Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116                                         1;
117 #else
118                                         2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123         randomize_va_space = 0;
124         return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138         zero_pfn = page_to_pfn(ZERO_PAGE(0));
139         return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148         int i;
149
150         for (i = 0; i < NR_MM_COUNTERS; i++) {
151                 if (current->rss_stat.count[i]) {
152                         add_mm_counter(mm, i, current->rss_stat.count[i]);
153                         current->rss_stat.count[i] = 0;
154                 }
155         }
156         current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161         struct task_struct *task = current;
162
163         if (likely(task->mm == mm))
164                 task->rss_stat.count[member] += val;
165         else
166                 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH  (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175         if (unlikely(task != current))
176                 return;
177         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178                 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196                            unsigned long addr)
197 {
198         pgtable_t token = pmd_pgtable(*pmd);
199         pmd_clear(pmd);
200         pte_free_tlb(tlb, token, addr);
201         mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205                                 unsigned long addr, unsigned long end,
206                                 unsigned long floor, unsigned long ceiling)
207 {
208         pmd_t *pmd;
209         unsigned long next;
210         unsigned long start;
211
212         start = addr;
213         pmd = pmd_offset(pud, addr);
214         do {
215                 next = pmd_addr_end(addr, end);
216                 if (pmd_none_or_clear_bad(pmd))
217                         continue;
218                 free_pte_range(tlb, pmd, addr);
219         } while (pmd++, addr = next, addr != end);
220
221         start &= PUD_MASK;
222         if (start < floor)
223                 return;
224         if (ceiling) {
225                 ceiling &= PUD_MASK;
226                 if (!ceiling)
227                         return;
228         }
229         if (end - 1 > ceiling - 1)
230                 return;
231
232         pmd = pmd_offset(pud, start);
233         pud_clear(pud);
234         pmd_free_tlb(tlb, pmd, start);
235         mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239                                 unsigned long addr, unsigned long end,
240                                 unsigned long floor, unsigned long ceiling)
241 {
242         pud_t *pud;
243         unsigned long next;
244         unsigned long start;
245
246         start = addr;
247         pud = pud_offset(p4d, addr);
248         do {
249                 next = pud_addr_end(addr, end);
250                 if (pud_none_or_clear_bad(pud))
251                         continue;
252                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253         } while (pud++, addr = next, addr != end);
254
255         start &= P4D_MASK;
256         if (start < floor)
257                 return;
258         if (ceiling) {
259                 ceiling &= P4D_MASK;
260                 if (!ceiling)
261                         return;
262         }
263         if (end - 1 > ceiling - 1)
264                 return;
265
266         pud = pud_offset(p4d, start);
267         p4d_clear(p4d);
268         pud_free_tlb(tlb, pud, start);
269         mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273                                 unsigned long addr, unsigned long end,
274                                 unsigned long floor, unsigned long ceiling)
275 {
276         p4d_t *p4d;
277         unsigned long next;
278         unsigned long start;
279
280         start = addr;
281         p4d = p4d_offset(pgd, addr);
282         do {
283                 next = p4d_addr_end(addr, end);
284                 if (p4d_none_or_clear_bad(p4d))
285                         continue;
286                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287         } while (p4d++, addr = next, addr != end);
288
289         start &= PGDIR_MASK;
290         if (start < floor)
291                 return;
292         if (ceiling) {
293                 ceiling &= PGDIR_MASK;
294                 if (!ceiling)
295                         return;
296         }
297         if (end - 1 > ceiling - 1)
298                 return;
299
300         p4d = p4d_offset(pgd, start);
301         pgd_clear(pgd);
302         p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309                         unsigned long addr, unsigned long end,
310                         unsigned long floor, unsigned long ceiling)
311 {
312         pgd_t *pgd;
313         unsigned long next;
314
315         /*
316          * The next few lines have given us lots of grief...
317          *
318          * Why are we testing PMD* at this top level?  Because often
319          * there will be no work to do at all, and we'd prefer not to
320          * go all the way down to the bottom just to discover that.
321          *
322          * Why all these "- 1"s?  Because 0 represents both the bottom
323          * of the address space and the top of it (using -1 for the
324          * top wouldn't help much: the masks would do the wrong thing).
325          * The rule is that addr 0 and floor 0 refer to the bottom of
326          * the address space, but end 0 and ceiling 0 refer to the top
327          * Comparisons need to use "end - 1" and "ceiling - 1" (though
328          * that end 0 case should be mythical).
329          *
330          * Wherever addr is brought up or ceiling brought down, we must
331          * be careful to reject "the opposite 0" before it confuses the
332          * subsequent tests.  But what about where end is brought down
333          * by PMD_SIZE below? no, end can't go down to 0 there.
334          *
335          * Whereas we round start (addr) and ceiling down, by different
336          * masks at different levels, in order to test whether a table
337          * now has no other vmas using it, so can be freed, we don't
338          * bother to round floor or end up - the tests don't need that.
339          */
340
341         addr &= PMD_MASK;
342         if (addr < floor) {
343                 addr += PMD_SIZE;
344                 if (!addr)
345                         return;
346         }
347         if (ceiling) {
348                 ceiling &= PMD_MASK;
349                 if (!ceiling)
350                         return;
351         }
352         if (end - 1 > ceiling - 1)
353                 end -= PMD_SIZE;
354         if (addr > end - 1)
355                 return;
356         /*
357          * We add page table cache pages with PAGE_SIZE,
358          * (see pte_free_tlb()), flush the tlb if we need
359          */
360         tlb_change_page_size(tlb, PAGE_SIZE);
361         pgd = pgd_offset(tlb->mm, addr);
362         do {
363                 next = pgd_addr_end(addr, end);
364                 if (pgd_none_or_clear_bad(pgd))
365                         continue;
366                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367         } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371                 unsigned long floor, unsigned long ceiling)
372 {
373         while (vma) {
374                 struct vm_area_struct *next = vma->vm_next;
375                 unsigned long addr = vma->vm_start;
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 unlink_anon_vmas(vma);
382                 unlink_file_vma(vma);
383
384                 if (is_vm_hugetlb_page(vma)) {
385                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386                                 floor, next ? next->vm_start : ceiling);
387                 } else {
388                         /*
389                          * Optimization: gather nearby vmas into one call down
390                          */
391                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392                                && !is_vm_hugetlb_page(next)) {
393                                 vma = next;
394                                 next = vma->vm_next;
395                                 unlink_anon_vmas(vma);
396                                 unlink_file_vma(vma);
397                         }
398                         free_pgd_range(tlb, addr, vma->vm_end,
399                                 floor, next ? next->vm_start : ceiling);
400                 }
401                 vma = next;
402         }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407         spinlock_t *ptl;
408         pgtable_t new = pte_alloc_one(mm);
409         if (!new)
410                 return -ENOMEM;
411
412         /*
413          * Ensure all pte setup (eg. pte page lock and page clearing) are
414          * visible before the pte is made visible to other CPUs by being
415          * put into page tables.
416          *
417          * The other side of the story is the pointer chasing in the page
418          * table walking code (when walking the page table without locking;
419          * ie. most of the time). Fortunately, these data accesses consist
420          * of a chain of data-dependent loads, meaning most CPUs (alpha
421          * being the notable exception) will already guarantee loads are
422          * seen in-order. See the alpha page table accessors for the
423          * smp_read_barrier_depends() barriers in page table walking code.
424          */
425         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427         ptl = pmd_lock(mm, pmd);
428         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
429                 mm_inc_nr_ptes(mm);
430                 pmd_populate(mm, pmd, new);
431                 new = NULL;
432         }
433         spin_unlock(ptl);
434         if (new)
435                 pte_free(mm, new);
436         return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441         pte_t *new = pte_alloc_one_kernel(&init_mm);
442         if (!new)
443                 return -ENOMEM;
444
445         smp_wmb(); /* See comment in __pte_alloc */
446
447         spin_lock(&init_mm.page_table_lock);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 pmd_populate_kernel(&init_mm, pmd, new);
450                 new = NULL;
451         }
452         spin_unlock(&init_mm.page_table_lock);
453         if (new)
454                 pte_free_kernel(&init_mm, new);
455         return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465         int i;
466
467         if (current->mm == mm)
468                 sync_mm_rss(mm);
469         for (i = 0; i < NR_MM_COUNTERS; i++)
470                 if (rss[i])
471                         add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482                           pte_t pte, struct page *page)
483 {
484         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485         p4d_t *p4d = p4d_offset(pgd, addr);
486         pud_t *pud = pud_offset(p4d, addr);
487         pmd_t *pmd = pmd_offset(pud, addr);
488         struct address_space *mapping;
489         pgoff_t index;
490         static unsigned long resume;
491         static unsigned long nr_shown;
492         static unsigned long nr_unshown;
493
494         /*
495          * Allow a burst of 60 reports, then keep quiet for that minute;
496          * or allow a steady drip of one report per second.
497          */
498         if (nr_shown == 60) {
499                 if (time_before(jiffies, resume)) {
500                         nr_unshown++;
501                         return;
502                 }
503                 if (nr_unshown) {
504                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505                                  nr_unshown);
506                         nr_unshown = 0;
507                 }
508                 nr_shown = 0;
509         }
510         if (nr_shown++ == 0)
511                 resume = jiffies + 60 * HZ;
512
513         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514         index = linear_page_index(vma, addr);
515
516         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517                  current->comm,
518                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
519         if (page)
520                 dump_page(page, "bad pte");
521         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524                  vma->vm_file,
525                  vma->vm_ops ? vma->vm_ops->fault : NULL,
526                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527                  mapping ? mapping->a_ops->readpage : NULL);
528         dump_stack();
529         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575                             pte_t pte)
576 {
577         unsigned long pfn = pte_pfn(pte);
578
579         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580                 if (likely(!pte_special(pte)))
581                         goto check_pfn;
582                 if (vma->vm_ops && vma->vm_ops->find_special_page)
583                         return vma->vm_ops->find_special_page(vma, addr);
584                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585                         return NULL;
586                 if (is_zero_pfn(pfn))
587                         return NULL;
588                 if (pte_devmap(pte))
589                         return NULL;
590
591                 print_bad_pte(vma, addr, pte, NULL);
592                 return NULL;
593         }
594
595         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596
597         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598                 if (vma->vm_flags & VM_MIXEDMAP) {
599                         if (!pfn_valid(pfn))
600                                 return NULL;
601                         goto out;
602                 } else {
603                         unsigned long off;
604                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
605                         if (pfn == vma->vm_pgoff + off)
606                                 return NULL;
607                         if (!is_cow_mapping(vma->vm_flags))
608                                 return NULL;
609                 }
610         }
611
612         if (is_zero_pfn(pfn))
613                 return NULL;
614
615 check_pfn:
616         if (unlikely(pfn > highest_memmap_pfn)) {
617                 print_bad_pte(vma, addr, pte, NULL);
618                 return NULL;
619         }
620
621         /*
622          * NOTE! We still have PageReserved() pages in the page tables.
623          * eg. VDSO mappings can cause them to exist.
624          */
625 out:
626         return pfn_to_page(pfn);
627 }
628
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631                                 pmd_t pmd)
632 {
633         unsigned long pfn = pmd_pfn(pmd);
634
635         /*
636          * There is no pmd_special() but there may be special pmds, e.g.
637          * in a direct-access (dax) mapping, so let's just replicate the
638          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639          */
640         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641                 if (vma->vm_flags & VM_MIXEDMAP) {
642                         if (!pfn_valid(pfn))
643                                 return NULL;
644                         goto out;
645                 } else {
646                         unsigned long off;
647                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
648                         if (pfn == vma->vm_pgoff + off)
649                                 return NULL;
650                         if (!is_cow_mapping(vma->vm_flags))
651                                 return NULL;
652                 }
653         }
654
655         if (pmd_devmap(pmd))
656                 return NULL;
657         if (is_zero_pfn(pfn))
658                 return NULL;
659         if (unlikely(pfn > highest_memmap_pfn))
660                 return NULL;
661
662         /*
663          * NOTE! We still have PageReserved() pages in the page tables.
664          * eg. VDSO mappings can cause them to exist.
665          */
666 out:
667         return pfn_to_page(pfn);
668 }
669 #endif
670
671 /*
672  * copy one vm_area from one task to the other. Assumes the page tables
673  * already present in the new task to be cleared in the whole range
674  * covered by this vma.
675  */
676
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680                 unsigned long addr, int *rss)
681 {
682         unsigned long vm_flags = vma->vm_flags;
683         pte_t pte = *src_pte;
684         struct page *page;
685
686         /* pte contains position in swap or file, so copy. */
687         if (unlikely(!pte_present(pte))) {
688                 swp_entry_t entry = pte_to_swp_entry(pte);
689
690                 if (likely(!non_swap_entry(entry))) {
691                         if (swap_duplicate(entry) < 0)
692                                 return entry.val;
693
694                         /* make sure dst_mm is on swapoff's mmlist. */
695                         if (unlikely(list_empty(&dst_mm->mmlist))) {
696                                 spin_lock(&mmlist_lock);
697                                 if (list_empty(&dst_mm->mmlist))
698                                         list_add(&dst_mm->mmlist,
699                                                         &src_mm->mmlist);
700                                 spin_unlock(&mmlist_lock);
701                         }
702                         rss[MM_SWAPENTS]++;
703                 } else if (is_migration_entry(entry)) {
704                         page = migration_entry_to_page(entry);
705
706                         rss[mm_counter(page)]++;
707
708                         if (is_write_migration_entry(entry) &&
709                                         is_cow_mapping(vm_flags)) {
710                                 /*
711                                  * COW mappings require pages in both
712                                  * parent and child to be set to read.
713                                  */
714                                 make_migration_entry_read(&entry);
715                                 pte = swp_entry_to_pte(entry);
716                                 if (pte_swp_soft_dirty(*src_pte))
717                                         pte = pte_swp_mksoft_dirty(pte);
718                                 set_pte_at(src_mm, addr, src_pte, pte);
719                         }
720                 } else if (is_device_private_entry(entry)) {
721                         page = device_private_entry_to_page(entry);
722
723                         /*
724                          * Update rss count even for unaddressable pages, as
725                          * they should treated just like normal pages in this
726                          * respect.
727                          *
728                          * We will likely want to have some new rss counters
729                          * for unaddressable pages, at some point. But for now
730                          * keep things as they are.
731                          */
732                         get_page(page);
733                         rss[mm_counter(page)]++;
734                         page_dup_rmap(page, false);
735
736                         /*
737                          * We do not preserve soft-dirty information, because so
738                          * far, checkpoint/restore is the only feature that
739                          * requires that. And checkpoint/restore does not work
740                          * when a device driver is involved (you cannot easily
741                          * save and restore device driver state).
742                          */
743                         if (is_write_device_private_entry(entry) &&
744                             is_cow_mapping(vm_flags)) {
745                                 make_device_private_entry_read(&entry);
746                                 pte = swp_entry_to_pte(entry);
747                                 set_pte_at(src_mm, addr, src_pte, pte);
748                         }
749                 }
750                 goto out_set_pte;
751         }
752
753         /*
754          * If it's a COW mapping, write protect it both
755          * in the parent and the child
756          */
757         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758                 ptep_set_wrprotect(src_mm, addr, src_pte);
759                 pte = pte_wrprotect(pte);
760         }
761
762         /*
763          * If it's a shared mapping, mark it clean in
764          * the child
765          */
766         if (vm_flags & VM_SHARED)
767                 pte = pte_mkclean(pte);
768         pte = pte_mkold(pte);
769
770         page = vm_normal_page(vma, addr, pte);
771         if (page) {
772                 get_page(page);
773                 page_dup_rmap(page, false);
774                 rss[mm_counter(page)]++;
775         } else if (pte_devmap(pte)) {
776                 page = pte_page(pte);
777         }
778
779 out_set_pte:
780         set_pte_at(dst_mm, addr, dst_pte, pte);
781         return 0;
782 }
783
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786                    unsigned long addr, unsigned long end)
787 {
788         pte_t *orig_src_pte, *orig_dst_pte;
789         pte_t *src_pte, *dst_pte;
790         spinlock_t *src_ptl, *dst_ptl;
791         int progress = 0;
792         int rss[NR_MM_COUNTERS];
793         swp_entry_t entry = (swp_entry_t){0};
794
795 again:
796         init_rss_vec(rss);
797
798         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799         if (!dst_pte)
800                 return -ENOMEM;
801         src_pte = pte_offset_map(src_pmd, addr);
802         src_ptl = pte_lockptr(src_mm, src_pmd);
803         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804         orig_src_pte = src_pte;
805         orig_dst_pte = dst_pte;
806         arch_enter_lazy_mmu_mode();
807
808         do {
809                 /*
810                  * We are holding two locks at this point - either of them
811                  * could generate latencies in another task on another CPU.
812                  */
813                 if (progress >= 32) {
814                         progress = 0;
815                         if (need_resched() ||
816                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817                                 break;
818                 }
819                 if (pte_none(*src_pte)) {
820                         progress++;
821                         continue;
822                 }
823                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824                                                         vma, addr, rss);
825                 if (entry.val)
826                         break;
827                 progress += 8;
828         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
829
830         arch_leave_lazy_mmu_mode();
831         spin_unlock(src_ptl);
832         pte_unmap(orig_src_pte);
833         add_mm_rss_vec(dst_mm, rss);
834         pte_unmap_unlock(orig_dst_pte, dst_ptl);
835         cond_resched();
836
837         if (entry.val) {
838                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839                         return -ENOMEM;
840                 progress = 0;
841         }
842         if (addr != end)
843                 goto again;
844         return 0;
845 }
846
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849                 unsigned long addr, unsigned long end)
850 {
851         pmd_t *src_pmd, *dst_pmd;
852         unsigned long next;
853
854         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855         if (!dst_pmd)
856                 return -ENOMEM;
857         src_pmd = pmd_offset(src_pud, addr);
858         do {
859                 next = pmd_addr_end(addr, end);
860                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861                         || pmd_devmap(*src_pmd)) {
862                         int err;
863                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864                         err = copy_huge_pmd(dst_mm, src_mm,
865                                             dst_pmd, src_pmd, addr, vma);
866                         if (err == -ENOMEM)
867                                 return -ENOMEM;
868                         if (!err)
869                                 continue;
870                         /* fall through */
871                 }
872                 if (pmd_none_or_clear_bad(src_pmd))
873                         continue;
874                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875                                                 vma, addr, next))
876                         return -ENOMEM;
877         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878         return 0;
879 }
880
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883                 unsigned long addr, unsigned long end)
884 {
885         pud_t *src_pud, *dst_pud;
886         unsigned long next;
887
888         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889         if (!dst_pud)
890                 return -ENOMEM;
891         src_pud = pud_offset(src_p4d, addr);
892         do {
893                 next = pud_addr_end(addr, end);
894                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895                         int err;
896
897                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898                         err = copy_huge_pud(dst_mm, src_mm,
899                                             dst_pud, src_pud, addr, vma);
900                         if (err == -ENOMEM)
901                                 return -ENOMEM;
902                         if (!err)
903                                 continue;
904                         /* fall through */
905                 }
906                 if (pud_none_or_clear_bad(src_pud))
907                         continue;
908                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909                                                 vma, addr, next))
910                         return -ENOMEM;
911         } while (dst_pud++, src_pud++, addr = next, addr != end);
912         return 0;
913 }
914
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917                 unsigned long addr, unsigned long end)
918 {
919         p4d_t *src_p4d, *dst_p4d;
920         unsigned long next;
921
922         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923         if (!dst_p4d)
924                 return -ENOMEM;
925         src_p4d = p4d_offset(src_pgd, addr);
926         do {
927                 next = p4d_addr_end(addr, end);
928                 if (p4d_none_or_clear_bad(src_p4d))
929                         continue;
930                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931                                                 vma, addr, next))
932                         return -ENOMEM;
933         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934         return 0;
935 }
936
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938                 struct vm_area_struct *vma)
939 {
940         pgd_t *src_pgd, *dst_pgd;
941         unsigned long next;
942         unsigned long addr = vma->vm_start;
943         unsigned long end = vma->vm_end;
944         struct mmu_notifier_range range;
945         bool is_cow;
946         int ret;
947
948         /*
949          * Don't copy ptes where a page fault will fill them correctly.
950          * Fork becomes much lighter when there are big shared or private
951          * readonly mappings. The tradeoff is that copy_page_range is more
952          * efficient than faulting.
953          */
954         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955                         !vma->anon_vma)
956                 return 0;
957
958         if (is_vm_hugetlb_page(vma))
959                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960
961         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
962                 /*
963                  * We do not free on error cases below as remove_vma
964                  * gets called on error from higher level routine
965                  */
966                 ret = track_pfn_copy(vma);
967                 if (ret)
968                         return ret;
969         }
970
971         /*
972          * We need to invalidate the secondary MMU mappings only when
973          * there could be a permission downgrade on the ptes of the
974          * parent mm. And a permission downgrade will only happen if
975          * is_cow_mapping() returns true.
976          */
977         is_cow = is_cow_mapping(vma->vm_flags);
978
979         if (is_cow) {
980                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981                                         0, vma, src_mm, addr, end);
982                 mmu_notifier_invalidate_range_start(&range);
983         }
984
985         ret = 0;
986         dst_pgd = pgd_offset(dst_mm, addr);
987         src_pgd = pgd_offset(src_mm, addr);
988         do {
989                 next = pgd_addr_end(addr, end);
990                 if (pgd_none_or_clear_bad(src_pgd))
991                         continue;
992                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993                                             vma, addr, next))) {
994                         ret = -ENOMEM;
995                         break;
996                 }
997         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
998
999         if (is_cow)
1000                 mmu_notifier_invalidate_range_end(&range);
1001         return ret;
1002 }
1003
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005                                 struct vm_area_struct *vma, pmd_t *pmd,
1006                                 unsigned long addr, unsigned long end,
1007                                 struct zap_details *details)
1008 {
1009         struct mm_struct *mm = tlb->mm;
1010         int force_flush = 0;
1011         int rss[NR_MM_COUNTERS];
1012         spinlock_t *ptl;
1013         pte_t *start_pte;
1014         pte_t *pte;
1015         swp_entry_t entry;
1016
1017         tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019         init_rss_vec(rss);
1020         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021         pte = start_pte;
1022         flush_tlb_batched_pending(mm);
1023         arch_enter_lazy_mmu_mode();
1024         do {
1025                 pte_t ptent = *pte;
1026                 if (pte_none(ptent))
1027                         continue;
1028
1029                 if (pte_present(ptent)) {
1030                         struct page *page;
1031
1032                         page = vm_normal_page(vma, addr, ptent);
1033                         if (unlikely(details) && page) {
1034                                 /*
1035                                  * unmap_shared_mapping_pages() wants to
1036                                  * invalidate cache without truncating:
1037                                  * unmap shared but keep private pages.
1038                                  */
1039                                 if (details->check_mapping &&
1040                                     details->check_mapping != page_rmapping(page))
1041                                         continue;
1042                         }
1043                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1044                                                         tlb->fullmm);
1045                         tlb_remove_tlb_entry(tlb, pte, addr);
1046                         if (unlikely(!page))
1047                                 continue;
1048
1049                         if (!PageAnon(page)) {
1050                                 if (pte_dirty(ptent)) {
1051                                         force_flush = 1;
1052                                         set_page_dirty(page);
1053                                 }
1054                                 if (pte_young(ptent) &&
1055                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1056                                         mark_page_accessed(page);
1057                         }
1058                         rss[mm_counter(page)]--;
1059                         page_remove_rmap(page, false);
1060                         if (unlikely(page_mapcount(page) < 0))
1061                                 print_bad_pte(vma, addr, ptent, page);
1062                         if (unlikely(__tlb_remove_page(tlb, page))) {
1063                                 force_flush = 1;
1064                                 addr += PAGE_SIZE;
1065                                 break;
1066                         }
1067                         continue;
1068                 }
1069
1070                 entry = pte_to_swp_entry(ptent);
1071                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072                         struct page *page = device_private_entry_to_page(entry);
1073
1074                         if (unlikely(details && details->check_mapping)) {
1075                                 /*
1076                                  * unmap_shared_mapping_pages() wants to
1077                                  * invalidate cache without truncating:
1078                                  * unmap shared but keep private pages.
1079                                  */
1080                                 if (details->check_mapping !=
1081                                     page_rmapping(page))
1082                                         continue;
1083                         }
1084
1085                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086                         rss[mm_counter(page)]--;
1087                         page_remove_rmap(page, false);
1088                         put_page(page);
1089                         continue;
1090                 }
1091
1092                 /* If details->check_mapping, we leave swap entries. */
1093                 if (unlikely(details))
1094                         continue;
1095
1096                 entry = pte_to_swp_entry(ptent);
1097                 if (!non_swap_entry(entry))
1098                         rss[MM_SWAPENTS]--;
1099                 else if (is_migration_entry(entry)) {
1100                         struct page *page;
1101
1102                         page = migration_entry_to_page(entry);
1103                         rss[mm_counter(page)]--;
1104                 }
1105                 if (unlikely(!free_swap_and_cache(entry)))
1106                         print_bad_pte(vma, addr, ptent, NULL);
1107                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1108         } while (pte++, addr += PAGE_SIZE, addr != end);
1109
1110         add_mm_rss_vec(mm, rss);
1111         arch_leave_lazy_mmu_mode();
1112
1113         /* Do the actual TLB flush before dropping ptl */
1114         if (force_flush)
1115                 tlb_flush_mmu_tlbonly(tlb);
1116         pte_unmap_unlock(start_pte, ptl);
1117
1118         /*
1119          * If we forced a TLB flush (either due to running out of
1120          * batch buffers or because we needed to flush dirty TLB
1121          * entries before releasing the ptl), free the batched
1122          * memory too. Restart if we didn't do everything.
1123          */
1124         if (force_flush) {
1125                 force_flush = 0;
1126                 tlb_flush_mmu(tlb);
1127                 if (addr != end)
1128                         goto again;
1129         }
1130
1131         return addr;
1132 }
1133
1134 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1135                                 struct vm_area_struct *vma, pud_t *pud,
1136                                 unsigned long addr, unsigned long end,
1137                                 struct zap_details *details)
1138 {
1139         pmd_t *pmd;
1140         unsigned long next;
1141
1142         pmd = pmd_offset(pud, addr);
1143         do {
1144                 next = pmd_addr_end(addr, end);
1145                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1146                         if (next - addr != HPAGE_PMD_SIZE)
1147                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1148                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1149                                 goto next;
1150                         /* fall through */
1151                 }
1152                 /*
1153                  * Here there can be other concurrent MADV_DONTNEED or
1154                  * trans huge page faults running, and if the pmd is
1155                  * none or trans huge it can change under us. This is
1156                  * because MADV_DONTNEED holds the mmap_sem in read
1157                  * mode.
1158                  */
1159                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1160                         goto next;
1161                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1162 next:
1163                 cond_resched();
1164         } while (pmd++, addr = next, addr != end);
1165
1166         return addr;
1167 }
1168
1169 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1170                                 struct vm_area_struct *vma, p4d_t *p4d,
1171                                 unsigned long addr, unsigned long end,
1172                                 struct zap_details *details)
1173 {
1174         pud_t *pud;
1175         unsigned long next;
1176
1177         pud = pud_offset(p4d, addr);
1178         do {
1179                 next = pud_addr_end(addr, end);
1180                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1181                         if (next - addr != HPAGE_PUD_SIZE) {
1182                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1183                                 split_huge_pud(vma, pud, addr);
1184                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1185                                 goto next;
1186                         /* fall through */
1187                 }
1188                 if (pud_none_or_clear_bad(pud))
1189                         continue;
1190                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1191 next:
1192                 cond_resched();
1193         } while (pud++, addr = next, addr != end);
1194
1195         return addr;
1196 }
1197
1198 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1199                                 struct vm_area_struct *vma, pgd_t *pgd,
1200                                 unsigned long addr, unsigned long end,
1201                                 struct zap_details *details)
1202 {
1203         p4d_t *p4d;
1204         unsigned long next;
1205
1206         p4d = p4d_offset(pgd, addr);
1207         do {
1208                 next = p4d_addr_end(addr, end);
1209                 if (p4d_none_or_clear_bad(p4d))
1210                         continue;
1211                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1212         } while (p4d++, addr = next, addr != end);
1213
1214         return addr;
1215 }
1216
1217 void unmap_page_range(struct mmu_gather *tlb,
1218                              struct vm_area_struct *vma,
1219                              unsigned long addr, unsigned long end,
1220                              struct zap_details *details)
1221 {
1222         pgd_t *pgd;
1223         unsigned long next;
1224
1225         BUG_ON(addr >= end);
1226         tlb_start_vma(tlb, vma);
1227         pgd = pgd_offset(vma->vm_mm, addr);
1228         do {
1229                 next = pgd_addr_end(addr, end);
1230                 if (pgd_none_or_clear_bad(pgd))
1231                         continue;
1232                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1233         } while (pgd++, addr = next, addr != end);
1234         tlb_end_vma(tlb, vma);
1235 }
1236
1237
1238 static void unmap_single_vma(struct mmu_gather *tlb,
1239                 struct vm_area_struct *vma, unsigned long start_addr,
1240                 unsigned long end_addr,
1241                 struct zap_details *details)
1242 {
1243         unsigned long start = max(vma->vm_start, start_addr);
1244         unsigned long end;
1245
1246         if (start >= vma->vm_end)
1247                 return;
1248         end = min(vma->vm_end, end_addr);
1249         if (end <= vma->vm_start)
1250                 return;
1251
1252         if (vma->vm_file)
1253                 uprobe_munmap(vma, start, end);
1254
1255         if (unlikely(vma->vm_flags & VM_PFNMAP))
1256                 untrack_pfn(vma, 0, 0);
1257
1258         if (start != end) {
1259                 if (unlikely(is_vm_hugetlb_page(vma))) {
1260                         /*
1261                          * It is undesirable to test vma->vm_file as it
1262                          * should be non-null for valid hugetlb area.
1263                          * However, vm_file will be NULL in the error
1264                          * cleanup path of mmap_region. When
1265                          * hugetlbfs ->mmap method fails,
1266                          * mmap_region() nullifies vma->vm_file
1267                          * before calling this function to clean up.
1268                          * Since no pte has actually been setup, it is
1269                          * safe to do nothing in this case.
1270                          */
1271                         if (vma->vm_file) {
1272                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1273                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1274                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1275                         }
1276                 } else
1277                         unmap_page_range(tlb, vma, start, end, details);
1278         }
1279 }
1280
1281 /**
1282  * unmap_vmas - unmap a range of memory covered by a list of vma's
1283  * @tlb: address of the caller's struct mmu_gather
1284  * @vma: the starting vma
1285  * @start_addr: virtual address at which to start unmapping
1286  * @end_addr: virtual address at which to end unmapping
1287  *
1288  * Unmap all pages in the vma list.
1289  *
1290  * Only addresses between `start' and `end' will be unmapped.
1291  *
1292  * The VMA list must be sorted in ascending virtual address order.
1293  *
1294  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295  * range after unmap_vmas() returns.  So the only responsibility here is to
1296  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297  * drops the lock and schedules.
1298  */
1299 void unmap_vmas(struct mmu_gather *tlb,
1300                 struct vm_area_struct *vma, unsigned long start_addr,
1301                 unsigned long end_addr)
1302 {
1303         struct mmu_notifier_range range;
1304
1305         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1306                                 start_addr, end_addr);
1307         mmu_notifier_invalidate_range_start(&range);
1308         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1309                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1310         mmu_notifier_invalidate_range_end(&range);
1311 }
1312
1313 /**
1314  * zap_page_range - remove user pages in a given range
1315  * @vma: vm_area_struct holding the applicable pages
1316  * @start: starting address of pages to zap
1317  * @size: number of bytes to zap
1318  *
1319  * Caller must protect the VMA list
1320  */
1321 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1322                 unsigned long size)
1323 {
1324         struct mmu_notifier_range range;
1325         struct mmu_gather tlb;
1326
1327         lru_add_drain();
1328         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1329                                 start, start + size);
1330         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1331         update_hiwater_rss(vma->vm_mm);
1332         mmu_notifier_invalidate_range_start(&range);
1333         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1334                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1335         mmu_notifier_invalidate_range_end(&range);
1336         tlb_finish_mmu(&tlb, start, range.end);
1337 }
1338
1339 /**
1340  * zap_page_range_single - remove user pages in a given range
1341  * @vma: vm_area_struct holding the applicable pages
1342  * @address: starting address of pages to zap
1343  * @size: number of bytes to zap
1344  * @details: details of shared cache invalidation
1345  *
1346  * The range must fit into one VMA.
1347  */
1348 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1349                 unsigned long size, struct zap_details *details)
1350 {
1351         struct mmu_notifier_range range;
1352         struct mmu_gather tlb;
1353
1354         lru_add_drain();
1355         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1356                                 address, address + size);
1357         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1358         update_hiwater_rss(vma->vm_mm);
1359         mmu_notifier_invalidate_range_start(&range);
1360         unmap_single_vma(&tlb, vma, address, range.end, details);
1361         mmu_notifier_invalidate_range_end(&range);
1362         tlb_finish_mmu(&tlb, address, range.end);
1363 }
1364
1365 /**
1366  * zap_vma_ptes - remove ptes mapping the vma
1367  * @vma: vm_area_struct holding ptes to be zapped
1368  * @address: starting address of pages to zap
1369  * @size: number of bytes to zap
1370  *
1371  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1372  *
1373  * The entire address range must be fully contained within the vma.
1374  *
1375  */
1376 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1377                 unsigned long size)
1378 {
1379         if (address < vma->vm_start || address + size > vma->vm_end ||
1380                         !(vma->vm_flags & VM_PFNMAP))
1381                 return;
1382
1383         zap_page_range_single(vma, address, size, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1386
1387 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1388                         spinlock_t **ptl)
1389 {
1390         pgd_t *pgd;
1391         p4d_t *p4d;
1392         pud_t *pud;
1393         pmd_t *pmd;
1394
1395         pgd = pgd_offset(mm, addr);
1396         p4d = p4d_alloc(mm, pgd, addr);
1397         if (!p4d)
1398                 return NULL;
1399         pud = pud_alloc(mm, p4d, addr);
1400         if (!pud)
1401                 return NULL;
1402         pmd = pmd_alloc(mm, pud, addr);
1403         if (!pmd)
1404                 return NULL;
1405
1406         VM_BUG_ON(pmd_trans_huge(*pmd));
1407         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1408 }
1409
1410 /*
1411  * This is the old fallback for page remapping.
1412  *
1413  * For historical reasons, it only allows reserved pages. Only
1414  * old drivers should use this, and they needed to mark their
1415  * pages reserved for the old functions anyway.
1416  */
1417 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1418                         struct page *page, pgprot_t prot)
1419 {
1420         struct mm_struct *mm = vma->vm_mm;
1421         int retval;
1422         pte_t *pte;
1423         spinlock_t *ptl;
1424
1425         retval = -EINVAL;
1426         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1427                 goto out;
1428         retval = -ENOMEM;
1429         flush_dcache_page(page);
1430         pte = get_locked_pte(mm, addr, &ptl);
1431         if (!pte)
1432                 goto out;
1433         retval = -EBUSY;
1434         if (!pte_none(*pte))
1435                 goto out_unlock;
1436
1437         /* Ok, finally just insert the thing.. */
1438         get_page(page);
1439         inc_mm_counter_fast(mm, mm_counter_file(page));
1440         page_add_file_rmap(page, false);
1441         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1442
1443         retval = 0;
1444 out_unlock:
1445         pte_unmap_unlock(pte, ptl);
1446 out:
1447         return retval;
1448 }
1449
1450 /**
1451  * vm_insert_page - insert single page into user vma
1452  * @vma: user vma to map to
1453  * @addr: target user address of this page
1454  * @page: source kernel page
1455  *
1456  * This allows drivers to insert individual pages they've allocated
1457  * into a user vma.
1458  *
1459  * The page has to be a nice clean _individual_ kernel allocation.
1460  * If you allocate a compound page, you need to have marked it as
1461  * such (__GFP_COMP), or manually just split the page up yourself
1462  * (see split_page()).
1463  *
1464  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1465  * took an arbitrary page protection parameter. This doesn't allow
1466  * that. Your vma protection will have to be set up correctly, which
1467  * means that if you want a shared writable mapping, you'd better
1468  * ask for a shared writable mapping!
1469  *
1470  * The page does not need to be reserved.
1471  *
1472  * Usually this function is called from f_op->mmap() handler
1473  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1474  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1475  * function from other places, for example from page-fault handler.
1476  *
1477  * Return: %0 on success, negative error code otherwise.
1478  */
1479 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1480                         struct page *page)
1481 {
1482         if (addr < vma->vm_start || addr >= vma->vm_end)
1483                 return -EFAULT;
1484         if (!page_count(page))
1485                 return -EINVAL;
1486         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1487                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1488                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1489                 vma->vm_flags |= VM_MIXEDMAP;
1490         }
1491         return insert_page(vma, addr, page, vma->vm_page_prot);
1492 }
1493 EXPORT_SYMBOL(vm_insert_page);
1494
1495 /*
1496  * __vm_map_pages - maps range of kernel pages into user vma
1497  * @vma: user vma to map to
1498  * @pages: pointer to array of source kernel pages
1499  * @num: number of pages in page array
1500  * @offset: user's requested vm_pgoff
1501  *
1502  * This allows drivers to map range of kernel pages into a user vma.
1503  *
1504  * Return: 0 on success and error code otherwise.
1505  */
1506 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1507                                 unsigned long num, unsigned long offset)
1508 {
1509         unsigned long count = vma_pages(vma);
1510         unsigned long uaddr = vma->vm_start;
1511         int ret, i;
1512
1513         /* Fail if the user requested offset is beyond the end of the object */
1514         if (offset >= num)
1515                 return -ENXIO;
1516
1517         /* Fail if the user requested size exceeds available object size */
1518         if (count > num - offset)
1519                 return -ENXIO;
1520
1521         for (i = 0; i < count; i++) {
1522                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1523                 if (ret < 0)
1524                         return ret;
1525                 uaddr += PAGE_SIZE;
1526         }
1527
1528         return 0;
1529 }
1530
1531 /**
1532  * vm_map_pages - maps range of kernel pages starts with non zero offset
1533  * @vma: user vma to map to
1534  * @pages: pointer to array of source kernel pages
1535  * @num: number of pages in page array
1536  *
1537  * Maps an object consisting of @num pages, catering for the user's
1538  * requested vm_pgoff
1539  *
1540  * If we fail to insert any page into the vma, the function will return
1541  * immediately leaving any previously inserted pages present.  Callers
1542  * from the mmap handler may immediately return the error as their caller
1543  * will destroy the vma, removing any successfully inserted pages. Other
1544  * callers should make their own arrangements for calling unmap_region().
1545  *
1546  * Context: Process context. Called by mmap handlers.
1547  * Return: 0 on success and error code otherwise.
1548  */
1549 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1550                                 unsigned long num)
1551 {
1552         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1553 }
1554 EXPORT_SYMBOL(vm_map_pages);
1555
1556 /**
1557  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1558  * @vma: user vma to map to
1559  * @pages: pointer to array of source kernel pages
1560  * @num: number of pages in page array
1561  *
1562  * Similar to vm_map_pages(), except that it explicitly sets the offset
1563  * to 0. This function is intended for the drivers that did not consider
1564  * vm_pgoff.
1565  *
1566  * Context: Process context. Called by mmap handlers.
1567  * Return: 0 on success and error code otherwise.
1568  */
1569 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1570                                 unsigned long num)
1571 {
1572         return __vm_map_pages(vma, pages, num, 0);
1573 }
1574 EXPORT_SYMBOL(vm_map_pages_zero);
1575
1576 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1577                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1578 {
1579         struct mm_struct *mm = vma->vm_mm;
1580         pte_t *pte, entry;
1581         spinlock_t *ptl;
1582
1583         pte = get_locked_pte(mm, addr, &ptl);
1584         if (!pte)
1585                 return VM_FAULT_OOM;
1586         if (!pte_none(*pte)) {
1587                 if (mkwrite) {
1588                         /*
1589                          * For read faults on private mappings the PFN passed
1590                          * in may not match the PFN we have mapped if the
1591                          * mapped PFN is a writeable COW page.  In the mkwrite
1592                          * case we are creating a writable PTE for a shared
1593                          * mapping and we expect the PFNs to match. If they
1594                          * don't match, we are likely racing with block
1595                          * allocation and mapping invalidation so just skip the
1596                          * update.
1597                          */
1598                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1599                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1600                                 goto out_unlock;
1601                         }
1602                         entry = pte_mkyoung(*pte);
1603                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1604                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1605                                 update_mmu_cache(vma, addr, pte);
1606                 }
1607                 goto out_unlock;
1608         }
1609
1610         /* Ok, finally just insert the thing.. */
1611         if (pfn_t_devmap(pfn))
1612                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1613         else
1614                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1615
1616         if (mkwrite) {
1617                 entry = pte_mkyoung(entry);
1618                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1619         }
1620
1621         set_pte_at(mm, addr, pte, entry);
1622         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1623
1624 out_unlock:
1625         pte_unmap_unlock(pte, ptl);
1626         return VM_FAULT_NOPAGE;
1627 }
1628
1629 /**
1630  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1631  * @vma: user vma to map to
1632  * @addr: target user address of this page
1633  * @pfn: source kernel pfn
1634  * @pgprot: pgprot flags for the inserted page
1635  *
1636  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1637  * to override pgprot on a per-page basis.
1638  *
1639  * This only makes sense for IO mappings, and it makes no sense for
1640  * COW mappings.  In general, using multiple vmas is preferable;
1641  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1642  * impractical.
1643  *
1644  * Context: Process context.  May allocate using %GFP_KERNEL.
1645  * Return: vm_fault_t value.
1646  */
1647 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1648                         unsigned long pfn, pgprot_t pgprot)
1649 {
1650         /*
1651          * Technically, architectures with pte_special can avoid all these
1652          * restrictions (same for remap_pfn_range).  However we would like
1653          * consistency in testing and feature parity among all, so we should
1654          * try to keep these invariants in place for everybody.
1655          */
1656         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1657         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1658                                                 (VM_PFNMAP|VM_MIXEDMAP));
1659         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1660         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1661
1662         if (addr < vma->vm_start || addr >= vma->vm_end)
1663                 return VM_FAULT_SIGBUS;
1664
1665         if (!pfn_modify_allowed(pfn, pgprot))
1666                 return VM_FAULT_SIGBUS;
1667
1668         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1669
1670         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1671                         false);
1672 }
1673 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1674
1675 /**
1676  * vmf_insert_pfn - insert single pfn into user vma
1677  * @vma: user vma to map to
1678  * @addr: target user address of this page
1679  * @pfn: source kernel pfn
1680  *
1681  * Similar to vm_insert_page, this allows drivers to insert individual pages
1682  * they've allocated into a user vma. Same comments apply.
1683  *
1684  * This function should only be called from a vm_ops->fault handler, and
1685  * in that case the handler should return the result of this function.
1686  *
1687  * vma cannot be a COW mapping.
1688  *
1689  * As this is called only for pages that do not currently exist, we
1690  * do not need to flush old virtual caches or the TLB.
1691  *
1692  * Context: Process context.  May allocate using %GFP_KERNEL.
1693  * Return: vm_fault_t value.
1694  */
1695 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1696                         unsigned long pfn)
1697 {
1698         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1699 }
1700 EXPORT_SYMBOL(vmf_insert_pfn);
1701
1702 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1703 {
1704         /* these checks mirror the abort conditions in vm_normal_page */
1705         if (vma->vm_flags & VM_MIXEDMAP)
1706                 return true;
1707         if (pfn_t_devmap(pfn))
1708                 return true;
1709         if (pfn_t_special(pfn))
1710                 return true;
1711         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1712                 return true;
1713         return false;
1714 }
1715
1716 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1717                 unsigned long addr, pfn_t pfn, bool mkwrite)
1718 {
1719         pgprot_t pgprot = vma->vm_page_prot;
1720         int err;
1721
1722         BUG_ON(!vm_mixed_ok(vma, pfn));
1723
1724         if (addr < vma->vm_start || addr >= vma->vm_end)
1725                 return VM_FAULT_SIGBUS;
1726
1727         track_pfn_insert(vma, &pgprot, pfn);
1728
1729         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1730                 return VM_FAULT_SIGBUS;
1731
1732         /*
1733          * If we don't have pte special, then we have to use the pfn_valid()
1734          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1735          * refcount the page if pfn_valid is true (hence insert_page rather
1736          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1737          * without pte special, it would there be refcounted as a normal page.
1738          */
1739         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1740             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1741                 struct page *page;
1742
1743                 /*
1744                  * At this point we are committed to insert_page()
1745                  * regardless of whether the caller specified flags that
1746                  * result in pfn_t_has_page() == false.
1747                  */
1748                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1749                 err = insert_page(vma, addr, page, pgprot);
1750         } else {
1751                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1752         }
1753
1754         if (err == -ENOMEM)
1755                 return VM_FAULT_OOM;
1756         if (err < 0 && err != -EBUSY)
1757                 return VM_FAULT_SIGBUS;
1758
1759         return VM_FAULT_NOPAGE;
1760 }
1761
1762 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763                 pfn_t pfn)
1764 {
1765         return __vm_insert_mixed(vma, addr, pfn, false);
1766 }
1767 EXPORT_SYMBOL(vmf_insert_mixed);
1768
1769 /*
1770  *  If the insertion of PTE failed because someone else already added a
1771  *  different entry in the mean time, we treat that as success as we assume
1772  *  the same entry was actually inserted.
1773  */
1774 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1775                 unsigned long addr, pfn_t pfn)
1776 {
1777         return __vm_insert_mixed(vma, addr, pfn, true);
1778 }
1779 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1780
1781 /*
1782  * maps a range of physical memory into the requested pages. the old
1783  * mappings are removed. any references to nonexistent pages results
1784  * in null mappings (currently treated as "copy-on-access")
1785  */
1786 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1787                         unsigned long addr, unsigned long end,
1788                         unsigned long pfn, pgprot_t prot)
1789 {
1790         pte_t *pte;
1791         spinlock_t *ptl;
1792         int err = 0;
1793
1794         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1795         if (!pte)
1796                 return -ENOMEM;
1797         arch_enter_lazy_mmu_mode();
1798         do {
1799                 BUG_ON(!pte_none(*pte));
1800                 if (!pfn_modify_allowed(pfn, prot)) {
1801                         err = -EACCES;
1802                         break;
1803                 }
1804                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1805                 pfn++;
1806         } while (pte++, addr += PAGE_SIZE, addr != end);
1807         arch_leave_lazy_mmu_mode();
1808         pte_unmap_unlock(pte - 1, ptl);
1809         return err;
1810 }
1811
1812 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1813                         unsigned long addr, unsigned long end,
1814                         unsigned long pfn, pgprot_t prot)
1815 {
1816         pmd_t *pmd;
1817         unsigned long next;
1818         int err;
1819
1820         pfn -= addr >> PAGE_SHIFT;
1821         pmd = pmd_alloc(mm, pud, addr);
1822         if (!pmd)
1823                 return -ENOMEM;
1824         VM_BUG_ON(pmd_trans_huge(*pmd));
1825         do {
1826                 next = pmd_addr_end(addr, end);
1827                 err = remap_pte_range(mm, pmd, addr, next,
1828                                 pfn + (addr >> PAGE_SHIFT), prot);
1829                 if (err)
1830                         return err;
1831         } while (pmd++, addr = next, addr != end);
1832         return 0;
1833 }
1834
1835 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1836                         unsigned long addr, unsigned long end,
1837                         unsigned long pfn, pgprot_t prot)
1838 {
1839         pud_t *pud;
1840         unsigned long next;
1841         int err;
1842
1843         pfn -= addr >> PAGE_SHIFT;
1844         pud = pud_alloc(mm, p4d, addr);
1845         if (!pud)
1846                 return -ENOMEM;
1847         do {
1848                 next = pud_addr_end(addr, end);
1849                 err = remap_pmd_range(mm, pud, addr, next,
1850                                 pfn + (addr >> PAGE_SHIFT), prot);
1851                 if (err)
1852                         return err;
1853         } while (pud++, addr = next, addr != end);
1854         return 0;
1855 }
1856
1857 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1858                         unsigned long addr, unsigned long end,
1859                         unsigned long pfn, pgprot_t prot)
1860 {
1861         p4d_t *p4d;
1862         unsigned long next;
1863         int err;
1864
1865         pfn -= addr >> PAGE_SHIFT;
1866         p4d = p4d_alloc(mm, pgd, addr);
1867         if (!p4d)
1868                 return -ENOMEM;
1869         do {
1870                 next = p4d_addr_end(addr, end);
1871                 err = remap_pud_range(mm, p4d, addr, next,
1872                                 pfn + (addr >> PAGE_SHIFT), prot);
1873                 if (err)
1874                         return err;
1875         } while (p4d++, addr = next, addr != end);
1876         return 0;
1877 }
1878
1879 /**
1880  * remap_pfn_range - remap kernel memory to userspace
1881  * @vma: user vma to map to
1882  * @addr: target user address to start at
1883  * @pfn: physical address of kernel memory
1884  * @size: size of map area
1885  * @prot: page protection flags for this mapping
1886  *
1887  * Note: this is only safe if the mm semaphore is held when called.
1888  *
1889  * Return: %0 on success, negative error code otherwise.
1890  */
1891 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1892                     unsigned long pfn, unsigned long size, pgprot_t prot)
1893 {
1894         pgd_t *pgd;
1895         unsigned long next;
1896         unsigned long end = addr + PAGE_ALIGN(size);
1897         struct mm_struct *mm = vma->vm_mm;
1898         unsigned long remap_pfn = pfn;
1899         int err;
1900
1901         /*
1902          * Physically remapped pages are special. Tell the
1903          * rest of the world about it:
1904          *   VM_IO tells people not to look at these pages
1905          *      (accesses can have side effects).
1906          *   VM_PFNMAP tells the core MM that the base pages are just
1907          *      raw PFN mappings, and do not have a "struct page" associated
1908          *      with them.
1909          *   VM_DONTEXPAND
1910          *      Disable vma merging and expanding with mremap().
1911          *   VM_DONTDUMP
1912          *      Omit vma from core dump, even when VM_IO turned off.
1913          *
1914          * There's a horrible special case to handle copy-on-write
1915          * behaviour that some programs depend on. We mark the "original"
1916          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917          * See vm_normal_page() for details.
1918          */
1919         if (is_cow_mapping(vma->vm_flags)) {
1920                 if (addr != vma->vm_start || end != vma->vm_end)
1921                         return -EINVAL;
1922                 vma->vm_pgoff = pfn;
1923         }
1924
1925         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1926         if (err)
1927                 return -EINVAL;
1928
1929         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1930
1931         BUG_ON(addr >= end);
1932         pfn -= addr >> PAGE_SHIFT;
1933         pgd = pgd_offset(mm, addr);
1934         flush_cache_range(vma, addr, end);
1935         do {
1936                 next = pgd_addr_end(addr, end);
1937                 err = remap_p4d_range(mm, pgd, addr, next,
1938                                 pfn + (addr >> PAGE_SHIFT), prot);
1939                 if (err)
1940                         break;
1941         } while (pgd++, addr = next, addr != end);
1942
1943         if (err)
1944                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1945
1946         return err;
1947 }
1948 EXPORT_SYMBOL(remap_pfn_range);
1949
1950 /**
1951  * vm_iomap_memory - remap memory to userspace
1952  * @vma: user vma to map to
1953  * @start: start of area
1954  * @len: size of area
1955  *
1956  * This is a simplified io_remap_pfn_range() for common driver use. The
1957  * driver just needs to give us the physical memory range to be mapped,
1958  * we'll figure out the rest from the vma information.
1959  *
1960  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961  * whatever write-combining details or similar.
1962  *
1963  * Return: %0 on success, negative error code otherwise.
1964  */
1965 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1966 {
1967         unsigned long vm_len, pfn, pages;
1968
1969         /* Check that the physical memory area passed in looks valid */
1970         if (start + len < start)
1971                 return -EINVAL;
1972         /*
1973          * You *really* shouldn't map things that aren't page-aligned,
1974          * but we've historically allowed it because IO memory might
1975          * just have smaller alignment.
1976          */
1977         len += start & ~PAGE_MASK;
1978         pfn = start >> PAGE_SHIFT;
1979         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1980         if (pfn + pages < pfn)
1981                 return -EINVAL;
1982
1983         /* We start the mapping 'vm_pgoff' pages into the area */
1984         if (vma->vm_pgoff > pages)
1985                 return -EINVAL;
1986         pfn += vma->vm_pgoff;
1987         pages -= vma->vm_pgoff;
1988
1989         /* Can we fit all of the mapping? */
1990         vm_len = vma->vm_end - vma->vm_start;
1991         if (vm_len >> PAGE_SHIFT > pages)
1992                 return -EINVAL;
1993
1994         /* Ok, let it rip */
1995         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1996 }
1997 EXPORT_SYMBOL(vm_iomap_memory);
1998
1999 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2000                                      unsigned long addr, unsigned long end,
2001                                      pte_fn_t fn, void *data)
2002 {
2003         pte_t *pte;
2004         int err;
2005         spinlock_t *uninitialized_var(ptl);
2006
2007         pte = (mm == &init_mm) ?
2008                 pte_alloc_kernel(pmd, addr) :
2009                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2010         if (!pte)
2011                 return -ENOMEM;
2012
2013         BUG_ON(pmd_huge(*pmd));
2014
2015         arch_enter_lazy_mmu_mode();
2016
2017         do {
2018                 err = fn(pte++, addr, data);
2019                 if (err)
2020                         break;
2021         } while (addr += PAGE_SIZE, addr != end);
2022
2023         arch_leave_lazy_mmu_mode();
2024
2025         if (mm != &init_mm)
2026                 pte_unmap_unlock(pte-1, ptl);
2027         return err;
2028 }
2029
2030 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2031                                      unsigned long addr, unsigned long end,
2032                                      pte_fn_t fn, void *data)
2033 {
2034         pmd_t *pmd;
2035         unsigned long next;
2036         int err;
2037
2038         BUG_ON(pud_huge(*pud));
2039
2040         pmd = pmd_alloc(mm, pud, addr);
2041         if (!pmd)
2042                 return -ENOMEM;
2043         do {
2044                 next = pmd_addr_end(addr, end);
2045                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2046                 if (err)
2047                         break;
2048         } while (pmd++, addr = next, addr != end);
2049         return err;
2050 }
2051
2052 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2053                                      unsigned long addr, unsigned long end,
2054                                      pte_fn_t fn, void *data)
2055 {
2056         pud_t *pud;
2057         unsigned long next;
2058         int err;
2059
2060         pud = pud_alloc(mm, p4d, addr);
2061         if (!pud)
2062                 return -ENOMEM;
2063         do {
2064                 next = pud_addr_end(addr, end);
2065                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2066                 if (err)
2067                         break;
2068         } while (pud++, addr = next, addr != end);
2069         return err;
2070 }
2071
2072 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2073                                      unsigned long addr, unsigned long end,
2074                                      pte_fn_t fn, void *data)
2075 {
2076         p4d_t *p4d;
2077         unsigned long next;
2078         int err;
2079
2080         p4d = p4d_alloc(mm, pgd, addr);
2081         if (!p4d)
2082                 return -ENOMEM;
2083         do {
2084                 next = p4d_addr_end(addr, end);
2085                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2086                 if (err)
2087                         break;
2088         } while (p4d++, addr = next, addr != end);
2089         return err;
2090 }
2091
2092 /*
2093  * Scan a region of virtual memory, filling in page tables as necessary
2094  * and calling a provided function on each leaf page table.
2095  */
2096 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2097                         unsigned long size, pte_fn_t fn, void *data)
2098 {
2099         pgd_t *pgd;
2100         unsigned long next;
2101         unsigned long end = addr + size;
2102         int err;
2103
2104         if (WARN_ON(addr >= end))
2105                 return -EINVAL;
2106
2107         pgd = pgd_offset(mm, addr);
2108         do {
2109                 next = pgd_addr_end(addr, end);
2110                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2111                 if (err)
2112                         break;
2113         } while (pgd++, addr = next, addr != end);
2114
2115         return err;
2116 }
2117 EXPORT_SYMBOL_GPL(apply_to_page_range);
2118
2119 /*
2120  * handle_pte_fault chooses page fault handler according to an entry which was
2121  * read non-atomically.  Before making any commitment, on those architectures
2122  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2123  * parts, do_swap_page must check under lock before unmapping the pte and
2124  * proceeding (but do_wp_page is only called after already making such a check;
2125  * and do_anonymous_page can safely check later on).
2126  */
2127 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2128                                 pte_t *page_table, pte_t orig_pte)
2129 {
2130         int same = 1;
2131 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2132         if (sizeof(pte_t) > sizeof(unsigned long)) {
2133                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2134                 spin_lock(ptl);
2135                 same = pte_same(*page_table, orig_pte);
2136                 spin_unlock(ptl);
2137         }
2138 #endif
2139         pte_unmap(page_table);
2140         return same;
2141 }
2142
2143 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2144 {
2145         debug_dma_assert_idle(src);
2146
2147         /*
2148          * If the source page was a PFN mapping, we don't have
2149          * a "struct page" for it. We do a best-effort copy by
2150          * just copying from the original user address. If that
2151          * fails, we just zero-fill it. Live with it.
2152          */
2153         if (unlikely(!src)) {
2154                 void *kaddr = kmap_atomic(dst);
2155                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2156
2157                 /*
2158                  * This really shouldn't fail, because the page is there
2159                  * in the page tables. But it might just be unreadable,
2160                  * in which case we just give up and fill the result with
2161                  * zeroes.
2162                  */
2163                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2164                         clear_page(kaddr);
2165                 kunmap_atomic(kaddr);
2166                 flush_dcache_page(dst);
2167         } else
2168                 copy_user_highpage(dst, src, va, vma);
2169 }
2170
2171 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2172 {
2173         struct file *vm_file = vma->vm_file;
2174
2175         if (vm_file)
2176                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2177
2178         /*
2179          * Special mappings (e.g. VDSO) do not have any file so fake
2180          * a default GFP_KERNEL for them.
2181          */
2182         return GFP_KERNEL;
2183 }
2184
2185 /*
2186  * Notify the address space that the page is about to become writable so that
2187  * it can prohibit this or wait for the page to get into an appropriate state.
2188  *
2189  * We do this without the lock held, so that it can sleep if it needs to.
2190  */
2191 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2192 {
2193         vm_fault_t ret;
2194         struct page *page = vmf->page;
2195         unsigned int old_flags = vmf->flags;
2196
2197         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2198
2199         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2200         /* Restore original flags so that caller is not surprised */
2201         vmf->flags = old_flags;
2202         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2203                 return ret;
2204         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2205                 lock_page(page);
2206                 if (!page->mapping) {
2207                         unlock_page(page);
2208                         return 0; /* retry */
2209                 }
2210                 ret |= VM_FAULT_LOCKED;
2211         } else
2212                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2213         return ret;
2214 }
2215
2216 /*
2217  * Handle dirtying of a page in shared file mapping on a write fault.
2218  *
2219  * The function expects the page to be locked and unlocks it.
2220  */
2221 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2222                                     struct page *page)
2223 {
2224         struct address_space *mapping;
2225         bool dirtied;
2226         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2227
2228         dirtied = set_page_dirty(page);
2229         VM_BUG_ON_PAGE(PageAnon(page), page);
2230         /*
2231          * Take a local copy of the address_space - page.mapping may be zeroed
2232          * by truncate after unlock_page().   The address_space itself remains
2233          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2234          * release semantics to prevent the compiler from undoing this copying.
2235          */
2236         mapping = page_rmapping(page);
2237         unlock_page(page);
2238
2239         if ((dirtied || page_mkwrite) && mapping) {
2240                 /*
2241                  * Some device drivers do not set page.mapping
2242                  * but still dirty their pages
2243                  */
2244                 balance_dirty_pages_ratelimited(mapping);
2245         }
2246
2247         if (!page_mkwrite)
2248                 file_update_time(vma->vm_file);
2249 }
2250
2251 /*
2252  * Handle write page faults for pages that can be reused in the current vma
2253  *
2254  * This can happen either due to the mapping being with the VM_SHARED flag,
2255  * or due to us being the last reference standing to the page. In either
2256  * case, all we need to do here is to mark the page as writable and update
2257  * any related book-keeping.
2258  */
2259 static inline void wp_page_reuse(struct vm_fault *vmf)
2260         __releases(vmf->ptl)
2261 {
2262         struct vm_area_struct *vma = vmf->vma;
2263         struct page *page = vmf->page;
2264         pte_t entry;
2265         /*
2266          * Clear the pages cpupid information as the existing
2267          * information potentially belongs to a now completely
2268          * unrelated process.
2269          */
2270         if (page)
2271                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2272
2273         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2274         entry = pte_mkyoung(vmf->orig_pte);
2275         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2276         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2277                 update_mmu_cache(vma, vmf->address, vmf->pte);
2278         pte_unmap_unlock(vmf->pte, vmf->ptl);
2279 }
2280
2281 /*
2282  * Handle the case of a page which we actually need to copy to a new page.
2283  *
2284  * Called with mmap_sem locked and the old page referenced, but
2285  * without the ptl held.
2286  *
2287  * High level logic flow:
2288  *
2289  * - Allocate a page, copy the content of the old page to the new one.
2290  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2291  * - Take the PTL. If the pte changed, bail out and release the allocated page
2292  * - If the pte is still the way we remember it, update the page table and all
2293  *   relevant references. This includes dropping the reference the page-table
2294  *   held to the old page, as well as updating the rmap.
2295  * - In any case, unlock the PTL and drop the reference we took to the old page.
2296  */
2297 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2298 {
2299         struct vm_area_struct *vma = vmf->vma;
2300         struct mm_struct *mm = vma->vm_mm;
2301         struct page *old_page = vmf->page;
2302         struct page *new_page = NULL;
2303         pte_t entry;
2304         int page_copied = 0;
2305         struct mem_cgroup *memcg;
2306         struct mmu_notifier_range range;
2307
2308         if (unlikely(anon_vma_prepare(vma)))
2309                 goto oom;
2310
2311         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2312                 new_page = alloc_zeroed_user_highpage_movable(vma,
2313                                                               vmf->address);
2314                 if (!new_page)
2315                         goto oom;
2316         } else {
2317                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2318                                 vmf->address);
2319                 if (!new_page)
2320                         goto oom;
2321                 cow_user_page(new_page, old_page, vmf->address, vma);
2322         }
2323
2324         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2325                 goto oom_free_new;
2326
2327         __SetPageUptodate(new_page);
2328
2329         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2330                                 vmf->address & PAGE_MASK,
2331                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2332         mmu_notifier_invalidate_range_start(&range);
2333
2334         /*
2335          * Re-check the pte - we dropped the lock
2336          */
2337         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2338         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2339                 if (old_page) {
2340                         if (!PageAnon(old_page)) {
2341                                 dec_mm_counter_fast(mm,
2342                                                 mm_counter_file(old_page));
2343                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2344                         }
2345                 } else {
2346                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2347                 }
2348                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2349                 entry = mk_pte(new_page, vma->vm_page_prot);
2350                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2351                 /*
2352                  * Clear the pte entry and flush it first, before updating the
2353                  * pte with the new entry. This will avoid a race condition
2354                  * seen in the presence of one thread doing SMC and another
2355                  * thread doing COW.
2356                  */
2357                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2358                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2359                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2360                 lru_cache_add_active_or_unevictable(new_page, vma);
2361                 /*
2362                  * We call the notify macro here because, when using secondary
2363                  * mmu page tables (such as kvm shadow page tables), we want the
2364                  * new page to be mapped directly into the secondary page table.
2365                  */
2366                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2367                 update_mmu_cache(vma, vmf->address, vmf->pte);
2368                 if (old_page) {
2369                         /*
2370                          * Only after switching the pte to the new page may
2371                          * we remove the mapcount here. Otherwise another
2372                          * process may come and find the rmap count decremented
2373                          * before the pte is switched to the new page, and
2374                          * "reuse" the old page writing into it while our pte
2375                          * here still points into it and can be read by other
2376                          * threads.
2377                          *
2378                          * The critical issue is to order this
2379                          * page_remove_rmap with the ptp_clear_flush above.
2380                          * Those stores are ordered by (if nothing else,)
2381                          * the barrier present in the atomic_add_negative
2382                          * in page_remove_rmap.
2383                          *
2384                          * Then the TLB flush in ptep_clear_flush ensures that
2385                          * no process can access the old page before the
2386                          * decremented mapcount is visible. And the old page
2387                          * cannot be reused until after the decremented
2388                          * mapcount is visible. So transitively, TLBs to
2389                          * old page will be flushed before it can be reused.
2390                          */
2391                         page_remove_rmap(old_page, false);
2392                 }
2393
2394                 /* Free the old page.. */
2395                 new_page = old_page;
2396                 page_copied = 1;
2397         } else {
2398                 mem_cgroup_cancel_charge(new_page, memcg, false);
2399         }
2400
2401         if (new_page)
2402                 put_page(new_page);
2403
2404         pte_unmap_unlock(vmf->pte, vmf->ptl);
2405         /*
2406          * No need to double call mmu_notifier->invalidate_range() callback as
2407          * the above ptep_clear_flush_notify() did already call it.
2408          */
2409         mmu_notifier_invalidate_range_only_end(&range);
2410         if (old_page) {
2411                 /*
2412                  * Don't let another task, with possibly unlocked vma,
2413                  * keep the mlocked page.
2414                  */
2415                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2416                         lock_page(old_page);    /* LRU manipulation */
2417                         if (PageMlocked(old_page))
2418                                 munlock_vma_page(old_page);
2419                         unlock_page(old_page);
2420                 }
2421                 put_page(old_page);
2422         }
2423         return page_copied ? VM_FAULT_WRITE : 0;
2424 oom_free_new:
2425         put_page(new_page);
2426 oom:
2427         if (old_page)
2428                 put_page(old_page);
2429         return VM_FAULT_OOM;
2430 }
2431
2432 /**
2433  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2434  *                        writeable once the page is prepared
2435  *
2436  * @vmf: structure describing the fault
2437  *
2438  * This function handles all that is needed to finish a write page fault in a
2439  * shared mapping due to PTE being read-only once the mapped page is prepared.
2440  * It handles locking of PTE and modifying it.
2441  *
2442  * The function expects the page to be locked or other protection against
2443  * concurrent faults / writeback (such as DAX radix tree locks).
2444  *
2445  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2446  * we acquired PTE lock.
2447  */
2448 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2449 {
2450         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2451         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2452                                        &vmf->ptl);
2453         /*
2454          * We might have raced with another page fault while we released the
2455          * pte_offset_map_lock.
2456          */
2457         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2458                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2459                 return VM_FAULT_NOPAGE;
2460         }
2461         wp_page_reuse(vmf);
2462         return 0;
2463 }
2464
2465 /*
2466  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2467  * mapping
2468  */
2469 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2470 {
2471         struct vm_area_struct *vma = vmf->vma;
2472
2473         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2474                 vm_fault_t ret;
2475
2476                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2477                 vmf->flags |= FAULT_FLAG_MKWRITE;
2478                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2479                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2480                         return ret;
2481                 return finish_mkwrite_fault(vmf);
2482         }
2483         wp_page_reuse(vmf);
2484         return VM_FAULT_WRITE;
2485 }
2486
2487 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2488         __releases(vmf->ptl)
2489 {
2490         struct vm_area_struct *vma = vmf->vma;
2491
2492         get_page(vmf->page);
2493
2494         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2495                 vm_fault_t tmp;
2496
2497                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2498                 tmp = do_page_mkwrite(vmf);
2499                 if (unlikely(!tmp || (tmp &
2500                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2501                         put_page(vmf->page);
2502                         return tmp;
2503                 }
2504                 tmp = finish_mkwrite_fault(vmf);
2505                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2506                         unlock_page(vmf->page);
2507                         put_page(vmf->page);
2508                         return tmp;
2509                 }
2510         } else {
2511                 wp_page_reuse(vmf);
2512                 lock_page(vmf->page);
2513         }
2514         fault_dirty_shared_page(vma, vmf->page);
2515         put_page(vmf->page);
2516
2517         return VM_FAULT_WRITE;
2518 }
2519
2520 /*
2521  * This routine handles present pages, when users try to write
2522  * to a shared page. It is done by copying the page to a new address
2523  * and decrementing the shared-page counter for the old page.
2524  *
2525  * Note that this routine assumes that the protection checks have been
2526  * done by the caller (the low-level page fault routine in most cases).
2527  * Thus we can safely just mark it writable once we've done any necessary
2528  * COW.
2529  *
2530  * We also mark the page dirty at this point even though the page will
2531  * change only once the write actually happens. This avoids a few races,
2532  * and potentially makes it more efficient.
2533  *
2534  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2535  * but allow concurrent faults), with pte both mapped and locked.
2536  * We return with mmap_sem still held, but pte unmapped and unlocked.
2537  */
2538 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2539         __releases(vmf->ptl)
2540 {
2541         struct vm_area_struct *vma = vmf->vma;
2542
2543         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2544         if (!vmf->page) {
2545                 /*
2546                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2547                  * VM_PFNMAP VMA.
2548                  *
2549                  * We should not cow pages in a shared writeable mapping.
2550                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2551                  */
2552                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2553                                      (VM_WRITE|VM_SHARED))
2554                         return wp_pfn_shared(vmf);
2555
2556                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2557                 return wp_page_copy(vmf);
2558         }
2559
2560         /*
2561          * Take out anonymous pages first, anonymous shared vmas are
2562          * not dirty accountable.
2563          */
2564         if (PageAnon(vmf->page)) {
2565                 int total_map_swapcount;
2566                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2567                                            page_count(vmf->page) != 1))
2568                         goto copy;
2569                 if (!trylock_page(vmf->page)) {
2570                         get_page(vmf->page);
2571                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2572                         lock_page(vmf->page);
2573                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2574                                         vmf->address, &vmf->ptl);
2575                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2576                                 unlock_page(vmf->page);
2577                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2578                                 put_page(vmf->page);
2579                                 return 0;
2580                         }
2581                         put_page(vmf->page);
2582                 }
2583                 if (PageKsm(vmf->page)) {
2584                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2585                                                      vmf->address);
2586                         unlock_page(vmf->page);
2587                         if (!reused)
2588                                 goto copy;
2589                         wp_page_reuse(vmf);
2590                         return VM_FAULT_WRITE;
2591                 }
2592                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2593                         if (total_map_swapcount == 1) {
2594                                 /*
2595                                  * The page is all ours. Move it to
2596                                  * our anon_vma so the rmap code will
2597                                  * not search our parent or siblings.
2598                                  * Protected against the rmap code by
2599                                  * the page lock.
2600                                  */
2601                                 page_move_anon_rmap(vmf->page, vma);
2602                         }
2603                         unlock_page(vmf->page);
2604                         wp_page_reuse(vmf);
2605                         return VM_FAULT_WRITE;
2606                 }
2607                 unlock_page(vmf->page);
2608         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2609                                         (VM_WRITE|VM_SHARED))) {
2610                 return wp_page_shared(vmf);
2611         }
2612 copy:
2613         /*
2614          * Ok, we need to copy. Oh, well..
2615          */
2616         get_page(vmf->page);
2617
2618         pte_unmap_unlock(vmf->pte, vmf->ptl);
2619         return wp_page_copy(vmf);
2620 }
2621
2622 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2623                 unsigned long start_addr, unsigned long end_addr,
2624                 struct zap_details *details)
2625 {
2626         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2627 }
2628
2629 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2630                                             struct zap_details *details)
2631 {
2632         struct vm_area_struct *vma;
2633         pgoff_t vba, vea, zba, zea;
2634
2635         vma_interval_tree_foreach(vma, root,
2636                         details->first_index, details->last_index) {
2637
2638                 vba = vma->vm_pgoff;
2639                 vea = vba + vma_pages(vma) - 1;
2640                 zba = details->first_index;
2641                 if (zba < vba)
2642                         zba = vba;
2643                 zea = details->last_index;
2644                 if (zea > vea)
2645                         zea = vea;
2646
2647                 unmap_mapping_range_vma(vma,
2648                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2649                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2650                                 details);
2651         }
2652 }
2653
2654 /**
2655  * unmap_mapping_pages() - Unmap pages from processes.
2656  * @mapping: The address space containing pages to be unmapped.
2657  * @start: Index of first page to be unmapped.
2658  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2659  * @even_cows: Whether to unmap even private COWed pages.
2660  *
2661  * Unmap the pages in this address space from any userspace process which
2662  * has them mmaped.  Generally, you want to remove COWed pages as well when
2663  * a file is being truncated, but not when invalidating pages from the page
2664  * cache.
2665  */
2666 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2667                 pgoff_t nr, bool even_cows)
2668 {
2669         struct zap_details details = { };
2670
2671         details.check_mapping = even_cows ? NULL : mapping;
2672         details.first_index = start;
2673         details.last_index = start + nr - 1;
2674         if (details.last_index < details.first_index)
2675                 details.last_index = ULONG_MAX;
2676
2677         i_mmap_lock_write(mapping);
2678         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2679                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2680         i_mmap_unlock_write(mapping);
2681 }
2682
2683 /**
2684  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2685  * address_space corresponding to the specified byte range in the underlying
2686  * file.
2687  *
2688  * @mapping: the address space containing mmaps to be unmapped.
2689  * @holebegin: byte in first page to unmap, relative to the start of
2690  * the underlying file.  This will be rounded down to a PAGE_SIZE
2691  * boundary.  Note that this is different from truncate_pagecache(), which
2692  * must keep the partial page.  In contrast, we must get rid of
2693  * partial pages.
2694  * @holelen: size of prospective hole in bytes.  This will be rounded
2695  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2696  * end of the file.
2697  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2698  * but 0 when invalidating pagecache, don't throw away private data.
2699  */
2700 void unmap_mapping_range(struct address_space *mapping,
2701                 loff_t const holebegin, loff_t const holelen, int even_cows)
2702 {
2703         pgoff_t hba = holebegin >> PAGE_SHIFT;
2704         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705
2706         /* Check for overflow. */
2707         if (sizeof(holelen) > sizeof(hlen)) {
2708                 long long holeend =
2709                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710                 if (holeend & ~(long long)ULONG_MAX)
2711                         hlen = ULONG_MAX - hba + 1;
2712         }
2713
2714         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2715 }
2716 EXPORT_SYMBOL(unmap_mapping_range);
2717
2718 /*
2719  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2720  * but allow concurrent faults), and pte mapped but not yet locked.
2721  * We return with pte unmapped and unlocked.
2722  *
2723  * We return with the mmap_sem locked or unlocked in the same cases
2724  * as does filemap_fault().
2725  */
2726 vm_fault_t do_swap_page(struct vm_fault *vmf)
2727 {
2728         struct vm_area_struct *vma = vmf->vma;
2729         struct page *page = NULL, *swapcache;
2730         struct mem_cgroup *memcg;
2731         swp_entry_t entry;
2732         pte_t pte;
2733         int locked;
2734         int exclusive = 0;
2735         vm_fault_t ret = 0;
2736
2737         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2738                 goto out;
2739
2740         entry = pte_to_swp_entry(vmf->orig_pte);
2741         if (unlikely(non_swap_entry(entry))) {
2742                 if (is_migration_entry(entry)) {
2743                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2744                                              vmf->address);
2745                 } else if (is_device_private_entry(entry)) {
2746                         vmf->page = device_private_entry_to_page(entry);
2747                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2748                 } else if (is_hwpoison_entry(entry)) {
2749                         ret = VM_FAULT_HWPOISON;
2750                 } else {
2751                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2752                         ret = VM_FAULT_SIGBUS;
2753                 }
2754                 goto out;
2755         }
2756
2757
2758         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2759         page = lookup_swap_cache(entry, vma, vmf->address);
2760         swapcache = page;
2761
2762         if (!page) {
2763                 struct swap_info_struct *si = swp_swap_info(entry);
2764
2765                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2766                                 __swap_count(entry) == 1) {
2767                         /* skip swapcache */
2768                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2769                                                         vmf->address);
2770                         if (page) {
2771                                 __SetPageLocked(page);
2772                                 __SetPageSwapBacked(page);
2773                                 set_page_private(page, entry.val);
2774                                 lru_cache_add_anon(page);
2775                                 swap_readpage(page, true);
2776                         }
2777                 } else {
2778                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2779                                                 vmf);
2780                         swapcache = page;
2781                 }
2782
2783                 if (!page) {
2784                         /*
2785                          * Back out if somebody else faulted in this pte
2786                          * while we released the pte lock.
2787                          */
2788                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2789                                         vmf->address, &vmf->ptl);
2790                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2791                                 ret = VM_FAULT_OOM;
2792                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2793                         goto unlock;
2794                 }
2795
2796                 /* Had to read the page from swap area: Major fault */
2797                 ret = VM_FAULT_MAJOR;
2798                 count_vm_event(PGMAJFAULT);
2799                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2800         } else if (PageHWPoison(page)) {
2801                 /*
2802                  * hwpoisoned dirty swapcache pages are kept for killing
2803                  * owner processes (which may be unknown at hwpoison time)
2804                  */
2805                 ret = VM_FAULT_HWPOISON;
2806                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2807                 goto out_release;
2808         }
2809
2810         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2811
2812         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2813         if (!locked) {
2814                 ret |= VM_FAULT_RETRY;
2815                 goto out_release;
2816         }
2817
2818         /*
2819          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2820          * release the swapcache from under us.  The page pin, and pte_same
2821          * test below, are not enough to exclude that.  Even if it is still
2822          * swapcache, we need to check that the page's swap has not changed.
2823          */
2824         if (unlikely((!PageSwapCache(page) ||
2825                         page_private(page) != entry.val)) && swapcache)
2826                 goto out_page;
2827
2828         page = ksm_might_need_to_copy(page, vma, vmf->address);
2829         if (unlikely(!page)) {
2830                 ret = VM_FAULT_OOM;
2831                 page = swapcache;
2832                 goto out_page;
2833         }
2834
2835         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2836                                         &memcg, false)) {
2837                 ret = VM_FAULT_OOM;
2838                 goto out_page;
2839         }
2840
2841         /*
2842          * Back out if somebody else already faulted in this pte.
2843          */
2844         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2845                         &vmf->ptl);
2846         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2847                 goto out_nomap;
2848
2849         if (unlikely(!PageUptodate(page))) {
2850                 ret = VM_FAULT_SIGBUS;
2851                 goto out_nomap;
2852         }
2853
2854         /*
2855          * The page isn't present yet, go ahead with the fault.
2856          *
2857          * Be careful about the sequence of operations here.
2858          * To get its accounting right, reuse_swap_page() must be called
2859          * while the page is counted on swap but not yet in mapcount i.e.
2860          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2861          * must be called after the swap_free(), or it will never succeed.
2862          */
2863
2864         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2865         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2866         pte = mk_pte(page, vma->vm_page_prot);
2867         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2868                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2869                 vmf->flags &= ~FAULT_FLAG_WRITE;
2870                 ret |= VM_FAULT_WRITE;
2871                 exclusive = RMAP_EXCLUSIVE;
2872         }
2873         flush_icache_page(vma, page);
2874         if (pte_swp_soft_dirty(vmf->orig_pte))
2875                 pte = pte_mksoft_dirty(pte);
2876         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2877         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2878         vmf->orig_pte = pte;
2879
2880         /* ksm created a completely new copy */
2881         if (unlikely(page != swapcache && swapcache)) {
2882                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2883                 mem_cgroup_commit_charge(page, memcg, false, false);
2884                 lru_cache_add_active_or_unevictable(page, vma);
2885         } else {
2886                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2887                 mem_cgroup_commit_charge(page, memcg, true, false);
2888                 activate_page(page);
2889         }
2890
2891         swap_free(entry);
2892         if (mem_cgroup_swap_full(page) ||
2893             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2894                 try_to_free_swap(page);
2895         unlock_page(page);
2896         if (page != swapcache && swapcache) {
2897                 /*
2898                  * Hold the lock to avoid the swap entry to be reused
2899                  * until we take the PT lock for the pte_same() check
2900                  * (to avoid false positives from pte_same). For
2901                  * further safety release the lock after the swap_free
2902                  * so that the swap count won't change under a
2903                  * parallel locked swapcache.
2904                  */
2905                 unlock_page(swapcache);
2906                 put_page(swapcache);
2907         }
2908
2909         if (vmf->flags & FAULT_FLAG_WRITE) {
2910                 ret |= do_wp_page(vmf);
2911                 if (ret & VM_FAULT_ERROR)
2912                         ret &= VM_FAULT_ERROR;
2913                 goto out;
2914         }
2915
2916         /* No need to invalidate - it was non-present before */
2917         update_mmu_cache(vma, vmf->address, vmf->pte);
2918 unlock:
2919         pte_unmap_unlock(vmf->pte, vmf->ptl);
2920 out:
2921         return ret;
2922 out_nomap:
2923         mem_cgroup_cancel_charge(page, memcg, false);
2924         pte_unmap_unlock(vmf->pte, vmf->ptl);
2925 out_page:
2926         unlock_page(page);
2927 out_release:
2928         put_page(page);
2929         if (page != swapcache && swapcache) {
2930                 unlock_page(swapcache);
2931                 put_page(swapcache);
2932         }
2933         return ret;
2934 }
2935
2936 /*
2937  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2938  * but allow concurrent faults), and pte mapped but not yet locked.
2939  * We return with mmap_sem still held, but pte unmapped and unlocked.
2940  */
2941 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2942 {
2943         struct vm_area_struct *vma = vmf->vma;
2944         struct mem_cgroup *memcg;
2945         struct page *page;
2946         vm_fault_t ret = 0;
2947         pte_t entry;
2948
2949         /* File mapping without ->vm_ops ? */
2950         if (vma->vm_flags & VM_SHARED)
2951                 return VM_FAULT_SIGBUS;
2952
2953         /*
2954          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2955          * pte_offset_map() on pmds where a huge pmd might be created
2956          * from a different thread.
2957          *
2958          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2959          * parallel threads are excluded by other means.
2960          *
2961          * Here we only have down_read(mmap_sem).
2962          */
2963         if (pte_alloc(vma->vm_mm, vmf->pmd))
2964                 return VM_FAULT_OOM;
2965
2966         /* See the comment in pte_alloc_one_map() */
2967         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2968                 return 0;
2969
2970         /* Use the zero-page for reads */
2971         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2972                         !mm_forbids_zeropage(vma->vm_mm)) {
2973                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2974                                                 vma->vm_page_prot));
2975                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2976                                 vmf->address, &vmf->ptl);
2977                 if (!pte_none(*vmf->pte))
2978                         goto unlock;
2979                 ret = check_stable_address_space(vma->vm_mm);
2980                 if (ret)
2981                         goto unlock;
2982                 /* Deliver the page fault to userland, check inside PT lock */
2983                 if (userfaultfd_missing(vma)) {
2984                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2985                         return handle_userfault(vmf, VM_UFFD_MISSING);
2986                 }
2987                 goto setpte;
2988         }
2989
2990         /* Allocate our own private page. */
2991         if (unlikely(anon_vma_prepare(vma)))
2992                 goto oom;
2993         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2994         if (!page)
2995                 goto oom;
2996
2997         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2998                                         false))
2999                 goto oom_free_page;
3000
3001         /*
3002          * The memory barrier inside __SetPageUptodate makes sure that
3003          * preceeding stores to the page contents become visible before
3004          * the set_pte_at() write.
3005          */
3006         __SetPageUptodate(page);
3007
3008         entry = mk_pte(page, vma->vm_page_prot);
3009         if (vma->vm_flags & VM_WRITE)
3010                 entry = pte_mkwrite(pte_mkdirty(entry));
3011
3012         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3013                         &vmf->ptl);
3014         if (!pte_none(*vmf->pte))
3015                 goto release;
3016
3017         ret = check_stable_address_space(vma->vm_mm);
3018         if (ret)
3019                 goto release;
3020
3021         /* Deliver the page fault to userland, check inside PT lock */
3022         if (userfaultfd_missing(vma)) {
3023                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3024                 mem_cgroup_cancel_charge(page, memcg, false);
3025                 put_page(page);
3026                 return handle_userfault(vmf, VM_UFFD_MISSING);
3027         }
3028
3029         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3030         page_add_new_anon_rmap(page, vma, vmf->address, false);
3031         mem_cgroup_commit_charge(page, memcg, false, false);
3032         lru_cache_add_active_or_unevictable(page, vma);
3033 setpte:
3034         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3035
3036         /* No need to invalidate - it was non-present before */
3037         update_mmu_cache(vma, vmf->address, vmf->pte);
3038 unlock:
3039         pte_unmap_unlock(vmf->pte, vmf->ptl);
3040         return ret;
3041 release:
3042         mem_cgroup_cancel_charge(page, memcg, false);
3043         put_page(page);
3044         goto unlock;
3045 oom_free_page:
3046         put_page(page);
3047 oom:
3048         return VM_FAULT_OOM;
3049 }
3050
3051 /*
3052  * The mmap_sem must have been held on entry, and may have been
3053  * released depending on flags and vma->vm_ops->fault() return value.
3054  * See filemap_fault() and __lock_page_retry().
3055  */
3056 static vm_fault_t __do_fault(struct vm_fault *vmf)
3057 {
3058         struct vm_area_struct *vma = vmf->vma;
3059         vm_fault_t ret;
3060
3061         /*
3062          * Preallocate pte before we take page_lock because this might lead to
3063          * deadlocks for memcg reclaim which waits for pages under writeback:
3064          *                              lock_page(A)
3065          *                              SetPageWriteback(A)
3066          *                              unlock_page(A)
3067          * lock_page(B)
3068          *                              lock_page(B)
3069          * pte_alloc_pne
3070          *   shrink_page_list
3071          *     wait_on_page_writeback(A)
3072          *                              SetPageWriteback(B)
3073          *                              unlock_page(B)
3074          *                              # flush A, B to clear the writeback
3075          */
3076         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3077                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3078                 if (!vmf->prealloc_pte)
3079                         return VM_FAULT_OOM;
3080                 smp_wmb(); /* See comment in __pte_alloc() */
3081         }
3082
3083         ret = vma->vm_ops->fault(vmf);
3084         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3085                             VM_FAULT_DONE_COW)))
3086                 return ret;
3087
3088         if (unlikely(PageHWPoison(vmf->page))) {
3089                 if (ret & VM_FAULT_LOCKED)
3090                         unlock_page(vmf->page);
3091                 put_page(vmf->page);
3092                 vmf->page = NULL;
3093                 return VM_FAULT_HWPOISON;
3094         }
3095
3096         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3097                 lock_page(vmf->page);
3098         else
3099                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3100
3101         return ret;
3102 }
3103
3104 /*
3105  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3106  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3107  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3108  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3109  */
3110 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3111 {
3112         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3113 }
3114
3115 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3116 {
3117         struct vm_area_struct *vma = vmf->vma;
3118
3119         if (!pmd_none(*vmf->pmd))
3120                 goto map_pte;
3121         if (vmf->prealloc_pte) {
3122                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3123                 if (unlikely(!pmd_none(*vmf->pmd))) {
3124                         spin_unlock(vmf->ptl);
3125                         goto map_pte;
3126                 }
3127
3128                 mm_inc_nr_ptes(vma->vm_mm);
3129                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3130                 spin_unlock(vmf->ptl);
3131                 vmf->prealloc_pte = NULL;
3132         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3133                 return VM_FAULT_OOM;
3134         }
3135 map_pte:
3136         /*
3137          * If a huge pmd materialized under us just retry later.  Use
3138          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3139          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3140          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3141          * running immediately after a huge pmd fault in a different thread of
3142          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3143          * All we have to ensure is that it is a regular pmd that we can walk
3144          * with pte_offset_map() and we can do that through an atomic read in
3145          * C, which is what pmd_trans_unstable() provides.
3146          */
3147         if (pmd_devmap_trans_unstable(vmf->pmd))
3148                 return VM_FAULT_NOPAGE;
3149
3150         /*
3151          * At this point we know that our vmf->pmd points to a page of ptes
3152          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3153          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3154          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3155          * be valid and we will re-check to make sure the vmf->pte isn't
3156          * pte_none() under vmf->ptl protection when we return to
3157          * alloc_set_pte().
3158          */
3159         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3160                         &vmf->ptl);
3161         return 0;
3162 }
3163
3164 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3165 static void deposit_prealloc_pte(struct vm_fault *vmf)
3166 {
3167         struct vm_area_struct *vma = vmf->vma;
3168
3169         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3170         /*
3171          * We are going to consume the prealloc table,
3172          * count that as nr_ptes.
3173          */
3174         mm_inc_nr_ptes(vma->vm_mm);
3175         vmf->prealloc_pte = NULL;
3176 }
3177
3178 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3179 {
3180         struct vm_area_struct *vma = vmf->vma;
3181         bool write = vmf->flags & FAULT_FLAG_WRITE;
3182         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3183         pmd_t entry;
3184         int i;
3185         vm_fault_t ret;
3186
3187         if (!transhuge_vma_suitable(vma, haddr))
3188                 return VM_FAULT_FALLBACK;
3189
3190         ret = VM_FAULT_FALLBACK;
3191         page = compound_head(page);
3192
3193         /*
3194          * Archs like ppc64 need additonal space to store information
3195          * related to pte entry. Use the preallocated table for that.
3196          */
3197         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3198                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3199                 if (!vmf->prealloc_pte)
3200                         return VM_FAULT_OOM;
3201                 smp_wmb(); /* See comment in __pte_alloc() */
3202         }
3203
3204         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3205         if (unlikely(!pmd_none(*vmf->pmd)))
3206                 goto out;
3207
3208         for (i = 0; i < HPAGE_PMD_NR; i++)
3209                 flush_icache_page(vma, page + i);
3210
3211         entry = mk_huge_pmd(page, vma->vm_page_prot);
3212         if (write)
3213                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3214
3215         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3216         page_add_file_rmap(page, true);
3217         /*
3218          * deposit and withdraw with pmd lock held
3219          */
3220         if (arch_needs_pgtable_deposit())
3221                 deposit_prealloc_pte(vmf);
3222
3223         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3224
3225         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3226
3227         /* fault is handled */
3228         ret = 0;
3229         count_vm_event(THP_FILE_MAPPED);
3230 out:
3231         spin_unlock(vmf->ptl);
3232         return ret;
3233 }
3234 #else
3235 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3236 {
3237         BUILD_BUG();
3238         return 0;
3239 }
3240 #endif
3241
3242 /**
3243  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3244  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3245  *
3246  * @vmf: fault environment
3247  * @memcg: memcg to charge page (only for private mappings)
3248  * @page: page to map
3249  *
3250  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3251  * return.
3252  *
3253  * Target users are page handler itself and implementations of
3254  * vm_ops->map_pages.
3255  *
3256  * Return: %0 on success, %VM_FAULT_ code in case of error.
3257  */
3258 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3259                 struct page *page)
3260 {
3261         struct vm_area_struct *vma = vmf->vma;
3262         bool write = vmf->flags & FAULT_FLAG_WRITE;
3263         pte_t entry;
3264         vm_fault_t ret;
3265
3266         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3267                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3268                 /* THP on COW? */
3269                 VM_BUG_ON_PAGE(memcg, page);
3270
3271                 ret = do_set_pmd(vmf, page);
3272                 if (ret != VM_FAULT_FALLBACK)
3273                         return ret;
3274         }
3275
3276         if (!vmf->pte) {
3277                 ret = pte_alloc_one_map(vmf);
3278                 if (ret)
3279                         return ret;
3280         }
3281
3282         /* Re-check under ptl */
3283         if (unlikely(!pte_none(*vmf->pte)))
3284                 return VM_FAULT_NOPAGE;
3285
3286         flush_icache_page(vma, page);
3287         entry = mk_pte(page, vma->vm_page_prot);
3288         if (write)
3289                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3290         /* copy-on-write page */
3291         if (write && !(vma->vm_flags & VM_SHARED)) {
3292                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3293                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3294                 mem_cgroup_commit_charge(page, memcg, false, false);
3295                 lru_cache_add_active_or_unevictable(page, vma);
3296         } else {
3297                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3298                 page_add_file_rmap(page, false);
3299         }
3300         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3301
3302         /* no need to invalidate: a not-present page won't be cached */
3303         update_mmu_cache(vma, vmf->address, vmf->pte);
3304
3305         return 0;
3306 }
3307
3308
3309 /**
3310  * finish_fault - finish page fault once we have prepared the page to fault
3311  *
3312  * @vmf: structure describing the fault
3313  *
3314  * This function handles all that is needed to finish a page fault once the
3315  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3316  * given page, adds reverse page mapping, handles memcg charges and LRU
3317  * addition.
3318  *
3319  * The function expects the page to be locked and on success it consumes a
3320  * reference of a page being mapped (for the PTE which maps it).
3321  *
3322  * Return: %0 on success, %VM_FAULT_ code in case of error.
3323  */
3324 vm_fault_t finish_fault(struct vm_fault *vmf)
3325 {
3326         struct page *page;
3327         vm_fault_t ret = 0;
3328
3329         /* Did we COW the page? */
3330         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3331             !(vmf->vma->vm_flags & VM_SHARED))
3332                 page = vmf->cow_page;
3333         else
3334                 page = vmf->page;
3335
3336         /*
3337          * check even for read faults because we might have lost our CoWed
3338          * page
3339          */
3340         if (!(vmf->vma->vm_flags & VM_SHARED))
3341                 ret = check_stable_address_space(vmf->vma->vm_mm);
3342         if (!ret)
3343                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3344         if (vmf->pte)
3345                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3346         return ret;
3347 }
3348
3349 static unsigned long fault_around_bytes __read_mostly =
3350         rounddown_pow_of_two(65536);
3351
3352 #ifdef CONFIG_DEBUG_FS
3353 static int fault_around_bytes_get(void *data, u64 *val)
3354 {
3355         *val = fault_around_bytes;
3356         return 0;
3357 }
3358
3359 /*
3360  * fault_around_bytes must be rounded down to the nearest page order as it's
3361  * what do_fault_around() expects to see.
3362  */
3363 static int fault_around_bytes_set(void *data, u64 val)
3364 {
3365         if (val / PAGE_SIZE > PTRS_PER_PTE)
3366                 return -EINVAL;
3367         if (val > PAGE_SIZE)
3368                 fault_around_bytes = rounddown_pow_of_two(val);
3369         else
3370                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3371         return 0;
3372 }
3373 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3374                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3375
3376 static int __init fault_around_debugfs(void)
3377 {
3378         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3379                                    &fault_around_bytes_fops);
3380         return 0;
3381 }
3382 late_initcall(fault_around_debugfs);
3383 #endif
3384
3385 /*
3386  * do_fault_around() tries to map few pages around the fault address. The hope
3387  * is that the pages will be needed soon and this will lower the number of
3388  * faults to handle.
3389  *
3390  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3391  * not ready to be mapped: not up-to-date, locked, etc.
3392  *
3393  * This function is called with the page table lock taken. In the split ptlock
3394  * case the page table lock only protects only those entries which belong to
3395  * the page table corresponding to the fault address.
3396  *
3397  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3398  * only once.
3399  *
3400  * fault_around_bytes defines how many bytes we'll try to map.
3401  * do_fault_around() expects it to be set to a power of two less than or equal
3402  * to PTRS_PER_PTE.
3403  *
3404  * The virtual address of the area that we map is naturally aligned to
3405  * fault_around_bytes rounded down to the machine page size
3406  * (and therefore to page order).  This way it's easier to guarantee
3407  * that we don't cross page table boundaries.
3408  */
3409 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3410 {
3411         unsigned long address = vmf->address, nr_pages, mask;
3412         pgoff_t start_pgoff = vmf->pgoff;
3413         pgoff_t end_pgoff;
3414         int off;
3415         vm_fault_t ret = 0;
3416
3417         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3418         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3419
3420         vmf->address = max(address & mask, vmf->vma->vm_start);
3421         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3422         start_pgoff -= off;
3423
3424         /*
3425          *  end_pgoff is either the end of the page table, the end of
3426          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3427          */
3428         end_pgoff = start_pgoff -
3429                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3430                 PTRS_PER_PTE - 1;
3431         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3432                         start_pgoff + nr_pages - 1);
3433
3434         if (pmd_none(*vmf->pmd)) {
3435                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3436                 if (!vmf->prealloc_pte)
3437                         goto out;
3438                 smp_wmb(); /* See comment in __pte_alloc() */
3439         }
3440
3441         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3442
3443         /* Huge page is mapped? Page fault is solved */
3444         if (pmd_trans_huge(*vmf->pmd)) {
3445                 ret = VM_FAULT_NOPAGE;
3446                 goto out;
3447         }
3448
3449         /* ->map_pages() haven't done anything useful. Cold page cache? */
3450         if (!vmf->pte)
3451                 goto out;
3452
3453         /* check if the page fault is solved */
3454         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3455         if (!pte_none(*vmf->pte))
3456                 ret = VM_FAULT_NOPAGE;
3457         pte_unmap_unlock(vmf->pte, vmf->ptl);
3458 out:
3459         vmf->address = address;
3460         vmf->pte = NULL;
3461         return ret;
3462 }
3463
3464 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3465 {
3466         struct vm_area_struct *vma = vmf->vma;
3467         vm_fault_t ret = 0;
3468
3469         /*
3470          * Let's call ->map_pages() first and use ->fault() as fallback
3471          * if page by the offset is not ready to be mapped (cold cache or
3472          * something).
3473          */
3474         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3475                 ret = do_fault_around(vmf);
3476                 if (ret)
3477                         return ret;
3478         }
3479
3480         ret = __do_fault(vmf);
3481         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3482                 return ret;
3483
3484         ret |= finish_fault(vmf);
3485         unlock_page(vmf->page);
3486         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3487                 put_page(vmf->page);
3488         return ret;
3489 }
3490
3491 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3492 {
3493         struct vm_area_struct *vma = vmf->vma;
3494         vm_fault_t ret;
3495
3496         if (unlikely(anon_vma_prepare(vma)))
3497                 return VM_FAULT_OOM;
3498
3499         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3500         if (!vmf->cow_page)
3501                 return VM_FAULT_OOM;
3502
3503         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3504                                 &vmf->memcg, false)) {
3505                 put_page(vmf->cow_page);
3506                 return VM_FAULT_OOM;
3507         }
3508
3509         ret = __do_fault(vmf);
3510         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3511                 goto uncharge_out;
3512         if (ret & VM_FAULT_DONE_COW)
3513                 return ret;
3514
3515         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3516         __SetPageUptodate(vmf->cow_page);
3517
3518         ret |= finish_fault(vmf);
3519         unlock_page(vmf->page);
3520         put_page(vmf->page);
3521         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3522                 goto uncharge_out;
3523         return ret;
3524 uncharge_out:
3525         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3526         put_page(vmf->cow_page);
3527         return ret;
3528 }
3529
3530 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3531 {
3532         struct vm_area_struct *vma = vmf->vma;
3533         vm_fault_t ret, tmp;
3534
3535         ret = __do_fault(vmf);
3536         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3537                 return ret;
3538
3539         /*
3540          * Check if the backing address space wants to know that the page is
3541          * about to become writable
3542          */
3543         if (vma->vm_ops->page_mkwrite) {
3544                 unlock_page(vmf->page);
3545                 tmp = do_page_mkwrite(vmf);
3546                 if (unlikely(!tmp ||
3547                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3548                         put_page(vmf->page);
3549                         return tmp;
3550                 }
3551         }
3552
3553         ret |= finish_fault(vmf);
3554         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3555                                         VM_FAULT_RETRY))) {
3556                 unlock_page(vmf->page);
3557                 put_page(vmf->page);
3558                 return ret;
3559         }
3560
3561         fault_dirty_shared_page(vma, vmf->page);
3562         return ret;
3563 }
3564
3565 /*
3566  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3567  * but allow concurrent faults).
3568  * The mmap_sem may have been released depending on flags and our
3569  * return value.  See filemap_fault() and __lock_page_or_retry().
3570  * If mmap_sem is released, vma may become invalid (for example
3571  * by other thread calling munmap()).
3572  */
3573 static vm_fault_t do_fault(struct vm_fault *vmf)
3574 {
3575         struct vm_area_struct *vma = vmf->vma;
3576         struct mm_struct *vm_mm = vma->vm_mm;
3577         vm_fault_t ret;
3578
3579         /*
3580          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3581          */
3582         if (!vma->vm_ops->fault) {
3583                 /*
3584                  * If we find a migration pmd entry or a none pmd entry, which
3585                  * should never happen, return SIGBUS
3586                  */
3587                 if (unlikely(!pmd_present(*vmf->pmd)))
3588                         ret = VM_FAULT_SIGBUS;
3589                 else {
3590                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3591                                                        vmf->pmd,
3592                                                        vmf->address,
3593                                                        &vmf->ptl);
3594                         /*
3595                          * Make sure this is not a temporary clearing of pte
3596                          * by holding ptl and checking again. A R/M/W update
3597                          * of pte involves: take ptl, clearing the pte so that
3598                          * we don't have concurrent modification by hardware
3599                          * followed by an update.
3600                          */
3601                         if (unlikely(pte_none(*vmf->pte)))
3602                                 ret = VM_FAULT_SIGBUS;
3603                         else
3604                                 ret = VM_FAULT_NOPAGE;
3605
3606                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3607                 }
3608         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3609                 ret = do_read_fault(vmf);
3610         else if (!(vma->vm_flags & VM_SHARED))
3611                 ret = do_cow_fault(vmf);
3612         else
3613                 ret = do_shared_fault(vmf);
3614
3615         /* preallocated pagetable is unused: free it */
3616         if (vmf->prealloc_pte) {
3617                 pte_free(vm_mm, vmf->prealloc_pte);
3618                 vmf->prealloc_pte = NULL;
3619         }
3620         return ret;
3621 }
3622
3623 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3624                                 unsigned long addr, int page_nid,
3625                                 int *flags)
3626 {
3627         get_page(page);
3628
3629         count_vm_numa_event(NUMA_HINT_FAULTS);
3630         if (page_nid == numa_node_id()) {
3631                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3632                 *flags |= TNF_FAULT_LOCAL;
3633         }
3634
3635         return mpol_misplaced(page, vma, addr);
3636 }
3637
3638 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3639 {
3640         struct vm_area_struct *vma = vmf->vma;
3641         struct page *page = NULL;
3642         int page_nid = NUMA_NO_NODE;
3643         int last_cpupid;
3644         int target_nid;
3645         bool migrated = false;
3646         pte_t pte, old_pte;
3647         bool was_writable = pte_savedwrite(vmf->orig_pte);
3648         int flags = 0;
3649
3650         /*
3651          * The "pte" at this point cannot be used safely without
3652          * validation through pte_unmap_same(). It's of NUMA type but
3653          * the pfn may be screwed if the read is non atomic.
3654          */
3655         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3656         spin_lock(vmf->ptl);
3657         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3658                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3659                 goto out;
3660         }
3661
3662         /*
3663          * Make it present again, Depending on how arch implementes non
3664          * accessible ptes, some can allow access by kernel mode.
3665          */
3666         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3667         pte = pte_modify(old_pte, vma->vm_page_prot);
3668         pte = pte_mkyoung(pte);
3669         if (was_writable)
3670                 pte = pte_mkwrite(pte);
3671         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3672         update_mmu_cache(vma, vmf->address, vmf->pte);
3673
3674         page = vm_normal_page(vma, vmf->address, pte);
3675         if (!page) {
3676                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3677                 return 0;
3678         }
3679
3680         /* TODO: handle PTE-mapped THP */
3681         if (PageCompound(page)) {
3682                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3683                 return 0;
3684         }
3685
3686         /*
3687          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3688          * much anyway since they can be in shared cache state. This misses
3689          * the case where a mapping is writable but the process never writes
3690          * to it but pte_write gets cleared during protection updates and
3691          * pte_dirty has unpredictable behaviour between PTE scan updates,
3692          * background writeback, dirty balancing and application behaviour.
3693          */
3694         if (!pte_write(pte))
3695                 flags |= TNF_NO_GROUP;
3696
3697         /*
3698          * Flag if the page is shared between multiple address spaces. This
3699          * is later used when determining whether to group tasks together
3700          */
3701         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3702                 flags |= TNF_SHARED;
3703
3704         last_cpupid = page_cpupid_last(page);
3705         page_nid = page_to_nid(page);
3706         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3707                         &flags);
3708         pte_unmap_unlock(vmf->pte, vmf->ptl);
3709         if (target_nid == NUMA_NO_NODE) {
3710                 put_page(page);
3711                 goto out;
3712         }
3713
3714         /* Migrate to the requested node */
3715         migrated = migrate_misplaced_page(page, vma, target_nid);
3716         if (migrated) {
3717                 page_nid = target_nid;
3718                 flags |= TNF_MIGRATED;
3719         } else
3720                 flags |= TNF_MIGRATE_FAIL;
3721
3722 out:
3723         if (page_nid != NUMA_NO_NODE)
3724                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3725         return 0;
3726 }
3727
3728 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3729 {
3730         if (vma_is_anonymous(vmf->vma))
3731                 return do_huge_pmd_anonymous_page(vmf);
3732         if (vmf->vma->vm_ops->huge_fault)
3733                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3734         return VM_FAULT_FALLBACK;
3735 }
3736
3737 /* `inline' is required to avoid gcc 4.1.2 build error */
3738 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3739 {
3740         if (vma_is_anonymous(vmf->vma))
3741                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3742         if (vmf->vma->vm_ops->huge_fault)
3743                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3744
3745         /* COW handled on pte level: split pmd */
3746         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3747         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3748
3749         return VM_FAULT_FALLBACK;
3750 }
3751
3752 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3753 {
3754         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3755 }
3756
3757 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3758 {
3759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3760         /* No support for anonymous transparent PUD pages yet */
3761         if (vma_is_anonymous(vmf->vma))
3762                 return VM_FAULT_FALLBACK;
3763         if (vmf->vma->vm_ops->huge_fault)
3764                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3765 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3766         return VM_FAULT_FALLBACK;
3767 }
3768
3769 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3770 {
3771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3772         /* No support for anonymous transparent PUD pages yet */
3773         if (vma_is_anonymous(vmf->vma))
3774                 return VM_FAULT_FALLBACK;
3775         if (vmf->vma->vm_ops->huge_fault)
3776                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3777 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3778         return VM_FAULT_FALLBACK;
3779 }
3780
3781 /*
3782  * These routines also need to handle stuff like marking pages dirty
3783  * and/or accessed for architectures that don't do it in hardware (most
3784  * RISC architectures).  The early dirtying is also good on the i386.
3785  *
3786  * There is also a hook called "update_mmu_cache()" that architectures
3787  * with external mmu caches can use to update those (ie the Sparc or
3788  * PowerPC hashed page tables that act as extended TLBs).
3789  *
3790  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3791  * concurrent faults).
3792  *
3793  * The mmap_sem may have been released depending on flags and our return value.
3794  * See filemap_fault() and __lock_page_or_retry().
3795  */
3796 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3797 {
3798         pte_t entry;
3799
3800         if (unlikely(pmd_none(*vmf->pmd))) {
3801                 /*
3802                  * Leave __pte_alloc() until later: because vm_ops->fault may
3803                  * want to allocate huge page, and if we expose page table
3804                  * for an instant, it will be difficult to retract from
3805                  * concurrent faults and from rmap lookups.
3806                  */
3807                 vmf->pte = NULL;
3808         } else {
3809                 /* See comment in pte_alloc_one_map() */
3810                 if (pmd_devmap_trans_unstable(vmf->pmd))
3811                         return 0;
3812                 /*
3813                  * A regular pmd is established and it can't morph into a huge
3814                  * pmd from under us anymore at this point because we hold the
3815                  * mmap_sem read mode and khugepaged takes it in write mode.
3816                  * So now it's safe to run pte_offset_map().
3817                  */
3818                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3819                 vmf->orig_pte = *vmf->pte;
3820
3821                 /*
3822                  * some architectures can have larger ptes than wordsize,
3823                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3824                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3825                  * accesses.  The code below just needs a consistent view
3826                  * for the ifs and we later double check anyway with the
3827                  * ptl lock held. So here a barrier will do.
3828                  */
3829                 barrier();
3830                 if (pte_none(vmf->orig_pte)) {
3831                         pte_unmap(vmf->pte);
3832                         vmf->pte = NULL;
3833                 }
3834         }
3835
3836         if (!vmf->pte) {
3837                 if (vma_is_anonymous(vmf->vma))
3838                         return do_anonymous_page(vmf);
3839                 else
3840                         return do_fault(vmf);
3841         }
3842
3843         if (!pte_present(vmf->orig_pte))
3844                 return do_swap_page(vmf);
3845
3846         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3847                 return do_numa_page(vmf);
3848
3849         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3850         spin_lock(vmf->ptl);
3851         entry = vmf->orig_pte;
3852         if (unlikely(!pte_same(*vmf->pte, entry)))
3853                 goto unlock;
3854         if (vmf->flags & FAULT_FLAG_WRITE) {
3855                 if (!pte_write(entry))
3856                         return do_wp_page(vmf);
3857                 entry = pte_mkdirty(entry);
3858         }
3859         entry = pte_mkyoung(entry);
3860         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3861                                 vmf->flags & FAULT_FLAG_WRITE)) {
3862                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3863         } else {
3864                 /*
3865                  * This is needed only for protection faults but the arch code
3866                  * is not yet telling us if this is a protection fault or not.
3867                  * This still avoids useless tlb flushes for .text page faults
3868                  * with threads.
3869                  */
3870                 if (vmf->flags & FAULT_FLAG_WRITE)
3871                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3872         }
3873 unlock:
3874         pte_unmap_unlock(vmf->pte, vmf->ptl);
3875         return 0;
3876 }
3877
3878 /*
3879  * By the time we get here, we already hold the mm semaphore
3880  *
3881  * The mmap_sem may have been released depending on flags and our
3882  * return value.  See filemap_fault() and __lock_page_or_retry().
3883  */
3884 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3885                 unsigned long address, unsigned int flags)
3886 {
3887         struct vm_fault vmf = {
3888                 .vma = vma,
3889                 .address = address & PAGE_MASK,
3890                 .flags = flags,
3891                 .pgoff = linear_page_index(vma, address),
3892                 .gfp_mask = __get_fault_gfp_mask(vma),
3893         };
3894         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3895         struct mm_struct *mm = vma->vm_mm;
3896         pgd_t *pgd;
3897         p4d_t *p4d;
3898         vm_fault_t ret;
3899
3900         pgd = pgd_offset(mm, address);
3901         p4d = p4d_alloc(mm, pgd, address);
3902         if (!p4d)
3903                 return VM_FAULT_OOM;
3904
3905         vmf.pud = pud_alloc(mm, p4d, address);
3906         if (!vmf.pud)
3907                 return VM_FAULT_OOM;
3908         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3909                 ret = create_huge_pud(&vmf);
3910                 if (!(ret & VM_FAULT_FALLBACK))
3911                         return ret;
3912         } else {
3913                 pud_t orig_pud = *vmf.pud;
3914
3915                 barrier();
3916                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3917
3918                         /* NUMA case for anonymous PUDs would go here */
3919
3920                         if (dirty && !pud_write(orig_pud)) {
3921                                 ret = wp_huge_pud(&vmf, orig_pud);
3922                                 if (!(ret & VM_FAULT_FALLBACK))
3923                                         return ret;
3924                         } else {
3925                                 huge_pud_set_accessed(&vmf, orig_pud);
3926                                 return 0;
3927                         }
3928                 }
3929         }
3930
3931         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3932         if (!vmf.pmd)
3933                 return VM_FAULT_OOM;
3934         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3935                 ret = create_huge_pmd(&vmf);
3936                 if (!(ret & VM_FAULT_FALLBACK))
3937                         return ret;
3938         } else {
3939                 pmd_t orig_pmd = *vmf.pmd;
3940
3941                 barrier();
3942                 if (unlikely(is_swap_pmd(orig_pmd))) {
3943                         VM_BUG_ON(thp_migration_supported() &&
3944                                           !is_pmd_migration_entry(orig_pmd));
3945                         if (is_pmd_migration_entry(orig_pmd))
3946                                 pmd_migration_entry_wait(mm, vmf.pmd);
3947                         return 0;
3948                 }
3949                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3950                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3951                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3952
3953                         if (dirty && !pmd_write(orig_pmd)) {
3954                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3955                                 if (!(ret & VM_FAULT_FALLBACK))
3956                                         return ret;
3957                         } else {
3958                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3959                                 return 0;
3960                         }
3961                 }
3962         }
3963
3964         return handle_pte_fault(&vmf);
3965 }
3966
3967 /*
3968  * By the time we get here, we already hold the mm semaphore
3969  *
3970  * The mmap_sem may have been released depending on flags and our
3971  * return value.  See filemap_fault() and __lock_page_or_retry().
3972  */
3973 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3974                 unsigned int flags)
3975 {
3976         vm_fault_t ret;
3977
3978         __set_current_state(TASK_RUNNING);
3979
3980         count_vm_event(PGFAULT);
3981         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3982
3983         /* do counter updates before entering really critical section. */
3984         check_sync_rss_stat(current);
3985
3986         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3987                                             flags & FAULT_FLAG_INSTRUCTION,
3988                                             flags & FAULT_FLAG_REMOTE))
3989                 return VM_FAULT_SIGSEGV;
3990
3991         /*
3992          * Enable the memcg OOM handling for faults triggered in user
3993          * space.  Kernel faults are handled more gracefully.
3994          */
3995         if (flags & FAULT_FLAG_USER)
3996                 mem_cgroup_enter_user_fault();
3997
3998         if (unlikely(is_vm_hugetlb_page(vma)))
3999                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4000         else
4001                 ret = __handle_mm_fault(vma, address, flags);
4002
4003         if (flags & FAULT_FLAG_USER) {
4004                 mem_cgroup_exit_user_fault();
4005                 /*
4006                  * The task may have entered a memcg OOM situation but
4007                  * if the allocation error was handled gracefully (no
4008                  * VM_FAULT_OOM), there is no need to kill anything.
4009                  * Just clean up the OOM state peacefully.
4010                  */
4011                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4012                         mem_cgroup_oom_synchronize(false);
4013         }
4014
4015         return ret;
4016 }
4017 EXPORT_SYMBOL_GPL(handle_mm_fault);
4018
4019 #ifndef __PAGETABLE_P4D_FOLDED
4020 /*
4021  * Allocate p4d page table.
4022  * We've already handled the fast-path in-line.
4023  */
4024 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4025 {
4026         p4d_t *new = p4d_alloc_one(mm, address);
4027         if (!new)
4028                 return -ENOMEM;
4029
4030         smp_wmb(); /* See comment in __pte_alloc */
4031
4032         spin_lock(&mm->page_table_lock);
4033         if (pgd_present(*pgd))          /* Another has populated it */
4034                 p4d_free(mm, new);
4035         else
4036                 pgd_populate(mm, pgd, new);
4037         spin_unlock(&mm->page_table_lock);
4038         return 0;
4039 }
4040 #endif /* __PAGETABLE_P4D_FOLDED */
4041
4042 #ifndef __PAGETABLE_PUD_FOLDED
4043 /*
4044  * Allocate page upper directory.
4045  * We've already handled the fast-path in-line.
4046  */
4047 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4048 {
4049         pud_t *new = pud_alloc_one(mm, address);
4050         if (!new)
4051                 return -ENOMEM;
4052
4053         smp_wmb(); /* See comment in __pte_alloc */
4054
4055         spin_lock(&mm->page_table_lock);
4056 #ifndef __ARCH_HAS_5LEVEL_HACK
4057         if (!p4d_present(*p4d)) {
4058                 mm_inc_nr_puds(mm);
4059                 p4d_populate(mm, p4d, new);
4060         } else  /* Another has populated it */
4061                 pud_free(mm, new);
4062 #else
4063         if (!pgd_present(*p4d)) {
4064                 mm_inc_nr_puds(mm);
4065                 pgd_populate(mm, p4d, new);
4066         } else  /* Another has populated it */
4067                 pud_free(mm, new);
4068 #endif /* __ARCH_HAS_5LEVEL_HACK */
4069         spin_unlock(&mm->page_table_lock);
4070         return 0;
4071 }
4072 #endif /* __PAGETABLE_PUD_FOLDED */
4073
4074 #ifndef __PAGETABLE_PMD_FOLDED
4075 /*
4076  * Allocate page middle directory.
4077  * We've already handled the fast-path in-line.
4078  */
4079 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4080 {
4081         spinlock_t *ptl;
4082         pmd_t *new = pmd_alloc_one(mm, address);
4083         if (!new)
4084                 return -ENOMEM;
4085
4086         smp_wmb(); /* See comment in __pte_alloc */
4087
4088         ptl = pud_lock(mm, pud);
4089 #ifndef __ARCH_HAS_4LEVEL_HACK
4090         if (!pud_present(*pud)) {
4091                 mm_inc_nr_pmds(mm);
4092                 pud_populate(mm, pud, new);
4093         } else  /* Another has populated it */
4094                 pmd_free(mm, new);
4095 #else
4096         if (!pgd_present(*pud)) {
4097                 mm_inc_nr_pmds(mm);
4098                 pgd_populate(mm, pud, new);
4099         } else /* Another has populated it */
4100                 pmd_free(mm, new);
4101 #endif /* __ARCH_HAS_4LEVEL_HACK */
4102         spin_unlock(ptl);
4103         return 0;
4104 }
4105 #endif /* __PAGETABLE_PMD_FOLDED */
4106
4107 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4108                             struct mmu_notifier_range *range,
4109                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4110 {
4111         pgd_t *pgd;
4112         p4d_t *p4d;
4113         pud_t *pud;
4114         pmd_t *pmd;
4115         pte_t *ptep;
4116
4117         pgd = pgd_offset(mm, address);
4118         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4119                 goto out;
4120
4121         p4d = p4d_offset(pgd, address);
4122         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4123                 goto out;
4124
4125         pud = pud_offset(p4d, address);
4126         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4127                 goto out;
4128
4129         pmd = pmd_offset(pud, address);
4130         VM_BUG_ON(pmd_trans_huge(*pmd));
4131
4132         if (pmd_huge(*pmd)) {
4133                 if (!pmdpp)
4134                         goto out;
4135
4136                 if (range) {
4137                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4138                                                 NULL, mm, address & PMD_MASK,
4139                                                 (address & PMD_MASK) + PMD_SIZE);
4140                         mmu_notifier_invalidate_range_start(range);
4141                 }
4142                 *ptlp = pmd_lock(mm, pmd);
4143                 if (pmd_huge(*pmd)) {
4144                         *pmdpp = pmd;
4145                         return 0;
4146                 }
4147                 spin_unlock(*ptlp);
4148                 if (range)
4149                         mmu_notifier_invalidate_range_end(range);
4150         }
4151
4152         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4153                 goto out;
4154
4155         if (range) {
4156                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4157                                         address & PAGE_MASK,
4158                                         (address & PAGE_MASK) + PAGE_SIZE);
4159                 mmu_notifier_invalidate_range_start(range);
4160         }
4161         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4162         if (!pte_present(*ptep))
4163                 goto unlock;
4164         *ptepp = ptep;
4165         return 0;
4166 unlock:
4167         pte_unmap_unlock(ptep, *ptlp);
4168         if (range)
4169                 mmu_notifier_invalidate_range_end(range);
4170 out:
4171         return -EINVAL;
4172 }
4173
4174 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4175                              pte_t **ptepp, spinlock_t **ptlp)
4176 {
4177         int res;
4178
4179         /* (void) is needed to make gcc happy */
4180         (void) __cond_lock(*ptlp,
4181                            !(res = __follow_pte_pmd(mm, address, NULL,
4182                                                     ptepp, NULL, ptlp)));
4183         return res;
4184 }
4185
4186 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4187                    struct mmu_notifier_range *range,
4188                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4189 {
4190         int res;
4191
4192         /* (void) is needed to make gcc happy */
4193         (void) __cond_lock(*ptlp,
4194                            !(res = __follow_pte_pmd(mm, address, range,
4195                                                     ptepp, pmdpp, ptlp)));
4196         return res;
4197 }
4198 EXPORT_SYMBOL(follow_pte_pmd);
4199
4200 /**
4201  * follow_pfn - look up PFN at a user virtual address
4202  * @vma: memory mapping
4203  * @address: user virtual address
4204  * @pfn: location to store found PFN
4205  *
4206  * Only IO mappings and raw PFN mappings are allowed.
4207  *
4208  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4209  */
4210 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4211         unsigned long *pfn)
4212 {
4213         int ret = -EINVAL;
4214         spinlock_t *ptl;
4215         pte_t *ptep;
4216
4217         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4218                 return ret;
4219
4220         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4221         if (ret)
4222                 return ret;
4223         *pfn = pte_pfn(*ptep);
4224         pte_unmap_unlock(ptep, ptl);
4225         return 0;
4226 }
4227 EXPORT_SYMBOL(follow_pfn);
4228
4229 #ifdef CONFIG_HAVE_IOREMAP_PROT
4230 int follow_phys(struct vm_area_struct *vma,
4231                 unsigned long address, unsigned int flags,
4232                 unsigned long *prot, resource_size_t *phys)
4233 {
4234         int ret = -EINVAL;
4235         pte_t *ptep, pte;
4236         spinlock_t *ptl;
4237
4238         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4239                 goto out;
4240
4241         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4242                 goto out;
4243         pte = *ptep;
4244
4245         if ((flags & FOLL_WRITE) && !pte_write(pte))
4246                 goto unlock;
4247
4248         *prot = pgprot_val(pte_pgprot(pte));
4249         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4250
4251         ret = 0;
4252 unlock:
4253         pte_unmap_unlock(ptep, ptl);
4254 out:
4255         return ret;
4256 }
4257
4258 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4259                         void *buf, int len, int write)
4260 {
4261         resource_size_t phys_addr;
4262         unsigned long prot = 0;
4263         void __iomem *maddr;
4264         int offset = addr & (PAGE_SIZE-1);
4265
4266         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4267                 return -EINVAL;
4268
4269         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4270         if (!maddr)
4271                 return -ENOMEM;
4272
4273         if (write)
4274                 memcpy_toio(maddr + offset, buf, len);
4275         else
4276                 memcpy_fromio(buf, maddr + offset, len);
4277         iounmap(maddr);
4278
4279         return len;
4280 }
4281 EXPORT_SYMBOL_GPL(generic_access_phys);
4282 #endif
4283
4284 /*
4285  * Access another process' address space as given in mm.  If non-NULL, use the
4286  * given task for page fault accounting.
4287  */
4288 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4289                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4290 {
4291         struct vm_area_struct *vma;
4292         void *old_buf = buf;
4293         int write = gup_flags & FOLL_WRITE;
4294
4295         if (down_read_killable(&mm->mmap_sem))
4296                 return 0;
4297
4298         /* ignore errors, just check how much was successfully transferred */
4299         while (len) {
4300                 int bytes, ret, offset;
4301                 void *maddr;
4302                 struct page *page = NULL;
4303
4304                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4305                                 gup_flags, &page, &vma, NULL);
4306                 if (ret <= 0) {
4307 #ifndef CONFIG_HAVE_IOREMAP_PROT
4308                         break;
4309 #else
4310                         /*
4311                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4312                          * we can access using slightly different code.
4313                          */
4314                         vma = find_vma(mm, addr);
4315                         if (!vma || vma->vm_start > addr)
4316                                 break;
4317                         if (vma->vm_ops && vma->vm_ops->access)
4318                                 ret = vma->vm_ops->access(vma, addr, buf,
4319                                                           len, write);
4320                         if (ret <= 0)
4321                                 break;
4322                         bytes = ret;
4323 #endif
4324                 } else {
4325                         bytes = len;
4326                         offset = addr & (PAGE_SIZE-1);
4327                         if (bytes > PAGE_SIZE-offset)
4328                                 bytes = PAGE_SIZE-offset;
4329
4330                         maddr = kmap(page);
4331                         if (write) {
4332                                 copy_to_user_page(vma, page, addr,
4333                                                   maddr + offset, buf, bytes);
4334                                 set_page_dirty_lock(page);
4335                         } else {
4336                                 copy_from_user_page(vma, page, addr,
4337                                                     buf, maddr + offset, bytes);
4338                         }
4339                         kunmap(page);
4340                         put_page(page);
4341                 }
4342                 len -= bytes;
4343                 buf += bytes;
4344                 addr += bytes;
4345         }
4346         up_read(&mm->mmap_sem);
4347
4348         return buf - old_buf;
4349 }
4350
4351 /**
4352  * access_remote_vm - access another process' address space
4353  * @mm:         the mm_struct of the target address space
4354  * @addr:       start address to access
4355  * @buf:        source or destination buffer
4356  * @len:        number of bytes to transfer
4357  * @gup_flags:  flags modifying lookup behaviour
4358  *
4359  * The caller must hold a reference on @mm.
4360  *
4361  * Return: number of bytes copied from source to destination.
4362  */
4363 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4364                 void *buf, int len, unsigned int gup_flags)
4365 {
4366         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4367 }
4368
4369 /*
4370  * Access another process' address space.
4371  * Source/target buffer must be kernel space,
4372  * Do not walk the page table directly, use get_user_pages
4373  */
4374 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4375                 void *buf, int len, unsigned int gup_flags)
4376 {
4377         struct mm_struct *mm;
4378         int ret;
4379
4380         mm = get_task_mm(tsk);
4381         if (!mm)
4382                 return 0;
4383
4384         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4385
4386         mmput(mm);
4387
4388         return ret;
4389 }
4390 EXPORT_SYMBOL_GPL(access_process_vm);
4391
4392 /*
4393  * Print the name of a VMA.
4394  */
4395 void print_vma_addr(char *prefix, unsigned long ip)
4396 {
4397         struct mm_struct *mm = current->mm;
4398         struct vm_area_struct *vma;
4399
4400         /*
4401          * we might be running from an atomic context so we cannot sleep
4402          */
4403         if (!down_read_trylock(&mm->mmap_sem))
4404                 return;
4405
4406         vma = find_vma(mm, ip);
4407         if (vma && vma->vm_file) {
4408                 struct file *f = vma->vm_file;
4409                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4410                 if (buf) {
4411                         char *p;
4412
4413                         p = file_path(f, buf, PAGE_SIZE);
4414                         if (IS_ERR(p))
4415                                 p = "?";
4416                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4417                                         vma->vm_start,
4418                                         vma->vm_end - vma->vm_start);
4419                         free_page((unsigned long)buf);
4420                 }
4421         }
4422         up_read(&mm->mmap_sem);
4423 }
4424
4425 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4426 void __might_fault(const char *file, int line)
4427 {
4428         /*
4429          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4430          * holding the mmap_sem, this is safe because kernel memory doesn't
4431          * get paged out, therefore we'll never actually fault, and the
4432          * below annotations will generate false positives.
4433          */
4434         if (uaccess_kernel())
4435                 return;
4436         if (pagefault_disabled())
4437                 return;
4438         __might_sleep(file, line, 0);
4439 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4440         if (current->mm)
4441                 might_lock_read(&current->mm->mmap_sem);
4442 #endif
4443 }
4444 EXPORT_SYMBOL(__might_fault);
4445 #endif
4446
4447 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4448 /*
4449  * Process all subpages of the specified huge page with the specified
4450  * operation.  The target subpage will be processed last to keep its
4451  * cache lines hot.
4452  */
4453 static inline void process_huge_page(
4454         unsigned long addr_hint, unsigned int pages_per_huge_page,
4455         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4456         void *arg)
4457 {
4458         int i, n, base, l;
4459         unsigned long addr = addr_hint &
4460                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4461
4462         /* Process target subpage last to keep its cache lines hot */
4463         might_sleep();
4464         n = (addr_hint - addr) / PAGE_SIZE;
4465         if (2 * n <= pages_per_huge_page) {
4466                 /* If target subpage in first half of huge page */
4467                 base = 0;
4468                 l = n;
4469                 /* Process subpages at the end of huge page */
4470                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4471                         cond_resched();
4472                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4473                 }
4474         } else {
4475                 /* If target subpage in second half of huge page */
4476                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4477                 l = pages_per_huge_page - n;
4478                 /* Process subpages at the begin of huge page */
4479                 for (i = 0; i < base; i++) {
4480                         cond_resched();
4481                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4482                 }
4483         }
4484         /*
4485          * Process remaining subpages in left-right-left-right pattern
4486          * towards the target subpage
4487          */
4488         for (i = 0; i < l; i++) {
4489                 int left_idx = base + i;
4490                 int right_idx = base + 2 * l - 1 - i;
4491
4492                 cond_resched();
4493                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4494                 cond_resched();
4495                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4496         }
4497 }
4498
4499 static void clear_gigantic_page(struct page *page,
4500                                 unsigned long addr,
4501                                 unsigned int pages_per_huge_page)
4502 {
4503         int i;
4504         struct page *p = page;
4505
4506         might_sleep();
4507         for (i = 0; i < pages_per_huge_page;
4508              i++, p = mem_map_next(p, page, i)) {
4509                 cond_resched();
4510                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4511         }
4512 }
4513
4514 static void clear_subpage(unsigned long addr, int idx, void *arg)
4515 {
4516         struct page *page = arg;
4517
4518         clear_user_highpage(page + idx, addr);
4519 }
4520
4521 void clear_huge_page(struct page *page,
4522                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4523 {
4524         unsigned long addr = addr_hint &
4525                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4526
4527         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4528                 clear_gigantic_page(page, addr, pages_per_huge_page);
4529                 return;
4530         }
4531
4532         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4533 }
4534
4535 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4536                                     unsigned long addr,
4537                                     struct vm_area_struct *vma,
4538                                     unsigned int pages_per_huge_page)
4539 {
4540         int i;
4541         struct page *dst_base = dst;
4542         struct page *src_base = src;
4543
4544         for (i = 0; i < pages_per_huge_page; ) {
4545                 cond_resched();
4546                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4547
4548                 i++;
4549                 dst = mem_map_next(dst, dst_base, i);
4550                 src = mem_map_next(src, src_base, i);
4551         }
4552 }
4553
4554 struct copy_subpage_arg {
4555         struct page *dst;
4556         struct page *src;
4557         struct vm_area_struct *vma;
4558 };
4559
4560 static void copy_subpage(unsigned long addr, int idx, void *arg)
4561 {
4562         struct copy_subpage_arg *copy_arg = arg;
4563
4564         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4565                            addr, copy_arg->vma);
4566 }
4567
4568 void copy_user_huge_page(struct page *dst, struct page *src,
4569                          unsigned long addr_hint, struct vm_area_struct *vma,
4570                          unsigned int pages_per_huge_page)
4571 {
4572         unsigned long addr = addr_hint &
4573                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4574         struct copy_subpage_arg arg = {
4575                 .dst = dst,
4576                 .src = src,
4577                 .vma = vma,
4578         };
4579
4580         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4581                 copy_user_gigantic_page(dst, src, addr, vma,
4582                                         pages_per_huge_page);
4583                 return;
4584         }
4585
4586         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4587 }
4588
4589 long copy_huge_page_from_user(struct page *dst_page,
4590                                 const void __user *usr_src,
4591                                 unsigned int pages_per_huge_page,
4592                                 bool allow_pagefault)
4593 {
4594         void *src = (void *)usr_src;
4595         void *page_kaddr;
4596         unsigned long i, rc = 0;
4597         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4598
4599         for (i = 0; i < pages_per_huge_page; i++) {
4600                 if (allow_pagefault)
4601                         page_kaddr = kmap(dst_page + i);
4602                 else
4603                         page_kaddr = kmap_atomic(dst_page + i);
4604                 rc = copy_from_user(page_kaddr,
4605                                 (const void __user *)(src + i * PAGE_SIZE),
4606                                 PAGE_SIZE);
4607                 if (allow_pagefault)
4608                         kunmap(dst_page + i);
4609                 else
4610                         kunmap_atomic(page_kaddr);
4611
4612                 ret_val -= (PAGE_SIZE - rc);
4613                 if (rc)
4614                         break;
4615
4616                 cond_resched();
4617         }
4618         return ret_val;
4619 }
4620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4621
4622 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4623
4624 static struct kmem_cache *page_ptl_cachep;
4625
4626 void __init ptlock_cache_init(void)
4627 {
4628         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4629                         SLAB_PANIC, NULL);
4630 }
4631
4632 bool ptlock_alloc(struct page *page)
4633 {
4634         spinlock_t *ptl;
4635
4636         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4637         if (!ptl)
4638                 return false;
4639         page->ptl = ptl;
4640         return true;
4641 }
4642
4643 void ptlock_free(struct page *page)
4644 {
4645         kmem_cache_free(page_ptl_cachep, page->ptl);
4646 }
4647 #endif