Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / net / ipv4 / inet_fragment.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * inet fragments management
4  *
5  *              Authors:        Pavel Emelyanov <xemul@openvz.org>
6  *                              Started as consolidation of ipv4/ip_fragment.c,
7  *                              ipv6/reassembly. and ipv6 nf conntrack reassembly
8  */
9
10 #include <linux/list.h>
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/rhashtable.h>
20
21 #include <net/sock.h>
22 #include <net/inet_frag.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26
27 /* Use skb->cb to track consecutive/adjacent fragments coming at
28  * the end of the queue. Nodes in the rb-tree queue will
29  * contain "runs" of one or more adjacent fragments.
30  *
31  * Invariants:
32  * - next_frag is NULL at the tail of a "run";
33  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
34  */
35 struct ipfrag_skb_cb {
36         union {
37                 struct inet_skb_parm    h4;
38                 struct inet6_skb_parm   h6;
39         };
40         struct sk_buff          *next_frag;
41         int                     frag_run_len;
42 };
43
44 #define FRAG_CB(skb)            ((struct ipfrag_skb_cb *)((skb)->cb))
45
46 static void fragcb_clear(struct sk_buff *skb)
47 {
48         RB_CLEAR_NODE(&skb->rbnode);
49         FRAG_CB(skb)->next_frag = NULL;
50         FRAG_CB(skb)->frag_run_len = skb->len;
51 }
52
53 /* Append skb to the last "run". */
54 static void fragrun_append_to_last(struct inet_frag_queue *q,
55                                    struct sk_buff *skb)
56 {
57         fragcb_clear(skb);
58
59         FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
60         FRAG_CB(q->fragments_tail)->next_frag = skb;
61         q->fragments_tail = skb;
62 }
63
64 /* Create a new "run" with the skb. */
65 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
66 {
67         BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
68         fragcb_clear(skb);
69
70         if (q->last_run_head)
71                 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
72                              &q->last_run_head->rbnode.rb_right);
73         else
74                 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
75         rb_insert_color(&skb->rbnode, &q->rb_fragments);
76
77         q->fragments_tail = skb;
78         q->last_run_head = skb;
79 }
80
81 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
82  * Value : 0xff if frame should be dropped.
83  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
84  */
85 const u8 ip_frag_ecn_table[16] = {
86         /* at least one fragment had CE, and others ECT_0 or ECT_1 */
87         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]                      = INET_ECN_CE,
88         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]                      = INET_ECN_CE,
89         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]   = INET_ECN_CE,
90
91         /* invalid combinations : drop frame */
92         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
93         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
94         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
95         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
96         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
97         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
98         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99 };
100 EXPORT_SYMBOL(ip_frag_ecn_table);
101
102 int inet_frags_init(struct inet_frags *f)
103 {
104         f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105                                             NULL);
106         if (!f->frags_cachep)
107                 return -ENOMEM;
108
109         refcount_set(&f->refcnt, 1);
110         init_completion(&f->completion);
111         return 0;
112 }
113 EXPORT_SYMBOL(inet_frags_init);
114
115 void inet_frags_fini(struct inet_frags *f)
116 {
117         if (refcount_dec_and_test(&f->refcnt))
118                 complete(&f->completion);
119
120         wait_for_completion(&f->completion);
121
122         kmem_cache_destroy(f->frags_cachep);
123         f->frags_cachep = NULL;
124 }
125 EXPORT_SYMBOL(inet_frags_fini);
126
127 /* called from rhashtable_free_and_destroy() at netns_frags dismantle */
128 static void inet_frags_free_cb(void *ptr, void *arg)
129 {
130         struct inet_frag_queue *fq = ptr;
131         int count;
132
133         count = del_timer_sync(&fq->timer) ? 1 : 0;
134
135         spin_lock_bh(&fq->lock);
136         if (!(fq->flags & INET_FRAG_COMPLETE)) {
137                 fq->flags |= INET_FRAG_COMPLETE;
138                 count++;
139         } else if (fq->flags & INET_FRAG_HASH_DEAD) {
140                 count++;
141         }
142         spin_unlock_bh(&fq->lock);
143
144         if (refcount_sub_and_test(count, &fq->refcnt))
145                 inet_frag_destroy(fq);
146 }
147
148 static void fqdir_work_fn(struct work_struct *work)
149 {
150         struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
151         struct inet_frags *f = fqdir->f;
152
153         rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
154
155         /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
156          * have completed, since they need to dereference fqdir.
157          * Would it not be nice to have kfree_rcu_barrier() ? :)
158          */
159         rcu_barrier();
160
161         if (refcount_dec_and_test(&f->refcnt))
162                 complete(&f->completion);
163
164         kfree(fqdir);
165 }
166
167 int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
168 {
169         struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
170         int res;
171
172         if (!fqdir)
173                 return -ENOMEM;
174         fqdir->f = f;
175         fqdir->net = net;
176         res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
177         if (res < 0) {
178                 kfree(fqdir);
179                 return res;
180         }
181         refcount_inc(&f->refcnt);
182         *fqdirp = fqdir;
183         return 0;
184 }
185 EXPORT_SYMBOL(fqdir_init);
186
187 void fqdir_exit(struct fqdir *fqdir)
188 {
189         INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
190         queue_work(system_wq, &fqdir->destroy_work);
191 }
192 EXPORT_SYMBOL(fqdir_exit);
193
194 void inet_frag_kill(struct inet_frag_queue *fq)
195 {
196         if (del_timer(&fq->timer))
197                 refcount_dec(&fq->refcnt);
198
199         if (!(fq->flags & INET_FRAG_COMPLETE)) {
200                 struct fqdir *fqdir = fq->fqdir;
201
202                 fq->flags |= INET_FRAG_COMPLETE;
203                 rcu_read_lock();
204                 /* The RCU read lock provides a memory barrier
205                  * guaranteeing that if fqdir->dead is false then
206                  * the hash table destruction will not start until
207                  * after we unlock.  Paired with inet_frags_exit_net().
208                  */
209                 if (!fqdir->dead) {
210                         rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
211                                                fqdir->f->rhash_params);
212                         refcount_dec(&fq->refcnt);
213                 } else {
214                         fq->flags |= INET_FRAG_HASH_DEAD;
215                 }
216                 rcu_read_unlock();
217         }
218 }
219 EXPORT_SYMBOL(inet_frag_kill);
220
221 static void inet_frag_destroy_rcu(struct rcu_head *head)
222 {
223         struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
224                                                  rcu);
225         struct inet_frags *f = q->fqdir->f;
226
227         if (f->destructor)
228                 f->destructor(q);
229         kmem_cache_free(f->frags_cachep, q);
230 }
231
232 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
233 {
234         struct rb_node *p = rb_first(root);
235         unsigned int sum = 0;
236
237         while (p) {
238                 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
239
240                 p = rb_next(p);
241                 rb_erase(&skb->rbnode, root);
242                 while (skb) {
243                         struct sk_buff *next = FRAG_CB(skb)->next_frag;
244
245                         sum += skb->truesize;
246                         kfree_skb(skb);
247                         skb = next;
248                 }
249         }
250         return sum;
251 }
252 EXPORT_SYMBOL(inet_frag_rbtree_purge);
253
254 void inet_frag_destroy(struct inet_frag_queue *q)
255 {
256         struct fqdir *fqdir;
257         unsigned int sum, sum_truesize = 0;
258         struct inet_frags *f;
259
260         WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
261         WARN_ON(del_timer(&q->timer) != 0);
262
263         /* Release all fragment data. */
264         fqdir = q->fqdir;
265         f = fqdir->f;
266         sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
267         sum = sum_truesize + f->qsize;
268
269         call_rcu(&q->rcu, inet_frag_destroy_rcu);
270
271         sub_frag_mem_limit(fqdir, sum);
272 }
273 EXPORT_SYMBOL(inet_frag_destroy);
274
275 static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
276                                                struct inet_frags *f,
277                                                void *arg)
278 {
279         struct inet_frag_queue *q;
280
281         q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
282         if (!q)
283                 return NULL;
284
285         q->fqdir = fqdir;
286         f->constructor(q, arg);
287         add_frag_mem_limit(fqdir, f->qsize);
288
289         timer_setup(&q->timer, f->frag_expire, 0);
290         spin_lock_init(&q->lock);
291         refcount_set(&q->refcnt, 3);
292
293         return q;
294 }
295
296 static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
297                                                 void *arg,
298                                                 struct inet_frag_queue **prev)
299 {
300         struct inet_frags *f = fqdir->f;
301         struct inet_frag_queue *q;
302
303         q = inet_frag_alloc(fqdir, f, arg);
304         if (!q) {
305                 *prev = ERR_PTR(-ENOMEM);
306                 return NULL;
307         }
308         mod_timer(&q->timer, jiffies + fqdir->timeout);
309
310         *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
311                                                  &q->node, f->rhash_params);
312         if (*prev) {
313                 q->flags |= INET_FRAG_COMPLETE;
314                 inet_frag_kill(q);
315                 inet_frag_destroy(q);
316                 return NULL;
317         }
318         return q;
319 }
320
321 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
322 struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
323 {
324         struct inet_frag_queue *fq = NULL, *prev;
325
326         if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
327                 return NULL;
328
329         rcu_read_lock();
330
331         prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
332         if (!prev)
333                 fq = inet_frag_create(fqdir, key, &prev);
334         if (!IS_ERR_OR_NULL(prev)) {
335                 fq = prev;
336                 if (!refcount_inc_not_zero(&fq->refcnt))
337                         fq = NULL;
338         }
339         rcu_read_unlock();
340         return fq;
341 }
342 EXPORT_SYMBOL(inet_frag_find);
343
344 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
345                            int offset, int end)
346 {
347         struct sk_buff *last = q->fragments_tail;
348
349         /* RFC5722, Section 4, amended by Errata ID : 3089
350          *                          When reassembling an IPv6 datagram, if
351          *   one or more its constituent fragments is determined to be an
352          *   overlapping fragment, the entire datagram (and any constituent
353          *   fragments) MUST be silently discarded.
354          *
355          * Duplicates, however, should be ignored (i.e. skb dropped, but the
356          * queue/fragments kept for later reassembly).
357          */
358         if (!last)
359                 fragrun_create(q, skb);  /* First fragment. */
360         else if (last->ip_defrag_offset + last->len < end) {
361                 /* This is the common case: skb goes to the end. */
362                 /* Detect and discard overlaps. */
363                 if (offset < last->ip_defrag_offset + last->len)
364                         return IPFRAG_OVERLAP;
365                 if (offset == last->ip_defrag_offset + last->len)
366                         fragrun_append_to_last(q, skb);
367                 else
368                         fragrun_create(q, skb);
369         } else {
370                 /* Binary search. Note that skb can become the first fragment,
371                  * but not the last (covered above).
372                  */
373                 struct rb_node **rbn, *parent;
374
375                 rbn = &q->rb_fragments.rb_node;
376                 do {
377                         struct sk_buff *curr;
378                         int curr_run_end;
379
380                         parent = *rbn;
381                         curr = rb_to_skb(parent);
382                         curr_run_end = curr->ip_defrag_offset +
383                                         FRAG_CB(curr)->frag_run_len;
384                         if (end <= curr->ip_defrag_offset)
385                                 rbn = &parent->rb_left;
386                         else if (offset >= curr_run_end)
387                                 rbn = &parent->rb_right;
388                         else if (offset >= curr->ip_defrag_offset &&
389                                  end <= curr_run_end)
390                                 return IPFRAG_DUP;
391                         else
392                                 return IPFRAG_OVERLAP;
393                 } while (*rbn);
394                 /* Here we have parent properly set, and rbn pointing to
395                  * one of its NULL left/right children. Insert skb.
396                  */
397                 fragcb_clear(skb);
398                 rb_link_node(&skb->rbnode, parent, rbn);
399                 rb_insert_color(&skb->rbnode, &q->rb_fragments);
400         }
401
402         skb->ip_defrag_offset = offset;
403
404         return IPFRAG_OK;
405 }
406 EXPORT_SYMBOL(inet_frag_queue_insert);
407
408 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
409                               struct sk_buff *parent)
410 {
411         struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
412         struct sk_buff **nextp;
413         int delta;
414
415         if (head != skb) {
416                 fp = skb_clone(skb, GFP_ATOMIC);
417                 if (!fp)
418                         return NULL;
419                 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
420                 if (RB_EMPTY_NODE(&skb->rbnode))
421                         FRAG_CB(parent)->next_frag = fp;
422                 else
423                         rb_replace_node(&skb->rbnode, &fp->rbnode,
424                                         &q->rb_fragments);
425                 if (q->fragments_tail == skb)
426                         q->fragments_tail = fp;
427                 skb_morph(skb, head);
428                 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
429                 rb_replace_node(&head->rbnode, &skb->rbnode,
430                                 &q->rb_fragments);
431                 consume_skb(head);
432                 head = skb;
433         }
434         WARN_ON(head->ip_defrag_offset != 0);
435
436         delta = -head->truesize;
437
438         /* Head of list must not be cloned. */
439         if (skb_unclone(head, GFP_ATOMIC))
440                 return NULL;
441
442         delta += head->truesize;
443         if (delta)
444                 add_frag_mem_limit(q->fqdir, delta);
445
446         /* If the first fragment is fragmented itself, we split
447          * it to two chunks: the first with data and paged part
448          * and the second, holding only fragments.
449          */
450         if (skb_has_frag_list(head)) {
451                 struct sk_buff *clone;
452                 int i, plen = 0;
453
454                 clone = alloc_skb(0, GFP_ATOMIC);
455                 if (!clone)
456                         return NULL;
457                 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
458                 skb_frag_list_init(head);
459                 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
460                         plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
461                 clone->data_len = head->data_len - plen;
462                 clone->len = clone->data_len;
463                 head->truesize += clone->truesize;
464                 clone->csum = 0;
465                 clone->ip_summed = head->ip_summed;
466                 add_frag_mem_limit(q->fqdir, clone->truesize);
467                 skb_shinfo(head)->frag_list = clone;
468                 nextp = &clone->next;
469         } else {
470                 nextp = &skb_shinfo(head)->frag_list;
471         }
472
473         return nextp;
474 }
475 EXPORT_SYMBOL(inet_frag_reasm_prepare);
476
477 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
478                             void *reasm_data, bool try_coalesce)
479 {
480         struct sk_buff **nextp = (struct sk_buff **)reasm_data;
481         struct rb_node *rbn;
482         struct sk_buff *fp;
483         int sum_truesize;
484
485         skb_push(head, head->data - skb_network_header(head));
486
487         /* Traverse the tree in order, to build frag_list. */
488         fp = FRAG_CB(head)->next_frag;
489         rbn = rb_next(&head->rbnode);
490         rb_erase(&head->rbnode, &q->rb_fragments);
491
492         sum_truesize = head->truesize;
493         while (rbn || fp) {
494                 /* fp points to the next sk_buff in the current run;
495                  * rbn points to the next run.
496                  */
497                 /* Go through the current run. */
498                 while (fp) {
499                         struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
500                         bool stolen;
501                         int delta;
502
503                         sum_truesize += fp->truesize;
504                         if (head->ip_summed != fp->ip_summed)
505                                 head->ip_summed = CHECKSUM_NONE;
506                         else if (head->ip_summed == CHECKSUM_COMPLETE)
507                                 head->csum = csum_add(head->csum, fp->csum);
508
509                         if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
510                                                              &delta)) {
511                                 kfree_skb_partial(fp, stolen);
512                         } else {
513                                 fp->prev = NULL;
514                                 memset(&fp->rbnode, 0, sizeof(fp->rbnode));
515                                 fp->sk = NULL;
516
517                                 head->data_len += fp->len;
518                                 head->len += fp->len;
519                                 head->truesize += fp->truesize;
520
521                                 *nextp = fp;
522                                 nextp = &fp->next;
523                         }
524
525                         fp = next_frag;
526                 }
527                 /* Move to the next run. */
528                 if (rbn) {
529                         struct rb_node *rbnext = rb_next(rbn);
530
531                         fp = rb_to_skb(rbn);
532                         rb_erase(rbn, &q->rb_fragments);
533                         rbn = rbnext;
534                 }
535         }
536         sub_frag_mem_limit(q->fqdir, sum_truesize);
537
538         *nextp = NULL;
539         skb_mark_not_on_list(head);
540         head->prev = NULL;
541         head->tstamp = q->stamp;
542 }
543 EXPORT_SYMBOL(inet_frag_reasm_finish);
544
545 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
546 {
547         struct sk_buff *head, *skb;
548
549         head = skb_rb_first(&q->rb_fragments);
550         if (!head)
551                 return NULL;
552         skb = FRAG_CB(head)->next_frag;
553         if (skb)
554                 rb_replace_node(&head->rbnode, &skb->rbnode,
555                                 &q->rb_fragments);
556         else
557                 rb_erase(&head->rbnode, &q->rb_fragments);
558         memset(&head->rbnode, 0, sizeof(head->rbnode));
559         barrier();
560
561         if (head == q->fragments_tail)
562                 q->fragments_tail = NULL;
563
564         sub_frag_mem_limit(q->fqdir, head->truesize);
565
566         return head;
567 }
568 EXPORT_SYMBOL(inet_frag_pull_head);