent rpciod from hanging, this allocator never sleeps,
1020  * returning -ENOMEM and suppressing warning if the request cannot
1021  * be serviced immediately. The caller can arrange to sleep in a
1022  * way that is safe for rpciod.
1023  *
1024  * Most requests are 'small' (under 2KiB) and can be serviced from a
1025  * mempool, ensuring that NFS reads and writes can always proceed,
1026  * and that there is good locality of reference for these buffers.
1027  */
1028 int rpc_malloc(struct rpc_task *task)
1029 {
1030         struct rpc_rqst *rqst = task->tk_rqstp;
1031         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1032         struct rpc_buffer *buf;
1033         gfp_t gfp = GFP_NOFS;
1034
1035         if (RPC_IS_SWAPPER(task))
1036                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1037
1038         size += sizeof(struct rpc_buffer);
1039         if (size <= RPC_BUFFER_MAXSIZE)
1040                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1041         else
1042                 buf = kmalloc(size, gfp);
1043
1044         if (!buf)
1045                 return -ENOMEM;
1046
1047         buf->len = size;
1048         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1049                         task->tk_pid, size, buf);
1050         rqst->rq_buffer = buf->data;
1051         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1052         return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(rpc_malloc);
1055
1056 /**
1057  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1058  * @task: RPC task
1059  *
1060  */
1061 void rpc_free(struct rpc_task *task)
1062 {
1063         void *buffer = task->tk_rqstp->rq_buffer;
1064         size_t size;
1065         struct rpc_buffer *buf;
1066
1067         buf = container_of(buffer, struct rpc_buffer, data);
1068         size = buf->len;
1069
1070         dprintk("RPC:       freeing buffer of size %zu at %p\n",
1071                         size, buf);
1072
1073         if (size <= RPC_BUFFER_MAXSIZE)
1074                 mempool_free(buf, rpc_buffer_mempool);
1075         else
1076                 kfree(buf);
1077 }
1078 EXPORT_SYMBOL_GPL(rpc_free);
1079
1080 /*
1081  * Creation and deletion of RPC task structures
1082  */
1083 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1084 {
1085         memset(task, 0, sizeof(*task));
1086         atomic_set(&task->tk_count, 1);
1087         task->tk_flags  = task_setup_data->flags;
1088         task->tk_ops = task_setup_data->callback_ops;
1089         task->tk_calldata = task_setup_data->callback_data;
1090         INIT_LIST_HEAD(&task->tk_task);
1091
1092         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1093         task->tk_owner = current->tgid;
1094
1095         /* Initialize workqueue for async tasks */
1096         task->tk_workqueue = task_setup_data->workqueue;
1097
1098         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1099                         xprt_get(task_setup_data->rpc_xprt));
1100
1101         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1102
1103         if (task->tk_ops->rpc_call_prepare != NULL)
1104                 task->tk_action = rpc_prepare_task;
1105
1106         rpc_init_task_statistics(task);
1107
1108         dprintk("RPC:       new task initialized, procpid %u\n",
1109                                 task_pid_nr(current));
1110 }
1111
1112 static struct rpc_task *
1113 rpc_alloc_task(void)
1114 {
1115         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1116 }
1117
1118 /*
1119  * Create a new task for the specified client.
1120  */
1121 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1122 {
1123         struct rpc_task *task = setup_data->task;
1124         unsigned short flags = 0;
1125
1126         if (task == NULL) {
1127                 task = rpc_alloc_task();
1128                 flags = RPC_TASK_DYNAMIC;
1129         }
1130
1131         rpc_init_task(task, setup_data);
1132         task->tk_flags |= flags;
1133         dprintk("RPC:       allocated task %p\n", task);
1134         return task;
1135 }
1136
1137 /*
1138  * rpc_free_task - release rpc task and perform cleanups
1139  *
1140  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1141  * in order to work around a workqueue dependency issue.
1142  *
1143  * Tejun Heo states:
1144  * "Workqueue currently considers two work items to be the same if they're
1145  * on the same address and won't execute them concurrently - ie. it
1146  * makes a work item which is queued again while being executed wait
1147  * for the previous execution to complete.
1148  *
1149  * If a work function frees the work item, and then waits for an event
1150  * which should be performed by another work item and *that* work item
1151  * recycles the freed work item, it can create a false dependency loop.
1152  * There really is no reliable way to detect this short of verifying
1153  * every memory free."
1154  *
1155  */
1156 static void rpc_free_task(struct rpc_task *task)
1157 {
1158         unsigned short tk_flags = task->tk_flags;
1159
1160         put_rpccred(task->tk_op_cred);
1161         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1162
1163         if (tk_flags & RPC_TASK_DYNAMIC) {
1164                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1165                 mempool_free(task, rpc_task_mempool);
1166         }
1167 }
1168
1169 static void rpc_async_release(struct work_struct *work)
1170 {
1171         unsigned int pflags = memalloc_nofs_save();
1172
1173         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1174         memalloc_nofs_restore(pflags);
1175 }
1176
1177 static void rpc_release_resources_task(struct rpc_task *task)
1178 {
1179         xprt_release(task);
1180         if (task->tk_msg.rpc_cred) {
1181                 put_cred(task->tk_msg.rpc_cred);
1182                 task->tk_msg.rpc_cred = NULL;
1183         }
1184         rpc_task_release_client(task);
1185 }
1186
1187 static void rpc_final_put_task(struct rpc_task *task,
1188                 struct workqueue_struct *q)
1189 {
1190         if (q != NULL) {
1191                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1192                 queue_work(q, &task->u.tk_work);
1193         } else
1194                 rpc_free_task(task);
1195 }
1196
1197 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1198 {
1199         if (atomic_dec_and_test(&task->tk_count)) {
1200                 rpc_release_resources_task(task);
1201                 rpc_final_put_task(task, q);
1202         }
1203 }
1204
1205 void rpc_put_task(struct rpc_task *task)
1206 {
1207         rpc_do_put_task(task, NULL);
1208 }
1209 EXPORT_SYMBOL_GPL(rpc_put_task);
1210
1211 void rpc_put_task_async(struct rpc_task *task)
1212 {
1213         rpc_do_put_task(task, task->tk_workqueue);
1214 }
1215 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1216
1217 static void rpc_release_task(struct rpc_task *task)
1218 {
1219         dprintk("RPC: %5u release task\n", task->tk_pid);
1220
1221         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1222
1223         rpc_release_resources_task(task);
1224
1225         /*
1226          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1227          * so it should be safe to use task->tk_count as a test for whether
1228          * or not any other processes still hold references to our rpc_task.
1229          */
1230         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1231                 /* Wake up anyone who may be waiting for task completion */
1232                 if (!rpc_complete_task(task))
1233                         return;
1234         } else {
1235                 if (!atomic_dec_and_test(&task->tk_count))
1236                         return;
1237         }
1238         rpc_final_put_task(task, task->tk_workqueue);
1239 }
1240
1241 int rpciod_up(void)
1242 {
1243         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1244 }
1245
1246 void rpciod_down(void)
1247 {
1248         module_put(THIS_MODULE);
1249 }
1250
1251 /*
1252  * Start up the rpciod workqueue.
1253  */
1254 static int rpciod_start(void)
1255 {
1256         struct workqueue_struct *wq;
1257
1258         /*
1259          * Create the rpciod thread and wait for it to start.
1260          */
1261         dprintk("RPC:       creating workqueue rpciod\n");
1262         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1263         if (!wq)
1264                 goto out_failed;
1265         rpciod_workqueue = wq;
1266         /* Note: highpri because network receive is latency sensitive */
1267         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1268         if (!wq)
1269                 goto free_rpciod;
1270         xprtiod_workqueue = wq;
1271         return 1;
1272 free_rpciod:
1273         wq = rpciod_workqueue;
1274         rpciod_workqueue = NULL;
1275         destroy_workqueue(wq);
1276 out_failed:
1277         return 0;
1278 }
1279
1280 static void rpciod_stop(void)
1281 {
1282         struct workqueue_struct *wq = NULL;
1283
1284         if (rpciod_workqueue == NULL)
1285                 return;
1286         dprintk("RPC:       destroying workqueue rpciod\n");
1287
1288         wq = rpciod_workqueue;
1289         rpciod_workqueue = NULL;
1290         destroy_workqueue(wq);
1291         wq = xprtiod_workqueue;
1292         xprtiod_workqueue = NULL;
1293         destroy_workqueue(wq);
1294 }
1295
1296 void
1297 rpc_destroy_mempool(void)
1298 {
1299         rpciod_stop();
1300         mempool_destroy(rpc_buffer_mempool);
1301         mempool_destroy(rpc_task_mempool);
1302         kmem_cache_destroy(rpc_task_slabp);
1303         kmem_cache_destroy(rpc_buffer_slabp);
1304         rpc_destroy_wait_queue(&delay_queue);
1305 }
1306
1307 int
1308 rpc_init_mempool(void)
1309 {
1310         /*
1311          * The following is not strictly a mempool initialisation,
1312          * but there is no harm in doing it here
1313          */
1314         rpc_init_wait_queue(&delay_queue, "delayq");
1315         if (!rpciod_start())
1316                 goto err_nomem;
1317
1318         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1319                                              sizeof(struct rpc_task),
1320                                              0, SLAB_HWCACHE_ALIGN,
1321                                              NULL);
1322         if (!rpc_task_slabp)
1323                 goto err_nomem;
1324         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1325                                              RPC_BUFFER_MAXSIZE,
1326                                              0, SLAB_HWCACHE_ALIGN,
1327                                              NULL);
1328         if (!rpc_buffer_slabp)
1329                 goto err_nomem;
1330         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1331                                                     rpc_task_slabp);
1332         if (!rpc_task_mempool)
1333                 goto err_nomem;
1334         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1335                                                       rpc_buffer_slabp);
1336         if (!rpc_buffer_mempool)
1337                 goto err_nomem;
1338         return 0;
1339 err_nomem:
1340         rpc_destroy_mempool();
1341         return -ENOMEM;
1342 }