Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47  * Minimum page order among possible hugepage sizes, set to a proper value
48  * at boot time.
49  */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51
52 __initdata LIST_HEAD(huge_boot_pages);
53
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59
60 /*
61  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62  * free_huge_pages, and surplus_huge_pages.
63  */
64 DEFINE_SPINLOCK(hugetlb_lock);
65
66 /*
67  * Serializes faults on the same logical page.  This is used to
68  * prevent spurious OOMs when the hugepage pool is fully utilized.
69  */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78         bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80         spin_unlock(&spool->lock);
81
82         /* If no pages are used, and no other handles to the subpool
83          * remain, give up any reservations mased on minimum size and
84          * free the subpool */
85         if (free) {
86                 if (spool->min_hpages != -1)
87                         hugetlb_acct_memory(spool->hstate,
88                                                 -spool->min_hpages);
89                 kfree(spool);
90         }
91 }
92
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94                                                 long min_hpages)
95 {
96         struct hugepage_subpool *spool;
97
98         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99         if (!spool)
100                 return NULL;
101
102         spin_lock_init(&spool->lock);
103         spool->count = 1;
104         spool->max_hpages = max_hpages;
105         spool->hstate = h;
106         spool->min_hpages = min_hpages;
107
108         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109                 kfree(spool);
110                 return NULL;
111         }
112         spool->rsv_hpages = min_hpages;
113
114         return spool;
115 }
116
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119         spin_lock(&spool->lock);
120         BUG_ON(!spool->count);
121         spool->count--;
122         unlock_or_release_subpool(spool);
123 }
124
125 /*
126  * Subpool accounting for allocating and reserving pages.
127  * Return -ENOMEM if there are not enough resources to satisfy the
128  * the request.  Otherwise, return the number of pages by which the
129  * global pools must be adjusted (upward).  The returned value may
130  * only be different than the passed value (delta) in the case where
131  * a subpool minimum size must be manitained.
132  */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134                                       long delta)
135 {
136         long ret = delta;
137
138         if (!spool)
139                 return ret;
140
141         spin_lock(&spool->lock);
142
143         if (spool->max_hpages != -1) {          /* maximum size accounting */
144                 if ((spool->used_hpages + delta) <= spool->max_hpages)
145                         spool->used_hpages += delta;
146                 else {
147                         ret = -ENOMEM;
148                         goto unlock_ret;
149                 }
150         }
151
152         /* minimum size accounting */
153         if (spool->min_hpages != -1 && spool->rsv_hpages) {
154                 if (delta > spool->rsv_hpages) {
155                         /*
156                          * Asking for more reserves than those already taken on
157                          * behalf of subpool.  Return difference.
158                          */
159                         ret = delta - spool->rsv_hpages;
160                         spool->rsv_hpages = 0;
161                 } else {
162                         ret = 0;        /* reserves already accounted for */
163                         spool->rsv_hpages -= delta;
164                 }
165         }
166
167 unlock_ret:
168         spin_unlock(&spool->lock);
169         return ret;
170 }
171
172 /*
173  * Subpool accounting for freeing and unreserving pages.
174  * Return the number of global page reservations that must be dropped.
175  * The return value may only be different than the passed value (delta)
176  * in the case where a subpool minimum size must be maintained.
177  */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179                                        long delta)
180 {
181         long ret = delta;
182
183         if (!spool)
184                 return delta;
185
186         spin_lock(&spool->lock);
187
188         if (spool->max_hpages != -1)            /* maximum size accounting */
189                 spool->used_hpages -= delta;
190
191          /* minimum size accounting */
192         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193                 if (spool->rsv_hpages + delta <= spool->min_hpages)
194                         ret = 0;
195                 else
196                         ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198                 spool->rsv_hpages += delta;
199                 if (spool->rsv_hpages > spool->min_hpages)
200                         spool->rsv_hpages = spool->min_hpages;
201         }
202
203         /*
204          * If hugetlbfs_put_super couldn't free spool due to an outstanding
205          * quota reference, free it now.
206          */
207         unlock_or_release_subpool(spool);
208
209         return ret;
210 }
211
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214         return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219         return subpool_inode(file_inode(vma->vm_file));
220 }
221
222 /*
223  * Region tracking -- allows tracking of reservations and instantiated pages
224  *                    across the pages in a mapping.
225  *
226  * The region data structures are embedded into a resv_map and protected
227  * by a resv_map's lock.  The set of regions within the resv_map represent
228  * reservations for huge pages, or huge pages that have already been
229  * instantiated within the map.  The from and to elements are huge page
230  * indicies into the associated mapping.  from indicates the starting index
231  * of the region.  to represents the first index past the end of  the region.
232  *
233  * For example, a file region structure with from == 0 and to == 4 represents
234  * four huge pages in a mapping.  It is important to note that the to element
235  * represents the first element past the end of the region. This is used in
236  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237  *
238  * Interval notation of the form [from, to) will be used to indicate that
239  * the endpoint from is inclusive and to is exclusive.
240  */
241 struct file_region {
242         struct list_head link;
243         long from;
244         long to;
245 };
246
247 /*
248  * Add the huge page range represented by [f, t) to the reserve
249  * map.  In the normal case, existing regions will be expanded
250  * to accommodate the specified range.  Sufficient regions should
251  * exist for expansion due to the previous call to region_chg
252  * with the same range.  However, it is possible that region_del
253  * could have been called after region_chg and modifed the map
254  * in such a way that no region exists to be expanded.  In this
255  * case, pull a region descriptor from the cache associated with
256  * the map and use that for the new range.
257  *
258  * Return the number of new huge pages added to the map.  This
259  * number is greater than or equal to zero.
260  */
261 static long region_add(struct resv_map *resv, long f, long t)
262 {
263         struct list_head *head = &resv->regions;
264         struct file_region *rg, *nrg, *trg;
265         long add = 0;
266
267         spin_lock(&resv->lock);
268         /* Locate the region we are either in or before. */
269         list_for_each_entry(rg, head, link)
270                 if (f <= rg->to)
271                         break;
272
273         /*
274          * If no region exists which can be expanded to include the
275          * specified range, the list must have been modified by an
276          * interleving call to region_del().  Pull a region descriptor
277          * from the cache and use it for this range.
278          */
279         if (&rg->link == head || t < rg->from) {
280                 VM_BUG_ON(resv->region_cache_count <= 0);
281
282                 resv->region_cache_count--;
283                 nrg = list_first_entry(&resv->region_cache, struct file_region,
284                                         link);
285                 list_del(&nrg->link);
286
287                 nrg->from = f;
288                 nrg->to = t;
289                 list_add(&nrg->link, rg->link.prev);
290
291                 add += t - f;
292                 goto out_locked;
293         }
294
295         /* Round our left edge to the current segment if it encloses us. */
296         if (f > rg->from)
297                 f = rg->from;
298
299         /* Check for and consume any regions we now overlap with. */
300         nrg = rg;
301         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302                 if (&rg->link == head)
303                         break;
304                 if (rg->from > t)
305                         break;
306
307                 /* If this area reaches higher then extend our area to
308                  * include it completely.  If this is not the first area
309                  * which we intend to reuse, free it. */
310                 if (rg->to > t)
311                         t = rg->to;
312                 if (rg != nrg) {
313                         /* Decrement return value by the deleted range.
314                          * Another range will span this area so that by
315                          * end of routine add will be >= zero
316                          */
317                         add -= (rg->to - rg->from);
318                         list_del(&rg->link);
319                         kfree(rg);
320                 }
321         }
322
323         add += (nrg->from - f);         /* Added to beginning of region */
324         nrg->from = f;
325         add += t - nrg->to;             /* Added to end of region */
326         nrg->to = t;
327
328 out_locked:
329         resv->adds_in_progress--;
330         spin_unlock(&resv->lock);
331         VM_BUG_ON(add < 0);
332         return add;
333 }
334
335 /*
336  * Examine the existing reserve map and determine how many
337  * huge pages in the specified range [f, t) are NOT currently
338  * represented.  This routine is called before a subsequent
339  * call to region_add that will actually modify the reserve
340  * map to add the specified range [f, t).  region_chg does
341  * not change the number of huge pages represented by the
342  * map.  However, if the existing regions in the map can not
343  * be expanded to represent the new range, a new file_region
344  * structure is added to the map as a placeholder.  This is
345  * so that the subsequent region_add call will have all the
346  * regions it needs and will not fail.
347  *
348  * Upon entry, region_chg will also examine the cache of region descriptors
349  * associated with the map.  If there are not enough descriptors cached, one
350  * will be allocated for the in progress add operation.
351  *
352  * Returns the number of huge pages that need to be added to the existing
353  * reservation map for the range [f, t).  This number is greater or equal to
354  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
355  * is needed and can not be allocated.
356  */
357 static long region_chg(struct resv_map *resv, long f, long t)
358 {
359         struct list_head *head = &resv->regions;
360         struct file_region *rg, *nrg = NULL;
361         long chg = 0;
362
363 retry:
364         spin_lock(&resv->lock);
365 retry_locked:
366         resv->adds_in_progress++;
367
368         /*
369          * Check for sufficient descriptors in the cache to accommodate
370          * the number of in progress add operations.
371          */
372         if (resv->adds_in_progress > resv->region_cache_count) {
373                 struct file_region *trg;
374
375                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376                 /* Must drop lock to allocate a new descriptor. */
377                 resv->adds_in_progress--;
378                 spin_unlock(&resv->lock);
379
380                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381                 if (!trg) {
382                         kfree(nrg);
383                         return -ENOMEM;
384                 }
385
386                 spin_lock(&resv->lock);
387                 list_add(&trg->link, &resv->region_cache);
388                 resv->region_cache_count++;
389                 goto retry_locked;
390         }
391
392         /* Locate the region we are before or in. */
393         list_for_each_entry(rg, head, link)
394                 if (f <= rg->to)
395                         break;
396
397         /* If we are below the current region then a new region is required.
398          * Subtle, allocate a new region at the position but make it zero
399          * size such that we can guarantee to record the reservation. */
400         if (&rg->link == head || t < rg->from) {
401                 if (!nrg) {
402                         resv->adds_in_progress--;
403                         spin_unlock(&resv->lock);
404                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405                         if (!nrg)
406                                 return -ENOMEM;
407
408                         nrg->from = f;
409                         nrg->to   = f;
410                         INIT_LIST_HEAD(&nrg->link);
411                         goto retry;
412                 }
413
414                 list_add(&nrg->link, rg->link.prev);
415                 chg = t - f;
416                 goto out_nrg;
417         }
418
419         /* Round our left edge to the current segment if it encloses us. */
420         if (f > rg->from)
421                 f = rg->from;
422         chg = t - f;
423
424         /* Check for and consume any regions we now overlap with. */
425         list_for_each_entry(rg, rg->link.prev, link) {
426                 if (&rg->link == head)
427                         break;
428                 if (rg->from > t)
429                         goto out;
430
431                 /* We overlap with this area, if it extends further than
432                  * us then we must extend ourselves.  Account for its
433                  * existing reservation. */
434                 if (rg->to > t) {
435                         chg += rg->to - t;
436                         t = rg->to;
437                 }
438                 chg -= rg->to - rg->from;
439         }
440
441 out:
442         spin_unlock(&resv->lock);
443         /*  We already know we raced and no longer need the new region */
444         kfree(nrg);
445         return chg;
446 out_nrg:
447         spin_unlock(&resv->lock);
448         return chg;
449 }
450
451 /*
452  * Abort the in progress add operation.  The adds_in_progress field
453  * of the resv_map keeps track of the operations in progress between
454  * calls to region_chg and region_add.  Operations are sometimes
455  * aborted after the call to region_chg.  In such cases, region_abort
456  * is called to decrement the adds_in_progress counter.
457  *
458  * NOTE: The range arguments [f, t) are not needed or used in this
459  * routine.  They are kept to make reading the calling code easier as
460  * arguments will match the associated region_chg call.
461  */
462 static void region_abort(struct resv_map *resv, long f, long t)
463 {
464         spin_lock(&resv->lock);
465         VM_BUG_ON(!resv->region_cache_count);
466         resv->adds_in_progress--;
467         spin_unlock(&resv->lock);
468 }
469
470 /*
471  * Delete the specified range [f, t) from the reserve map.  If the
472  * t parameter is LONG_MAX, this indicates that ALL regions after f
473  * should be deleted.  Locate the regions which intersect [f, t)
474  * and either trim, delete or split the existing regions.
475  *
476  * Returns the number of huge pages deleted from the reserve map.
477  * In the normal case, the return value is zero or more.  In the
478  * case where a region must be split, a new region descriptor must
479  * be allocated.  If the allocation fails, -ENOMEM will be returned.
480  * NOTE: If the parameter t == LONG_MAX, then we will never split
481  * a region and possibly return -ENOMEM.  Callers specifying
482  * t == LONG_MAX do not need to check for -ENOMEM error.
483  */
484 static long region_del(struct resv_map *resv, long f, long t)
485 {
486         struct list_head *head = &resv->regions;
487         struct file_region *rg, *trg;
488         struct file_region *nrg = NULL;
489         long del = 0;
490
491 retry:
492         spin_lock(&resv->lock);
493         list_for_each_entry_safe(rg, trg, head, link) {
494                 /*
495                  * Skip regions before the range to be deleted.  file_region
496                  * ranges are normally of the form [from, to).  However, there
497                  * may be a "placeholder" entry in the map which is of the form
498                  * (from, to) with from == to.  Check for placeholder entries
499                  * at the beginning of the range to be deleted.
500                  */
501                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502                         continue;
503
504                 if (rg->from >= t)
505                         break;
506
507                 if (f > rg->from && t < rg->to) { /* Must split region */
508                         /*
509                          * Check for an entry in the cache before dropping
510                          * lock and attempting allocation.
511                          */
512                         if (!nrg &&
513                             resv->region_cache_count > resv->adds_in_progress) {
514                                 nrg = list_first_entry(&resv->region_cache,
515                                                         struct file_region,
516                                                         link);
517                                 list_del(&nrg->link);
518                                 resv->region_cache_count--;
519                         }
520
521                         if (!nrg) {
522                                 spin_unlock(&resv->lock);
523                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524                                 if (!nrg)
525                                         return -ENOMEM;
526                                 goto retry;
527                         }
528
529                         del += t - f;
530
531                         /* New entry for end of split region */
532                         nrg->from = t;
533                         nrg->to = rg->to;
534                         INIT_LIST_HEAD(&nrg->link);
535
536                         /* Original entry is trimmed */
537                         rg->to = f;
538
539                         list_add(&nrg->link, &rg->link);
540                         nrg = NULL;
541                         break;
542                 }
543
544                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545                         del += rg->to - rg->from;
546                         list_del(&rg->link);
547                         kfree(rg);
548                         continue;
549                 }
550
551                 if (f <= rg->from) {    /* Trim beginning of region */
552                         del += t - rg->from;
553                         rg->from = t;
554                 } else {                /* Trim end of region */
555                         del += rg->to - f;
556                         rg->to = f;
557                 }
558         }
559
560         spin_unlock(&resv->lock);
561         kfree(nrg);
562         return del;
563 }
564
565 /*
566  * A rare out of memory error was encountered which prevented removal of
567  * the reserve map region for a page.  The huge page itself was free'ed
568  * and removed from the page cache.  This routine will adjust the subpool
569  * usage count, and the global reserve count if needed.  By incrementing
570  * these counts, the reserve map entry which could not be deleted will
571  * appear as a "reserved" entry instead of simply dangling with incorrect
572  * counts.
573  */
574 void hugetlb_fix_reserve_counts(struct inode *inode)
575 {
576         struct hugepage_subpool *spool = subpool_inode(inode);
577         long rsv_adjust;
578
579         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580         if (rsv_adjust) {
581                 struct hstate *h = hstate_inode(inode);
582
583                 hugetlb_acct_memory(h, 1);
584         }
585 }
586
587 /*
588  * Count and return the number of huge pages in the reserve map
589  * that intersect with the range [f, t).
590  */
591 static long region_count(struct resv_map *resv, long f, long t)
592 {
593         struct list_head *head = &resv->regions;
594         struct file_region *rg;
595         long chg = 0;
596
597         spin_lock(&resv->lock);
598         /* Locate each segment we overlap with, and count that overlap. */
599         list_for_each_entry(rg, head, link) {
600                 long seg_from;
601                 long seg_to;
602
603                 if (rg->to <= f)
604                         continue;
605                 if (rg->from >= t)
606                         break;
607
608                 seg_from = max(rg->from, f);
609                 seg_to = min(rg->to, t);
610
611                 chg += seg_to - seg_from;
612         }
613         spin_unlock(&resv->lock);
614
615         return chg;
616 }
617
618 /*
619  * Convert the address within this vma to the page offset within
620  * the mapping, in pagecache page units; huge pages here.
621  */
622 static pgoff_t vma_hugecache_offset(struct hstate *h,
623                         struct vm_area_struct *vma, unsigned long address)
624 {
625         return ((address - vma->vm_start) >> huge_page_shift(h)) +
626                         (vma->vm_pgoff >> huge_page_order(h));
627 }
628
629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630                                      unsigned long address)
631 {
632         return vma_hugecache_offset(hstate_vma(vma), vma, address);
633 }
634 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635
636 /*
637  * Return the size of the pages allocated when backing a VMA. In the majority
638  * cases this will be same size as used by the page table entries.
639  */
640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641 {
642         if (vma->vm_ops && vma->vm_ops->pagesize)
643                 return vma->vm_ops->pagesize(vma);
644         return PAGE_SIZE;
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647
648 /*
649  * Return the page size being used by the MMU to back a VMA. In the majority
650  * of cases, the page size used by the kernel matches the MMU size. On
651  * architectures where it differs, an architecture-specific 'strong'
652  * version of this symbol is required.
653  */
654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655 {
656         return vma_kernel_pagesize(vma);
657 }
658
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689         return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693                                                         unsigned long value)
694 {
695         vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703         if (!resv_map || !rg) {
704                 kfree(resv_map);
705                 kfree(rg);
706                 return NULL;
707         }
708
709         kref_init(&resv_map->refs);
710         spin_lock_init(&resv_map->lock);
711         INIT_LIST_HEAD(&resv_map->regions);
712
713         resv_map->adds_in_progress = 0;
714
715         INIT_LIST_HEAD(&resv_map->region_cache);
716         list_add(&rg->link, &resv_map->region_cache);
717         resv_map->region_cache_count = 1;
718
719         return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725         struct list_head *head = &resv_map->region_cache;
726         struct file_region *rg, *trg;
727
728         /* Clear out any active regions before we release the map. */
729         region_del(resv_map, 0, LONG_MAX);
730
731         /* ... and any entries left in the cache */
732         list_for_each_entry_safe(rg, trg, head, link) {
733                 list_del(&rg->link);
734                 kfree(rg);
735         }
736
737         VM_BUG_ON(resv_map->adds_in_progress);
738
739         kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744         /*
745          * At inode evict time, i_mapping may not point to the original
746          * address space within the inode.  This original address space
747          * contains the pointer to the resv_map.  So, always use the
748          * address space embedded within the inode.
749          * The VERY common case is inode->mapping == &inode->i_data but,
750          * this may not be true for device special inodes.
751          */
752         return (struct resv_map *)(&inode->i_data)->private_data;
753 }
754
755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756 {
757         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758         if (vma->vm_flags & VM_MAYSHARE) {
759                 struct address_space *mapping = vma->vm_file->f_mapping;
760                 struct inode *inode = mapping->host;
761
762                 return inode_resv_map(inode);
763
764         } else {
765                 return (struct resv_map *)(get_vma_private_data(vma) &
766                                                         ~HPAGE_RESV_MASK);
767         }
768 }
769
770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, (get_vma_private_data(vma) &
776                                 HPAGE_RESV_MASK) | (unsigned long)map);
777 }
778
779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780 {
781         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783
784         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785 }
786
787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788 {
789         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790
791         return (get_vma_private_data(vma) & flag) != 0;
792 }
793
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796 {
797         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798         if (!(vma->vm_flags & VM_MAYSHARE))
799                 vma->vm_private_data = (void *)0;
800 }
801
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804 {
805         if (vma->vm_flags & VM_NORESERVE) {
806                 /*
807                  * This address is already reserved by other process(chg == 0),
808                  * so, we should decrement reserved count. Without decrementing,
809                  * reserve count remains after releasing inode, because this
810                  * allocated page will go into page cache and is regarded as
811                  * coming from reserved pool in releasing step.  Currently, we
812                  * don't have any other solution to deal with this situation
813                  * properly, so add work-around here.
814                  */
815                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816                         return true;
817                 else
818                         return false;
819         }
820
821         /* Shared mappings always use reserves */
822         if (vma->vm_flags & VM_MAYSHARE) {
823                 /*
824                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
825                  * be a region map for all pages.  The only situation where
826                  * there is no region map is if a hole was punched via
827                  * fallocate.  In this case, there really are no reverves to
828                  * use.  This situation is indicated if chg != 0.
829                  */
830                 if (chg)
831                         return false;
832                 else
833                         return true;
834         }
835
836         /*
837          * Only the process that called mmap() has reserves for
838          * private mappings.
839          */
840         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841                 /*
842                  * Like the shared case above, a hole punch or truncate
843                  * could have been performed on the private mapping.
844                  * Examine the value of chg to determine if reserves
845                  * actually exist or were previously consumed.
846                  * Very Subtle - The value of chg comes from a previous
847                  * call to vma_needs_reserves().  The reserve map for
848                  * private mappings has different (opposite) semantics
849                  * than that of shared mappings.  vma_needs_reserves()
850                  * has already taken this difference in semantics into
851                  * account.  Therefore, the meaning of chg is the same
852                  * as in the shared case above.  Code could easily be
853                  * combined, but keeping it separate draws attention to
854                  * subtle differences.
855                  */
856                 if (chg)
857                         return false;
858                 else
859                         return true;
860         }
861
862         return false;
863 }
864
865 static void enqueue_huge_page(struct hstate *h, struct page *page)
866 {
867         int nid = page_to_nid(page);
868         list_move(&page->lru, &h->hugepage_freelists[nid]);
869         h->free_huge_pages++;
870         h->free_huge_pages_node[nid]++;
871 }
872
873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874 {
875         struct page *page;
876
877         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878                 if (!PageHWPoison(page))
879                         break;
880         /*
881          * if 'non-isolated free hugepage' not found on the list,
882          * the allocation fails.
883          */
884         if (&h->hugepage_freelists[nid] == &page->lru)
885                 return NULL;
886         list_move(&page->lru, &h->hugepage_activelist);
887         set_page_refcounted(page);
888         h->free_huge_pages--;
889         h->free_huge_pages_node[nid]--;
890         return page;
891 }
892
893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894                 nodemask_t *nmask)
895 {
896         unsigned int cpuset_mems_cookie;
897         struct zonelist *zonelist;
898         struct zone *zone;
899         struct zoneref *z;
900         int node = NUMA_NO_NODE;
901
902         zonelist = node_zonelist(nid, gfp_mask);
903
904 retry_cpuset:
905         cpuset_mems_cookie = read_mems_allowed_begin();
906         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907                 struct page *page;
908
909                 if (!cpuset_zone_allowed(zone, gfp_mask))
910                         continue;
911                 /*
912                  * no need to ask again on the same node. Pool is node rather than
913                  * zone aware
914                  */
915                 if (zone_to_nid(zone) == node)
916                         continue;
917                 node = zone_to_nid(zone);
918
919                 page = dequeue_huge_page_node_exact(h, node);
920                 if (page)
921                         return page;
922         }
923         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924                 goto retry_cpuset;
925
926         return NULL;
927 }
928
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t htlb_alloc_mask(struct hstate *h)
931 {
932         if (hugepage_movable_supported(h))
933                 return GFP_HIGHUSER_MOVABLE;
934         else
935                 return GFP_HIGHUSER;
936 }
937
938 static struct page *dequeue_huge_page_vma(struct hstate *h,
939                                 struct vm_area_struct *vma,
940                                 unsigned long address, int avoid_reserve,
941                                 long chg)
942 {
943         struct page *page;
944         struct mempolicy *mpol;
945         gfp_t gfp_mask;
946         nodemask_t *nodemask;
947         int nid;
948
949         /*
950          * A child process with MAP_PRIVATE mappings created by their parent
951          * have no page reserves. This check ensures that reservations are
952          * not "stolen". The child may still get SIGKILLed
953          */
954         if (!vma_has_reserves(vma, chg) &&
955                         h->free_huge_pages - h->resv_huge_pages == 0)
956                 goto err;
957
958         /* If reserves cannot be used, ensure enough pages are in the pool */
959         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960                 goto err;
961
962         gfp_mask = htlb_alloc_mask(h);
963         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966                 SetPagePrivate(page);
967                 h->resv_huge_pages--;
968         }
969
970         mpol_cond_put(mpol);
971         return page;
972
973 err:
974         return NULL;
975 }
976
977 /*
978  * common helper functions for hstate_next_node_to_{alloc|free}.
979  * We may have allocated or freed a huge page based on a different
980  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981  * be outside of *nodes_allowed.  Ensure that we use an allowed
982  * node for alloc or free.
983  */
984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985 {
986         nid = next_node_in(nid, *nodes_allowed);
987         VM_BUG_ON(nid >= MAX_NUMNODES);
988
989         return nid;
990 }
991
992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994         if (!node_isset(nid, *nodes_allowed))
995                 nid = next_node_allowed(nid, nodes_allowed);
996         return nid;
997 }
998
999 /*
1000  * returns the previously saved node ["this node"] from which to
1001  * allocate a persistent huge page for the pool and advance the
1002  * next node from which to allocate, handling wrap at end of node
1003  * mask.
1004  */
1005 static int hstate_next_node_to_alloc(struct hstate *h,
1006                                         nodemask_t *nodes_allowed)
1007 {
1008         int nid;
1009
1010         VM_BUG_ON(!nodes_allowed);
1011
1012         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015         return nid;
1016 }
1017
1018 /*
1019  * helper for free_pool_huge_page() - return the previously saved
1020  * node ["this node"] from which to free a huge page.  Advance the
1021  * next node id whether or not we find a free huge page to free so
1022  * that the next attempt to free addresses the next node.
1023  */
1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025 {
1026         int nid;
1027
1028         VM_BUG_ON(!nodes_allowed);
1029
1030         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033         return nid;
1034 }
1035
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1037         for (nr_nodes = nodes_weight(*mask);                            \
1038                 nr_nodes > 0 &&                                         \
1039                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1040                 nr_nodes--)
1041
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1043         for (nr_nodes = nodes_weight(*mask);                            \
1044                 nr_nodes > 0 &&                                         \
1045                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1046                 nr_nodes--)
1047
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page *page,
1050                                         unsigned int order)
1051 {
1052         int i;
1053         int nr_pages = 1 << order;
1054         struct page *p = page + 1;
1055
1056         atomic_set(compound_mapcount_ptr(page), 0);
1057         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058                 clear_compound_head(p);
1059                 set_page_refcounted(p);
1060         }
1061
1062         set_compound_order(page, 0);
1063         __ClearPageHead(page);
1064 }
1065
1066 static void free_gigantic_page(struct page *page, unsigned int order)
1067 {
1068         free_contig_range(page_to_pfn(page), 1 << order);
1069 }
1070
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn,
1073                                 unsigned long nr_pages, gfp_t gfp_mask)
1074 {
1075         unsigned long end_pfn = start_pfn + nr_pages;
1076         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077                                   gfp_mask);
1078 }
1079
1080 static bool pfn_range_valid_gigantic(struct zone *z,
1081                         unsigned long start_pfn, unsigned long nr_pages)
1082 {
1083         unsigned long i, end_pfn = start_pfn + nr_pages;
1084         struct page *page;
1085
1086         for (i = start_pfn; i < end_pfn; i++) {
1087                 page = pfn_to_online_page(i);
1088                 if (!page)
1089                         return false;
1090
1091                 if (page_zone(page) != z)
1092                         return false;
1093
1094                 if (PageReserved(page))
1095                         return false;
1096
1097                 if (page_count(page) > 0)
1098                         return false;
1099
1100                 if (PageHuge(page))
1101                         return false;
1102         }
1103
1104         return true;
1105 }
1106
1107 static bool zone_spans_last_pfn(const struct zone *zone,
1108                         unsigned long start_pfn, unsigned long nr_pages)
1109 {
1110         unsigned long last_pfn = start_pfn + nr_pages - 1;
1111         return zone_spans_pfn(zone, last_pfn);
1112 }
1113
1114 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115                 int nid, nodemask_t *nodemask)
1116 {
1117         unsigned int order = huge_page_order(h);
1118         unsigned long nr_pages = 1 << order;
1119         unsigned long ret, pfn, flags;
1120         struct zonelist *zonelist;
1121         struct zone *zone;
1122         struct zoneref *z;
1123
1124         zonelist = node_zonelist(nid, gfp_mask);
1125         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126                 spin_lock_irqsave(&zone->lock, flags);
1127
1128                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131                                 /*
1132                                  * We release the zone lock here because
1133                                  * alloc_contig_range() will also lock the zone
1134                                  * at some point. If there's an allocation
1135                                  * spinning on this lock, it may win the race
1136                                  * and cause alloc_contig_range() to fail...
1137                                  */
1138                                 spin_unlock_irqrestore(&zone->lock, flags);
1139                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140                                 if (!ret)
1141                                         return pfn_to_page(pfn);
1142                                 spin_lock_irqsave(&zone->lock, flags);
1143                         }
1144                         pfn += nr_pages;
1145                 }
1146
1147                 spin_unlock_irqrestore(&zone->lock, flags);
1148         }
1149
1150         return NULL;
1151 }
1152
1153 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155 #else /* !CONFIG_CONTIG_ALLOC */
1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157                                         int nid, nodemask_t *nodemask)
1158 {
1159         return NULL;
1160 }
1161 #endif /* CONFIG_CONTIG_ALLOC */
1162
1163 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165                                         int nid, nodemask_t *nodemask)
1166 {
1167         return NULL;
1168 }
1169 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170 static inline void destroy_compound_gigantic_page(struct page *page,
1171                                                 unsigned int order) { }
1172 #endif
1173
1174 static void update_and_free_page(struct hstate *h, struct page *page)
1175 {
1176         int i;
1177
1178         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179                 return;
1180
1181         h->nr_huge_pages--;
1182         h->nr_huge_pages_node[page_to_nid(page)]--;
1183         for (i = 0; i < pages_per_huge_page(h); i++) {
1184                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185                                 1 << PG_referenced | 1 << PG_dirty |
1186                                 1 << PG_active | 1 << PG_private |
1187                                 1 << PG_writeback);
1188         }
1189         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191         set_page_refcounted(page);
1192         if (hstate_is_gigantic(h)) {
1193                 destroy_compound_gigantic_page(page, huge_page_order(h));
1194                 free_gigantic_page(page, huge_page_order(h));
1195         } else {
1196                 __free_pages(page, huge_page_order(h));
1197         }
1198 }
1199
1200 struct hstate *size_to_hstate(unsigned long size)
1201 {
1202         struct hstate *h;
1203
1204         for_each_hstate(h) {
1205                 if (huge_page_size(h) == size)
1206                         return h;
1207         }
1208         return NULL;
1209 }
1210
1211 /*
1212  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213  * to hstate->hugepage_activelist.)
1214  *
1215  * This function can be called for tail pages, but never returns true for them.
1216  */
1217 bool page_huge_active(struct page *page)
1218 {
1219         VM_BUG_ON_PAGE(!PageHuge(page), page);
1220         return PageHead(page) && PagePrivate(&page[1]);
1221 }
1222
1223 /* never called for tail page */
1224 static void set_page_huge_active(struct page *page)
1225 {
1226         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227         SetPagePrivate(&page[1]);
1228 }
1229
1230 static void clear_page_huge_active(struct page *page)
1231 {
1232         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233         ClearPagePrivate(&page[1]);
1234 }
1235
1236 /*
1237  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238  * code
1239  */
1240 static inline bool PageHugeTemporary(struct page *page)
1241 {
1242         if (!PageHuge(page))
1243                 return false;
1244
1245         return (unsigned long)page[2].mapping == -1U;
1246 }
1247
1248 static inline void SetPageHugeTemporary(struct page *page)
1249 {
1250         page[2].mapping = (void *)-1U;
1251 }
1252
1253 static inline void ClearPageHugeTemporary(struct page *page)
1254 {
1255         page[2].mapping = NULL;
1256 }
1257
1258 void free_huge_page(struct page *page)
1259 {
1260         /*
1261          * Can't pass hstate in here because it is called from the
1262          * compound page destructor.
1263          */
1264         struct hstate *h = page_hstate(page);
1265         int nid = page_to_nid(page);
1266         struct hugepage_subpool *spool =
1267                 (struct hugepage_subpool *)page_private(page);
1268         bool restore_reserve;
1269
1270         VM_BUG_ON_PAGE(page_count(page), page);
1271         VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273         set_page_private(page, 0);
1274         page->mapping = NULL;
1275         restore_reserve = PagePrivate(page);
1276         ClearPagePrivate(page);
1277
1278         /*
1279          * If PagePrivate() was set on page, page allocation consumed a
1280          * reservation.  If the page was associated with a subpool, there
1281          * would have been a page reserved in the subpool before allocation
1282          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283          * reservtion, do not call hugepage_subpool_put_pages() as this will
1284          * remove the reserved page from the subpool.
1285          */
1286         if (!restore_reserve) {
1287                 /*
1288                  * A return code of zero implies that the subpool will be
1289                  * under its minimum size if the reservation is not restored
1290                  * after page is free.  Therefore, force restore_reserve
1291                  * operation.
1292                  */
1293                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1294                         restore_reserve = true;
1295         }
1296
1297         spin_lock(&hugetlb_lock);
1298         clear_page_huge_active(page);
1299         hugetlb_cgroup_uncharge_page(hstate_index(h),
1300                                      pages_per_huge_page(h), page);
1301         if (restore_reserve)
1302                 h->resv_huge_pages++;
1303
1304         if (PageHugeTemporary(page)) {
1305                 list_del(&page->lru);
1306                 ClearPageHugeTemporary(page);
1307                 update_and_free_page(h, page);
1308         } else if (h->surplus_huge_pages_node[nid]) {
1309                 /* remove the page from active list */
1310                 list_del(&page->lru);
1311                 update_and_free_page(h, page);
1312                 h->surplus_huge_pages--;
1313                 h->surplus_huge_pages_node[nid]--;
1314         } else {
1315                 arch_clear_hugepage_flags(page);
1316                 enqueue_huge_page(h, page);
1317         }
1318         spin_unlock(&hugetlb_lock);
1319 }
1320
1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322 {
1323         INIT_LIST_HEAD(&page->lru);
1324         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325         spin_lock(&hugetlb_lock);
1326         set_hugetlb_cgroup(page, NULL);
1327         h->nr_huge_pages++;
1328         h->nr_huge_pages_node[nid]++;
1329         spin_unlock(&hugetlb_lock);
1330 }
1331
1332 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333 {
1334         int i;
1335         int nr_pages = 1 << order;
1336         struct page *p = page + 1;
1337
1338         /* we rely on prep_new_huge_page to set the destructor */
1339         set_compound_order(page, order);
1340         __ClearPageReserved(page);
1341         __SetPageHead(page);
1342         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343                 /*
1344                  * For gigantic hugepages allocated through bootmem at
1345                  * boot, it's safer to be consistent with the not-gigantic
1346                  * hugepages and clear the PG_reserved bit from all tail pages
1347                  * too.  Otherwse drivers using get_user_pages() to access tail
1348                  * pages may get the reference counting wrong if they see
1349                  * PG_reserved set on a tail page (despite the head page not
1350                  * having PG_reserved set).  Enforcing this consistency between
1351                  * head and tail pages allows drivers to optimize away a check
1352                  * on the head page when they need know if put_page() is needed
1353                  * after get_user_pages().
1354                  */
1355                 __ClearPageReserved(p);
1356                 set_page_count(p, 0);
1357                 set_compound_head(p, page);
1358         }
1359         atomic_set(compound_mapcount_ptr(page), -1);
1360 }
1361
1362 /*
1363  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364  * transparent huge pages.  See the PageTransHuge() documentation for more
1365  * details.
1366  */
1367 int PageHuge(struct page *page)
1368 {
1369         if (!PageCompound(page))
1370                 return 0;
1371
1372         page = compound_head(page);
1373         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374 }
1375 EXPORT_SYMBOL_GPL(PageHuge);
1376
1377 /*
1378  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379  * normal or transparent huge pages.
1380  */
1381 int PageHeadHuge(struct page *page_head)
1382 {
1383         if (!PageHead(page_head))
1384                 return 0;
1385
1386         return get_compound_page_dtor(page_head) == free_huge_page;
1387 }
1388
1389 pgoff_t __basepage_index(struct page *page)
1390 {
1391         struct page *page_head = compound_head(page);
1392         pgoff_t index = page_index(page_head);
1393         unsigned long compound_idx;
1394
1395         if (!PageHuge(page_head))
1396                 return page_index(page);
1397
1398         if (compound_order(page_head) >= MAX_ORDER)
1399                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400         else
1401                 compound_idx = page - page_head;
1402
1403         return (index << compound_order(page_head)) + compound_idx;
1404 }
1405
1406 static struct page *alloc_buddy_huge_page(struct hstate *h,
1407                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1408 {
1409         int order = huge_page_order(h);
1410         struct page *page;
1411
1412         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1413         if (nid == NUMA_NO_NODE)
1414                 nid = numa_mem_id();
1415         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1416         if (page)
1417                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1418         else
1419                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1420
1421         return page;
1422 }
1423
1424 /*
1425  * Common helper to allocate a fresh hugetlb page. All specific allocators
1426  * should use this function to get new hugetlb pages
1427  */
1428 static struct page *alloc_fresh_huge_page(struct hstate *h,
1429                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1430 {
1431         struct page *page;
1432
1433         if (hstate_is_gigantic(h))
1434                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1435         else
1436                 page = alloc_buddy_huge_page(h, gfp_mask,
1437                                 nid, nmask);
1438         if (!page)
1439                 return NULL;
1440
1441         if (hstate_is_gigantic(h))
1442                 prep_compound_gigantic_page(page, huge_page_order(h));
1443         prep_new_huge_page(h, page, page_to_nid(page));
1444
1445         return page;
1446 }
1447
1448 /*
1449  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1450  * manner.
1451  */
1452 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1453 {
1454         struct page *page;
1455         int nr_nodes, node;
1456         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1457
1458         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1459                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1460                 if (page)
1461                         break;
1462         }
1463
1464         if (!page)
1465                 return 0;
1466
1467         put_page(page); /* free it into the hugepage allocator */
1468
1469         return 1;
1470 }
1471
1472 /*
1473  * Free huge page from pool from next node to free.
1474  * Attempt to keep persistent huge pages more or less
1475  * balanced over allowed nodes.
1476  * Called with hugetlb_lock locked.
1477  */
1478 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1479                                                          bool acct_surplus)
1480 {
1481         int nr_nodes, node;
1482         int ret = 0;
1483
1484         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1485                 /*
1486                  * If we're returning unused surplus pages, only examine
1487                  * nodes with surplus pages.
1488                  */
1489                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1490                     !list_empty(&h->hugepage_freelists[node])) {
1491                         struct page *page =
1492                                 list_entry(h->hugepage_freelists[node].next,
1493                                           struct page, lru);
1494                         list_del(&page->lru);
1495                         h->free_huge_pages--;
1496                         h->free_huge_pages_node[node]--;
1497                         if (acct_surplus) {
1498                                 h->surplus_huge_pages--;
1499                                 h->surplus_huge_pages_node[node]--;
1500                         }
1501                         update_and_free_page(h, page);
1502                         ret = 1;
1503                         break;
1504                 }
1505         }
1506
1507         return ret;
1508 }
1509
1510 /*
1511  * Dissolve a given free hugepage into free buddy pages. This function does
1512  * nothing for in-use hugepages and non-hugepages.
1513  * This function returns values like below:
1514  *
1515  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1516  *          (allocated or reserved.)
1517  *       0: successfully dissolved free hugepages or the page is not a
1518  *          hugepage (considered as already dissolved)
1519  */
1520 int dissolve_free_huge_page(struct page *page)
1521 {
1522         int rc = -EBUSY;
1523
1524         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1525         if (!PageHuge(page))
1526                 return 0;
1527
1528         spin_lock(&hugetlb_lock);
1529         if (!PageHuge(page)) {
1530                 rc = 0;
1531                 goto out;
1532         }
1533
1534         if (!page_count(page)) {
1535                 struct page *head = compound_head(page);
1536                 struct hstate *h = page_hstate(head);
1537                 int nid = page_to_nid(head);
1538                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1539                         goto out;
1540                 /*
1541                  * Move PageHWPoison flag from head page to the raw error page,
1542                  * which makes any subpages rather than the error page reusable.
1543                  */
1544                 if (PageHWPoison(head) && page != head) {
1545                         SetPageHWPoison(page);
1546                         ClearPageHWPoison(head);
1547                 }
1548                 list_del(&head->lru);
1549                 h->free_huge_pages--;
1550                 h->free_huge_pages_node[nid]--;
1551                 h->max_huge_pages--;
1552                 update_and_free_page(h, head);
1553                 rc = 0;
1554         }
1555 out:
1556         spin_unlock(&hugetlb_lock);
1557         return rc;
1558 }
1559
1560 /*
1561  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1562  * make specified memory blocks removable from the system.
1563  * Note that this will dissolve a free gigantic hugepage completely, if any
1564  * part of it lies within the given range.
1565  * Also note that if dissolve_free_huge_page() returns with an error, all
1566  * free hugepages that were dissolved before that error are lost.
1567  */
1568 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1569 {
1570         unsigned long pfn;
1571         struct page *page;
1572         int rc = 0;
1573
1574         if (!hugepages_supported())
1575                 return rc;
1576
1577         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1578                 page = pfn_to_page(pfn);
1579                 rc = dissolve_free_huge_page(page);
1580                 if (rc)
1581                         break;
1582         }
1583
1584         return rc;
1585 }
1586
1587 /*
1588  * Allocates a fresh surplus page from the page allocator.
1589  */
1590 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1591                 int nid, nodemask_t *nmask)
1592 {
1593         struct page *page = NULL;
1594
1595         if (hstate_is_gigantic(h))
1596                 return NULL;
1597
1598         spin_lock(&hugetlb_lock);
1599         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1600                 goto out_unlock;
1601         spin_unlock(&hugetlb_lock);
1602
1603         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1604         if (!page)
1605                 return NULL;
1606
1607         spin_lock(&hugetlb_lock);
1608         /*
1609          * We could have raced with the pool size change.
1610          * Double check that and simply deallocate the new page
1611          * if we would end up overcommiting the surpluses. Abuse
1612          * temporary page to workaround the nasty free_huge_page
1613          * codeflow
1614          */
1615         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1616                 SetPageHugeTemporary(page);
1617                 spin_unlock(&hugetlb_lock);
1618                 put_page(page);
1619                 return NULL;
1620         } else {
1621                 h->surplus_huge_pages++;
1622                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1623         }
1624
1625 out_unlock:
1626         spin_unlock(&hugetlb_lock);
1627
1628         return page;
1629 }
1630
1631 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1632                                      int nid, nodemask_t *nmask)
1633 {
1634         struct page *page;
1635
1636         if (hstate_is_gigantic(h))
1637                 return NULL;
1638
1639         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1640         if (!page)
1641                 return NULL;
1642
1643         /*
1644          * We do not account these pages as surplus because they are only
1645          * temporary and will be released properly on the last reference
1646          */
1647         SetPageHugeTemporary(page);
1648
1649         return page;
1650 }
1651
1652 /*
1653  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1654  */
1655 static
1656 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1657                 struct vm_area_struct *vma, unsigned long addr)
1658 {
1659         struct page *page;
1660         struct mempolicy *mpol;
1661         gfp_t gfp_mask = htlb_alloc_mask(h);
1662         int nid;
1663         nodemask_t *nodemask;
1664
1665         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1666         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1667         mpol_cond_put(mpol);
1668
1669         return page;
1670 }
1671
1672 /* page migration callback function */
1673 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1674 {
1675         gfp_t gfp_mask = htlb_alloc_mask(h);
1676         struct page *page = NULL;
1677
1678         if (nid != NUMA_NO_NODE)
1679                 gfp_mask |= __GFP_THISNODE;
1680
1681         spin_lock(&hugetlb_lock);
1682         if (h->free_huge_pages - h->resv_huge_pages > 0)
1683                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1684         spin_unlock(&hugetlb_lock);
1685
1686         if (!page)
1687                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1688
1689         return page;
1690 }
1691
1692 /* page migration callback function */
1693 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1694                 nodemask_t *nmask)
1695 {
1696         gfp_t gfp_mask = htlb_alloc_mask(h);
1697
1698         spin_lock(&hugetlb_lock);
1699         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1700                 struct page *page;
1701
1702                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1703                 if (page) {
1704                         spin_unlock(&hugetlb_lock);
1705                         return page;
1706                 }
1707         }
1708         spin_unlock(&hugetlb_lock);
1709
1710         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1711 }
1712
1713 /* mempolicy aware migration callback */
1714 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1715                 unsigned long address)
1716 {
1717         struct mempolicy *mpol;
1718         nodemask_t *nodemask;
1719         struct page *page;
1720         gfp_t gfp_mask;
1721         int node;
1722
1723         gfp_mask = htlb_alloc_mask(h);
1724         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1725         page = alloc_huge_page_nodemask(h, node, nodemask);
1726         mpol_cond_put(mpol);
1727
1728         return page;
1729 }
1730
1731 /*
1732  * Increase the hugetlb pool such that it can accommodate a reservation
1733  * of size 'delta'.
1734  */
1735 static int gather_surplus_pages(struct hstate *h, int delta)
1736 {
1737         struct list_head surplus_list;
1738         struct page *page, *tmp;
1739         int ret, i;
1740         int needed, allocated;
1741         bool alloc_ok = true;
1742
1743         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1744         if (needed <= 0) {
1745                 h->resv_huge_pages += delta;
1746                 return 0;
1747         }
1748
1749         allocated = 0;
1750         INIT_LIST_HEAD(&surplus_list);
1751
1752         ret = -ENOMEM;
1753 retry:
1754         spin_unlock(&hugetlb_lock);
1755         for (i = 0; i < needed; i++) {
1756                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1757                                 NUMA_NO_NODE, NULL);
1758                 if (!page) {
1759                         alloc_ok = false;
1760                         break;
1761                 }
1762                 list_add(&page->lru, &surplus_list);
1763                 cond_resched();
1764         }
1765         allocated += i;
1766
1767         /*
1768          * After retaking hugetlb_lock, we need to recalculate 'needed'
1769          * because either resv_huge_pages or free_huge_pages may have changed.
1770          */
1771         spin_lock(&hugetlb_lock);
1772         needed = (h->resv_huge_pages + delta) -
1773                         (h->free_huge_pages + allocated);
1774         if (needed > 0) {
1775                 if (alloc_ok)
1776                         goto retry;
1777                 /*
1778                  * We were not able to allocate enough pages to
1779                  * satisfy the entire reservation so we free what
1780                  * we've allocated so far.
1781                  */
1782                 goto free;
1783         }
1784         /*
1785          * The surplus_list now contains _at_least_ the number of extra pages
1786          * needed to accommodate the reservation.  Add the appropriate number
1787          * of pages to the hugetlb pool and free the extras back to the buddy
1788          * allocator.  Commit the entire reservation here to prevent another
1789          * process from stealing the pages as they are added to the pool but
1790          * before they are reserved.
1791          */
1792         needed += allocated;
1793         h->resv_huge_pages += delta;
1794         ret = 0;
1795
1796         /* Free the needed pages to the hugetlb pool */
1797         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1798                 if ((--needed) < 0)
1799                         break;
1800                 /*
1801                  * This page is now managed by the hugetlb allocator and has
1802                  * no users -- drop the buddy allocator's reference.
1803                  */
1804                 put_page_testzero(page);
1805                 VM_BUG_ON_PAGE(page_count(page), page);
1806                 enqueue_huge_page(h, page);
1807         }
1808 free:
1809         spin_unlock(&hugetlb_lock);
1810
1811         /* Free unnecessary surplus pages to the buddy allocator */
1812         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1813                 put_page(page);
1814         spin_lock(&hugetlb_lock);
1815
1816         return ret;
1817 }
1818
1819 /*
1820  * This routine has two main purposes:
1821  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1822  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1823  *    to the associated reservation map.
1824  * 2) Free any unused surplus pages that may have been allocated to satisfy
1825  *    the reservation.  As many as unused_resv_pages may be freed.
1826  *
1827  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1828  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1829  * we must make sure nobody else can claim pages we are in the process of
1830  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1831  * number of huge pages we plan to free when dropping the lock.
1832  */
1833 static void return_unused_surplus_pages(struct hstate *h,
1834                                         unsigned long unused_resv_pages)
1835 {
1836         unsigned long nr_pages;
1837
1838         /* Cannot return gigantic pages currently */
1839         if (hstate_is_gigantic(h))
1840                 goto out;
1841
1842         /*
1843          * Part (or even all) of the reservation could have been backed
1844          * by pre-allocated pages. Only free surplus pages.
1845          */
1846         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1847
1848         /*
1849          * We want to release as many surplus pages as possible, spread
1850          * evenly across all nodes with memory. Iterate across these nodes
1851          * until we can no longer free unreserved surplus pages. This occurs
1852          * when the nodes with surplus pages have no free pages.
1853          * free_pool_huge_page() will balance the the freed pages across the
1854          * on-line nodes with memory and will handle the hstate accounting.
1855          *
1856          * Note that we decrement resv_huge_pages as we free the pages.  If
1857          * we drop the lock, resv_huge_pages will still be sufficiently large
1858          * to cover subsequent pages we may free.
1859          */
1860         while (nr_pages--) {
1861                 h->resv_huge_pages--;
1862                 unused_resv_pages--;
1863                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1864                         goto out;
1865                 cond_resched_lock(&hugetlb_lock);
1866         }
1867
1868 out:
1869         /* Fully uncommit the reservation */
1870         h->resv_huge_pages -= unused_resv_pages;
1871 }
1872
1873
1874 /*
1875  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1876  * are used by the huge page allocation routines to manage reservations.
1877  *
1878  * vma_needs_reservation is called to determine if the huge page at addr
1879  * within the vma has an associated reservation.  If a reservation is
1880  * needed, the value 1 is returned.  The caller is then responsible for
1881  * managing the global reservation and subpool usage counts.  After
1882  * the huge page has been allocated, vma_commit_reservation is called
1883  * to add the page to the reservation map.  If the page allocation fails,
1884  * the reservation must be ended instead of committed.  vma_end_reservation
1885  * is called in such cases.
1886  *
1887  * In the normal case, vma_commit_reservation returns the same value
1888  * as the preceding vma_needs_reservation call.  The only time this
1889  * is not the case is if a reserve map was changed between calls.  It
1890  * is the responsibility of the caller to notice the difference and
1891  * take appropriate action.
1892  *
1893  * vma_add_reservation is used in error paths where a reservation must
1894  * be restored when a newly allocated huge page must be freed.  It is
1895  * to be called after calling vma_needs_reservation to determine if a
1896  * reservation exists.
1897  */
1898 enum vma_resv_mode {
1899         VMA_NEEDS_RESV,
1900         VMA_COMMIT_RESV,
1901         VMA_END_RESV,
1902         VMA_ADD_RESV,
1903 };
1904 static long __vma_reservation_common(struct hstate *h,
1905                                 struct vm_area_struct *vma, unsigned long addr,
1906                                 enum vma_resv_mode mode)
1907 {
1908         struct resv_map *resv;
1909         pgoff_t idx;
1910         long ret;
1911
1912         resv = vma_resv_map(vma);
1913         if (!resv)
1914                 return 1;
1915
1916         idx = vma_hugecache_offset(h, vma, addr);
1917         switch (mode) {
1918         case VMA_NEEDS_RESV:
1919                 ret = region_chg(resv, idx, idx + 1);
1920                 break;
1921         case VMA_COMMIT_RESV:
1922                 ret = region_add(resv, idx, idx + 1);
1923                 break;
1924         case VMA_END_RESV:
1925                 region_abort(resv, idx, idx + 1);
1926                 ret = 0;
1927                 break;
1928         case VMA_ADD_RESV:
1929                 if (vma->vm_flags & VM_MAYSHARE)
1930                         ret = region_add(resv, idx, idx + 1);
1931                 else {
1932                         region_abort(resv, idx, idx + 1);
1933                         ret = region_del(resv, idx, idx + 1);
1934                 }
1935                 break;
1936         default:
1937                 BUG();
1938         }
1939
1940         if (vma->vm_flags & VM_MAYSHARE)
1941                 return ret;
1942         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1943                 /*
1944                  * In most cases, reserves always exist for private mappings.
1945                  * However, a file associated with mapping could have been
1946                  * hole punched or truncated after reserves were consumed.
1947                  * As subsequent fault on such a range will not use reserves.
1948                  * Subtle - The reserve map for private mappings has the
1949                  * opposite meaning than that of shared mappings.  If NO
1950                  * entry is in the reserve map, it means a reservation exists.
1951                  * If an entry exists in the reserve map, it means the
1952                  * reservation has already been consumed.  As a result, the
1953                  * return value of this routine is the opposite of the
1954                  * value returned from reserve map manipulation routines above.
1955                  */
1956                 if (ret)
1957                         return 0;
1958                 else
1959                         return 1;
1960         }
1961         else
1962                 return ret < 0 ? ret : 0;
1963 }
1964
1965 static long vma_needs_reservation(struct hstate *h,
1966                         struct vm_area_struct *vma, unsigned long addr)
1967 {
1968         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1969 }
1970
1971 static long vma_commit_reservation(struct hstate *h,
1972                         struct vm_area_struct *vma, unsigned long addr)
1973 {
1974         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1975 }
1976
1977 static void vma_end_reservation(struct hstate *h,
1978                         struct vm_area_struct *vma, unsigned long addr)
1979 {
1980         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1981 }
1982
1983 static long vma_add_reservation(struct hstate *h,
1984                         struct vm_area_struct *vma, unsigned long addr)
1985 {
1986         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1987 }
1988
1989 /*
1990  * This routine is called to restore a reservation on error paths.  In the
1991  * specific error paths, a huge page was allocated (via alloc_huge_page)
1992  * and is about to be freed.  If a reservation for the page existed,
1993  * alloc_huge_page would have consumed the reservation and set PagePrivate
1994  * in the newly allocated page.  When the page is freed via free_huge_page,
1995  * the global reservation count will be incremented if PagePrivate is set.
1996  * However, free_huge_page can not adjust the reserve map.  Adjust the
1997  * reserve map here to be consistent with global reserve count adjustments
1998  * to be made by free_huge_page.
1999  */
2000 static void restore_reserve_on_error(struct hstate *h,
2001                         struct vm_area_struct *vma, unsigned long address,
2002                         struct page *page)
2003 {
2004         if (unlikely(PagePrivate(page))) {
2005                 long rc = vma_needs_reservation(h, vma, address);
2006
2007                 if (unlikely(rc < 0)) {
2008                         /*
2009                          * Rare out of memory condition in reserve map
2010                          * manipulation.  Clear PagePrivate so that
2011                          * global reserve count will not be incremented
2012                          * by free_huge_page.  This will make it appear
2013                          * as though the reservation for this page was
2014                          * consumed.  This may prevent the task from
2015                          * faulting in the page at a later time.  This
2016                          * is better than inconsistent global huge page
2017                          * accounting of reserve counts.
2018                          */
2019                         ClearPagePrivate(page);
2020                 } else if (rc) {
2021                         rc = vma_add_reservation(h, vma, address);
2022                         if (unlikely(rc < 0))
2023                                 /*
2024                                  * See above comment about rare out of
2025                                  * memory condition.
2026                                  */
2027                                 ClearPagePrivate(page);
2028                 } else
2029                         vma_end_reservation(h, vma, address);
2030         }
2031 }
2032
2033 struct page *alloc_huge_page(struct vm_area_struct *vma,
2034                                     unsigned long addr, int avoid_reserve)
2035 {
2036         struct hugepage_subpool *spool = subpool_vma(vma);
2037         struct hstate *h = hstate_vma(vma);
2038         struct page *page;
2039         long map_chg, map_commit;
2040         long gbl_chg;
2041         int ret, idx;
2042         struct hugetlb_cgroup *h_cg;
2043
2044         idx = hstate_index(h);
2045         /*
2046          * Examine the region/reserve map to determine if the process
2047          * has a reservation for the page to be allocated.  A return
2048          * code of zero indicates a reservation exists (no change).
2049          */
2050         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2051         if (map_chg < 0)
2052                 return ERR_PTR(-ENOMEM);
2053
2054         /*
2055          * Processes that did not create the mapping will have no
2056          * reserves as indicated by the region/reserve map. Check
2057          * that the allocation will not exceed the subpool limit.
2058          * Allocations for MAP_NORESERVE mappings also need to be
2059          * checked against any subpool limit.
2060          */
2061         if (map_chg || avoid_reserve) {
2062                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2063                 if (gbl_chg < 0) {
2064                         vma_end_reservation(h, vma, addr);
2065                         return ERR_PTR(-ENOSPC);
2066                 }
2067
2068                 /*
2069                  * Even though there was no reservation in the region/reserve
2070                  * map, there could be reservations associated with the
2071                  * subpool that can be used.  This would be indicated if the
2072                  * return value of hugepage_subpool_get_pages() is zero.
2073                  * However, if avoid_reserve is specified we still avoid even
2074                  * the subpool reservations.
2075                  */
2076                 if (avoid_reserve)
2077                         gbl_chg = 1;
2078         }
2079
2080         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2081         if (ret)
2082                 goto out_subpool_put;
2083
2084         spin_lock(&hugetlb_lock);
2085         /*
2086          * glb_chg is passed to indicate whether or not a page must be taken
2087          * from the global free pool (global change).  gbl_chg == 0 indicates
2088          * a reservation exists for the allocation.
2089          */
2090         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2091         if (!page) {
2092                 spin_unlock(&hugetlb_lock);
2093                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2094                 if (!page)
2095                         goto out_uncharge_cgroup;
2096                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2097                         SetPagePrivate(page);
2098                         h->resv_huge_pages--;
2099                 }
2100                 spin_lock(&hugetlb_lock);
2101                 list_move(&page->lru, &h->hugepage_activelist);
2102                 /* Fall through */
2103         }
2104         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2105         spin_unlock(&hugetlb_lock);
2106
2107         set_page_private(page, (unsigned long)spool);
2108
2109         map_commit = vma_commit_reservation(h, vma, addr);
2110         if (unlikely(map_chg > map_commit)) {
2111                 /*
2112                  * The page was added to the reservation map between
2113                  * vma_needs_reservation and vma_commit_reservation.
2114                  * This indicates a race with hugetlb_reserve_pages.
2115                  * Adjust for the subpool count incremented above AND
2116                  * in hugetlb_reserve_pages for the same page.  Also,
2117                  * the reservation count added in hugetlb_reserve_pages
2118                  * no longer applies.
2119                  */
2120                 long rsv_adjust;
2121
2122                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2123                 hugetlb_acct_memory(h, -rsv_adjust);
2124         }
2125         return page;
2126
2127 out_uncharge_cgroup:
2128         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2129 out_subpool_put:
2130         if (map_chg || avoid_reserve)
2131                 hugepage_subpool_put_pages(spool, 1);
2132         vma_end_reservation(h, vma, addr);
2133         return ERR_PTR(-ENOSPC);
2134 }
2135
2136 int alloc_bootmem_huge_page(struct hstate *h)
2137         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2138 int __alloc_bootmem_huge_page(struct hstate *h)
2139 {
2140         struct huge_bootmem_page *m;
2141         int nr_nodes, node;
2142
2143         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2144                 void *addr;
2145
2146                 addr = memblock_alloc_try_nid_raw(
2147                                 huge_page_size(h), huge_page_size(h),
2148                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2149                 if (addr) {
2150                         /*
2151                          * Use the beginning of the huge page to store the
2152                          * huge_bootmem_page struct (until gather_bootmem
2153                          * puts them into the mem_map).
2154                          */
2155                         m = addr;
2156                         goto found;
2157                 }
2158         }
2159         return 0;
2160
2161 found:
2162         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2163         /* Put them into a private list first because mem_map is not up yet */
2164         INIT_LIST_HEAD(&m->list);
2165         list_add(&m->list, &huge_boot_pages);
2166         m->hstate = h;
2167         return 1;
2168 }
2169
2170 static void __init prep_compound_huge_page(struct page *page,
2171                 unsigned int order)
2172 {
2173         if (unlikely(order > (MAX_ORDER - 1)))
2174                 prep_compound_gigantic_page(page, order);
2175         else
2176                 prep_compound_page(page, order);
2177 }
2178
2179 /* Put bootmem huge pages into the standard lists after mem_map is up */
2180 static void __init gather_bootmem_prealloc(void)
2181 {
2182         struct huge_bootmem_page *m;
2183
2184         list_for_each_entry(m, &huge_boot_pages, list) {
2185                 struct page *page = virt_to_page(m);
2186                 struct hstate *h = m->hstate;
2187
2188                 WARN_ON(page_count(page) != 1);
2189                 prep_compound_huge_page(page, h->order);
2190                 WARN_ON(PageReserved(page));
2191                 prep_new_huge_page(h, page, page_to_nid(page));
2192                 put_page(page); /* free it into the hugepage allocator */
2193
2194                 /*
2195                  * If we had gigantic hugepages allocated at boot time, we need
2196                  * to restore the 'stolen' pages to totalram_pages in order to
2197                  * fix confusing memory reports from free(1) and another
2198                  * side-effects, like CommitLimit going negative.
2199                  */
2200                 if (hstate_is_gigantic(h))
2201                         adjust_managed_page_count(page, 1 << h->order);
2202                 cond_resched();
2203         }
2204 }
2205
2206 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2207 {
2208         unsigned long i;
2209
2210         for (i = 0; i < h->max_huge_pages; ++i) {
2211                 if (hstate_is_gigantic(h)) {
2212                         if (!alloc_bootmem_huge_page(h))
2213                                 break;
2214                 } else if (!alloc_pool_huge_page(h,
2215                                          &node_states[N_MEMORY]))
2216                         break;
2217                 cond_resched();
2218         }
2219         if (i < h->max_huge_pages) {
2220                 char buf[32];
2221
2222                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2223                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2224                         h->max_huge_pages, buf, i);
2225                 h->max_huge_pages = i;
2226         }
2227 }
2228
2229 static void __init hugetlb_init_hstates(void)
2230 {
2231         struct hstate *h;
2232
2233         for_each_hstate(h) {
2234                 if (minimum_order > huge_page_order(h))
2235                         minimum_order = huge_page_order(h);
2236
2237                 /* oversize hugepages were init'ed in early boot */
2238                 if (!hstate_is_gigantic(h))
2239                         hugetlb_hstate_alloc_pages(h);
2240         }
2241         VM_BUG_ON(minimum_order == UINT_MAX);
2242 }
2243
2244 static void __init report_hugepages(void)
2245 {
2246         struct hstate *h;
2247
2248         for_each_hstate(h) {
2249                 char buf[32];
2250
2251                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2252                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2253                         buf, h->free_huge_pages);
2254         }
2255 }
2256
2257 #ifdef CONFIG_HIGHMEM
2258 static void try_to_free_low(struct hstate *h, unsigned long count,
2259                                                 nodemask_t *nodes_allowed)
2260 {
2261         int i;
2262
2263         if (hstate_is_gigantic(h))
2264                 return;
2265
2266         for_each_node_mask(i, *nodes_allowed) {
2267                 struct page *page, *next;
2268                 struct list_head *freel = &h->hugepage_freelists[i];
2269                 list_for_each_entry_safe(page, next, freel, lru) {
2270                         if (count >= h->nr_huge_pages)
2271                                 return;
2272                         if (PageHighMem(page))
2273                                 continue;
2274                         list_del(&page->lru);
2275                         update_and_free_page(h, page);
2276                         h->free_huge_pages--;
2277                         h->free_huge_pages_node[page_to_nid(page)]--;
2278                 }
2279         }
2280 }
2281 #else
2282 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2283                                                 nodemask_t *nodes_allowed)
2284 {
2285 }
2286 #endif
2287
2288 /*
2289  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2290  * balanced by operating on them in a round-robin fashion.
2291  * Returns 1 if an adjustment was made.
2292  */
2293 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2294                                 int delta)
2295 {
2296         int nr_nodes, node;
2297
2298         VM_BUG_ON(delta != -1 && delta != 1);
2299
2300         if (delta < 0) {
2301                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2302                         if (h->surplus_huge_pages_node[node])
2303                                 goto found;
2304                 }
2305         } else {
2306                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2307                         if (h->surplus_huge_pages_node[node] <
2308                                         h->nr_huge_pages_node[node])
2309                                 goto found;
2310                 }
2311         }
2312         return 0;
2313
2314 found:
2315         h->surplus_huge_pages += delta;
2316         h->surplus_huge_pages_node[node] += delta;
2317         return 1;
2318 }
2319
2320 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2321 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2322                               nodemask_t *nodes_allowed)
2323 {
2324         unsigned long min_count, ret;
2325
2326         spin_lock(&hugetlb_lock);
2327
2328         /*
2329          * Check for a node specific request.
2330          * Changing node specific huge page count may require a corresponding
2331          * change to the global count.  In any case, the passed node mask
2332          * (nodes_allowed) will restrict alloc/free to the specified node.
2333          */
2334         if (nid != NUMA_NO_NODE) {
2335                 unsigned long old_count = count;
2336
2337                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2338                 /*
2339                  * User may have specified a large count value which caused the
2340                  * above calculation to overflow.  In this case, they wanted
2341                  * to allocate as many huge pages as possible.  Set count to
2342                  * largest possible value to align with their intention.
2343                  */
2344                 if (count < old_count)
2345                         count = ULONG_MAX;
2346         }
2347
2348         /*
2349          * Gigantic pages runtime allocation depend on the capability for large
2350          * page range allocation.
2351          * If the system does not provide this feature, return an error when
2352          * the user tries to allocate gigantic pages but let the user free the
2353          * boottime allocated gigantic pages.
2354          */
2355         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2356                 if (count > persistent_huge_pages(h)) {
2357                         spin_unlock(&hugetlb_lock);
2358                         return -EINVAL;
2359                 }
2360                 /* Fall through to decrease pool */
2361         }
2362
2363         /*
2364          * Increase the pool size
2365          * First take pages out of surplus state.  Then make up the
2366          * remaining difference by allocating fresh huge pages.
2367          *
2368          * We might race with alloc_surplus_huge_page() here and be unable
2369          * to convert a surplus huge page to a normal huge page. That is
2370          * not critical, though, it just means the overall size of the
2371          * pool might be one hugepage larger than it needs to be, but
2372          * within all the constraints specified by the sysctls.
2373          */
2374         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2375                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2376                         break;
2377         }
2378
2379         while (count > persistent_huge_pages(h)) {
2380                 /*
2381                  * If this allocation races such that we no longer need the
2382                  * page, free_huge_page will handle it by freeing the page
2383                  * and reducing the surplus.
2384                  */
2385                 spin_unlock(&hugetlb_lock);
2386
2387                 /* yield cpu to avoid soft lockup */
2388                 cond_resched();
2389
2390                 ret = alloc_pool_huge_page(h, nodes_allowed);
2391                 spin_lock(&hugetlb_lock);
2392                 if (!ret)
2393                         goto out;
2394
2395                 /* Bail for signals. Probably ctrl-c from user */
2396                 if (signal_pending(current))
2397                         goto out;
2398         }
2399
2400         /*
2401          * Decrease the pool size
2402          * First return free pages to the buddy allocator (being careful
2403          * to keep enough around to satisfy reservations).  Then place
2404          * pages into surplus state as needed so the pool will shrink
2405          * to the desired size as pages become free.
2406          *
2407          * By placing pages into the surplus state independent of the
2408          * overcommit value, we are allowing the surplus pool size to
2409          * exceed overcommit. There are few sane options here. Since
2410          * alloc_surplus_huge_page() is checking the global counter,
2411          * though, we'll note that we're not allowed to exceed surplus
2412          * and won't grow the pool anywhere else. Not until one of the
2413          * sysctls are changed, or the surplus pages go out of use.
2414          */
2415         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2416         min_count = max(count, min_count);
2417         try_to_free_low(h, min_count, nodes_allowed);
2418         while (min_count < persistent_huge_pages(h)) {
2419                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2420                         break;
2421                 cond_resched_lock(&hugetlb_lock);
2422         }
2423         while (count < persistent_huge_pages(h)) {
2424                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2425                         break;
2426         }
2427 out:
2428         h->max_huge_pages = persistent_huge_pages(h);
2429         spin_unlock(&hugetlb_lock);
2430
2431         return 0;
2432 }
2433
2434 #define HSTATE_ATTR_RO(_name) \
2435         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2436
2437 #define HSTATE_ATTR(_name) \
2438         static struct kobj_attribute _name##_attr = \
2439                 __ATTR(_name, 0644, _name##_show, _name##_store)
2440
2441 static struct kobject *hugepages_kobj;
2442 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2443
2444 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2445
2446 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2447 {
2448         int i;
2449
2450         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2451                 if (hstate_kobjs[i] == kobj) {
2452                         if (nidp)
2453                                 *nidp = NUMA_NO_NODE;
2454                         return &hstates[i];
2455                 }
2456
2457         return kobj_to_node_hstate(kobj, nidp);
2458 }
2459
2460 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2461                                         struct kobj_attribute *attr, char *buf)
2462 {
2463         struct hstate *h;
2464         unsigned long nr_huge_pages;
2465         int nid;
2466
2467         h = kobj_to_hstate(kobj, &nid);
2468         if (nid == NUMA_NO_NODE)
2469                 nr_huge_pages = h->nr_huge_pages;
2470         else
2471                 nr_huge_pages = h->nr_huge_pages_node[nid];
2472
2473         return sprintf(buf, "%lu\n", nr_huge_pages);
2474 }
2475
2476 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2477                                            struct hstate *h, int nid,
2478                                            unsigned long count, size_t len)
2479 {
2480         int err;
2481         nodemask_t nodes_allowed, *n_mask;
2482
2483         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2484                 return -EINVAL;
2485
2486         if (nid == NUMA_NO_NODE) {
2487                 /*
2488                  * global hstate attribute
2489                  */
2490                 if (!(obey_mempolicy &&
2491                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2492                         n_mask = &node_states[N_MEMORY];
2493                 else
2494                         n_mask = &nodes_allowed;
2495         } else {
2496                 /*
2497                  * Node specific request.  count adjustment happens in
2498                  * set_max_huge_pages() after acquiring hugetlb_lock.
2499                  */
2500                 init_nodemask_of_node(&nodes_allowed, nid);
2501                 n_mask = &nodes_allowed;
2502         }
2503
2504         err = set_max_huge_pages(h, count, nid, n_mask);
2505
2506         return err ? err : len;
2507 }
2508
2509 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2510                                          struct kobject *kobj, const char *buf,
2511                                          size_t len)
2512 {
2513         struct hstate *h;
2514         unsigned long count;
2515         int nid;
2516         int err;
2517
2518         err = kstrtoul(buf, 10, &count);
2519         if (err)
2520                 return err;
2521
2522         h = kobj_to_hstate(kobj, &nid);
2523         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2524 }
2525
2526 static ssize_t nr_hugepages_show(struct kobject *kobj,
2527                                        struct kobj_attribute *attr, char *buf)
2528 {
2529         return nr_hugepages_show_common(kobj, attr, buf);
2530 }
2531
2532 static ssize_t nr_hugepages_store(struct kobject *kobj,
2533                struct kobj_attribute *attr, const char *buf, size_t len)
2534 {
2535         return nr_hugepages_store_common(false, kobj, buf, len);
2536 }
2537 HSTATE_ATTR(nr_hugepages);
2538
2539 #ifdef CONFIG_NUMA
2540
2541 /*
2542  * hstate attribute for optionally mempolicy-based constraint on persistent
2543  * huge page alloc/free.
2544  */
2545 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2546                                        struct kobj_attribute *attr, char *buf)
2547 {
2548         return nr_hugepages_show_common(kobj, attr, buf);
2549 }
2550
2551 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2552                struct kobj_attribute *attr, const char *buf, size_t len)
2553 {
2554         return nr_hugepages_store_common(true, kobj, buf, len);
2555 }
2556 HSTATE_ATTR(nr_hugepages_mempolicy);
2557 #endif
2558
2559
2560 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2561                                         struct kobj_attribute *attr, char *buf)
2562 {
2563         struct hstate *h = kobj_to_hstate(kobj, NULL);
2564         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2565 }
2566
2567 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2568                 struct kobj_attribute *attr, const char *buf, size_t count)
2569 {
2570         int err;
2571         unsigned long input;
2572         struct hstate *h = kobj_to_hstate(kobj, NULL);
2573
2574         if (hstate_is_gigantic(h))
2575                 return -EINVAL;
2576
2577         err = kstrtoul(buf, 10, &input);
2578         if (err)
2579                 return err;
2580
2581         spin_lock(&hugetlb_lock);
2582         h->nr_overcommit_huge_pages = input;
2583         spin_unlock(&hugetlb_lock);
2584
2585         return count;
2586 }
2587 HSTATE_ATTR(nr_overcommit_hugepages);
2588
2589 static ssize_t free_hugepages_show(struct kobject *kobj,
2590                                         struct kobj_attribute *attr, char *buf)
2591 {
2592         struct hstate *h;
2593         unsigned long free_huge_pages;
2594         int nid;
2595
2596         h = kobj_to_hstate(kobj, &nid);
2597         if (nid == NUMA_NO_NODE)
2598                 free_huge_pages = h->free_huge_pages;
2599         else
2600                 free_huge_pages = h->free_huge_pages_node[nid];
2601
2602         return sprintf(buf, "%lu\n", free_huge_pages);
2603 }
2604 HSTATE_ATTR_RO(free_hugepages);
2605
2606 static ssize_t resv_hugepages_show(struct kobject *kobj,
2607                                         struct kobj_attribute *attr, char *buf)
2608 {
2609         struct hstate *h = kobj_to_hstate(kobj, NULL);
2610         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2611 }
2612 HSTATE_ATTR_RO(resv_hugepages);
2613
2614 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2615                                         struct kobj_attribute *attr, char *buf)
2616 {
2617         struct hstate *h;
2618         unsigned long surplus_huge_pages;
2619         int nid;
2620
2621         h = kobj_to_hstate(kobj, &nid);
2622         if (nid == NUMA_NO_NODE)
2623                 surplus_huge_pages = h->surplus_huge_pages;
2624         else
2625                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2626
2627         return sprintf(buf, "%lu\n", surplus_huge_pages);
2628 }
2629 HSTATE_ATTR_RO(surplus_hugepages);
2630
2631 static struct attribute *hstate_attrs[] = {
2632         &nr_hugepages_attr.attr,
2633         &nr_overcommit_hugepages_attr.attr,
2634         &free_hugepages_attr.attr,
2635         &resv_hugepages_attr.attr,
2636         &surplus_hugepages_attr.attr,
2637 #ifdef CONFIG_NUMA
2638         &nr_hugepages_mempolicy_attr.attr,
2639 #endif
2640         NULL,
2641 };
2642
2643 static const struct attribute_group hstate_attr_group = {
2644         .attrs = hstate_attrs,
2645 };
2646
2647 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2648                                     struct kobject **hstate_kobjs,
2649                                     const struct attribute_group *hstate_attr_group)
2650 {
2651         int retval;
2652         int hi = hstate_index(h);
2653
2654         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2655         if (!hstate_kobjs[hi])
2656                 return -ENOMEM;
2657
2658         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2659         if (retval)
2660                 kobject_put(hstate_kobjs[hi]);
2661
2662         return retval;
2663 }
2664
2665 static void __init hugetlb_sysfs_init(void)
2666 {
2667         struct hstate *h;
2668         int err;
2669
2670         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2671         if (!hugepages_kobj)
2672                 return;
2673
2674         for_each_hstate(h) {
2675                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2676                                          hstate_kobjs, &hstate_attr_group);
2677                 if (err)
2678                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2679         }
2680 }
2681
2682 #ifdef CONFIG_NUMA
2683
2684 /*
2685  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2686  * with node devices in node_devices[] using a parallel array.  The array
2687  * index of a node device or _hstate == node id.
2688  * This is here to avoid any static dependency of the node device driver, in
2689  * the base kernel, on the hugetlb module.
2690  */
2691 struct node_hstate {
2692         struct kobject          *hugepages_kobj;
2693         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2694 };
2695 static struct node_hstate node_hstates[MAX_NUMNODES];
2696
2697 /*
2698  * A subset of global hstate attributes for node devices
2699  */
2700 static struct attribute *per_node_hstate_attrs[] = {
2701         &nr_hugepages_attr.attr,
2702         &free_hugepages_attr.attr,
2703         &surplus_hugepages_attr.attr,
2704         NULL,
2705 };
2706
2707 static const struct attribute_group per_node_hstate_attr_group = {
2708         .attrs = per_node_hstate_attrs,
2709 };
2710
2711 /*
2712  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2713  * Returns node id via non-NULL nidp.
2714  */
2715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2716 {
2717         int nid;
2718
2719         for (nid = 0; nid < nr_node_ids; nid++) {
2720                 struct node_hstate *nhs = &node_hstates[nid];
2721                 int i;
2722                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2723                         if (nhs->hstate_kobjs[i] == kobj) {
2724                                 if (nidp)
2725                                         *nidp = nid;
2726                                 return &hstates[i];
2727                         }
2728         }
2729
2730         BUG();
2731         return NULL;
2732 }
2733
2734 /*
2735  * Unregister hstate attributes from a single node device.
2736  * No-op if no hstate attributes attached.
2737  */
2738 static void hugetlb_unregister_node(struct node *node)
2739 {
2740         struct hstate *h;
2741         struct node_hstate *nhs = &node_hstates[node->dev.id];
2742
2743         if (!nhs->hugepages_kobj)
2744                 return;         /* no hstate attributes */
2745
2746         for_each_hstate(h) {
2747                 int idx = hstate_index(h);
2748                 if (nhs->hstate_kobjs[idx]) {
2749                         kobject_put(nhs->hstate_kobjs[idx]);
2750                         nhs->hstate_kobjs[idx] = NULL;
2751                 }
2752         }
2753
2754         kobject_put(nhs->hugepages_kobj);
2755         nhs->hugepages_kobj = NULL;
2756 }
2757
2758
2759 /*
2760  * Register hstate attributes for a single node device.
2761  * No-op if attributes already registered.
2762  */
2763 static void hugetlb_register_node(struct node *node)
2764 {
2765         struct hstate *h;
2766         struct node_hstate *nhs = &node_hstates[node->dev.id];
2767         int err;
2768
2769         if (nhs->hugepages_kobj)
2770                 return;         /* already allocated */
2771
2772         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2773                                                         &node->dev.kobj);
2774         if (!nhs->hugepages_kobj)
2775                 return;
2776
2777         for_each_hstate(h) {
2778                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2779                                                 nhs->hstate_kobjs,
2780                                                 &per_node_hstate_attr_group);
2781                 if (err) {
2782                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2783                                 h->name, node->dev.id);
2784                         hugetlb_unregister_node(node);
2785                         break;
2786                 }
2787         }
2788 }
2789
2790 /*
2791  * hugetlb init time:  register hstate attributes for all registered node
2792  * devices of nodes that have memory.  All on-line nodes should have
2793  * registered their associated device by this time.
2794  */
2795 static void __init hugetlb_register_all_nodes(void)
2796 {
2797         int nid;
2798
2799         for_each_node_state(nid, N_MEMORY) {
2800                 struct node *node = node_devices[nid];
2801                 if (node->dev.id == nid)
2802                         hugetlb_register_node(node);
2803         }
2804
2805         /*
2806          * Let the node device driver know we're here so it can
2807          * [un]register hstate attributes on node hotplug.
2808          */
2809         register_hugetlbfs_with_node(hugetlb_register_node,
2810                                      hugetlb_unregister_node);
2811 }
2812 #else   /* !CONFIG_NUMA */
2813
2814 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2815 {
2816         BUG();
2817         if (nidp)
2818                 *nidp = -1;
2819         return NULL;
2820 }
2821
2822 static void hugetlb_register_all_nodes(void) { }
2823
2824 #endif
2825
2826 static int __init hugetlb_init(void)
2827 {
2828         int i;
2829
2830         if (!hugepages_supported())
2831                 return 0;
2832
2833         if (!size_to_hstate(default_hstate_size)) {
2834                 if (default_hstate_size != 0) {
2835                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2836                                default_hstate_size, HPAGE_SIZE);
2837                 }
2838
2839                 default_hstate_size = HPAGE_SIZE;
2840                 if (!size_to_hstate(default_hstate_size))
2841                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2842         }
2843         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2844         if (default_hstate_max_huge_pages) {
2845                 if (!default_hstate.max_huge_pages)
2846                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2847         }
2848
2849         hugetlb_init_hstates();
2850         gather_bootmem_prealloc();
2851         report_hugepages();
2852
2853         hugetlb_sysfs_init();
2854         hugetlb_register_all_nodes();
2855         hugetlb_cgroup_file_init();
2856
2857 #ifdef CONFIG_SMP
2858         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2859 #else
2860         num_fault_mutexes = 1;
2861 #endif
2862         hugetlb_fault_mutex_table =
2863                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2864                               GFP_KERNEL);
2865         BUG_ON(!hugetlb_fault_mutex_table);
2866
2867         for (i = 0; i < num_fault_mutexes; i++)
2868                 mutex_init(&hugetlb_fault_mutex_table[i]);
2869         return 0;
2870 }
2871 subsys_initcall(hugetlb_init);
2872
2873 /* Should be called on processing a hugepagesz=... option */
2874 void __init hugetlb_bad_size(void)
2875 {
2876         parsed_valid_hugepagesz = false;
2877 }
2878
2879 void __init hugetlb_add_hstate(unsigned int order)
2880 {
2881         struct hstate *h;
2882         unsigned long i;
2883
2884         if (size_to_hstate(PAGE_SIZE << order)) {
2885                 pr_warn("hugepagesz= specified twice, ignoring\n");
2886                 return;
2887         }
2888         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2889         BUG_ON(order == 0);
2890         h = &hstates[hugetlb_max_hstate++];
2891         h->order = order;
2892         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2893         h->nr_huge_pages = 0;
2894         h->free_huge_pages = 0;
2895         for (i = 0; i < MAX_NUMNODES; ++i)
2896                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2897         INIT_LIST_HEAD(&h->hugepage_activelist);
2898         h->next_nid_to_alloc = first_memory_node;
2899         h->next_nid_to_free = first_memory_node;
2900         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2901                                         huge_page_size(h)/1024);
2902
2903         parsed_hstate = h;
2904 }
2905
2906 static int __init hugetlb_nrpages_setup(char *s)
2907 {
2908         unsigned long *mhp;
2909         static unsigned long *last_mhp;
2910
2911         if (!parsed_valid_hugepagesz) {
2912                 pr_warn("hugepages = %s preceded by "
2913                         "an unsupported hugepagesz, ignoring\n", s);
2914                 parsed_valid_hugepagesz = true;
2915                 return 1;
2916         }
2917         /*
2918          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2919          * so this hugepages= parameter goes to the "default hstate".
2920          */
2921         else if (!hugetlb_max_hstate)
2922                 mhp = &default_hstate_max_huge_pages;
2923         else
2924                 mhp = &parsed_hstate->max_huge_pages;
2925
2926         if (mhp == last_mhp) {
2927                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2928                 return 1;
2929         }
2930
2931         if (sscanf(s, "%lu", mhp) <= 0)
2932                 *mhp = 0;
2933
2934         /*
2935          * Global state is always initialized later in hugetlb_init.
2936          * But we need to allocate >= MAX_ORDER hstates here early to still
2937          * use the bootmem allocator.
2938          */
2939         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2940                 hugetlb_hstate_alloc_pages(parsed_hstate);
2941
2942         last_mhp = mhp;
2943
2944         return 1;
2945 }
2946 __setup("hugepages=", hugetlb_nrpages_setup);
2947
2948 static int __init hugetlb_default_setup(char *s)
2949 {
2950         default_hstate_size = memparse(s, &s);
2951         return 1;
2952 }
2953 __setup("default_hugepagesz=", hugetlb_default_setup);
2954
2955 static unsigned int cpuset_mems_nr(unsigned int *array)
2956 {
2957         int node;
2958         unsigned int nr = 0;
2959
2960         for_each_node_mask(node, cpuset_current_mems_allowed)
2961                 nr += array[node];
2962
2963         return nr;
2964 }
2965
2966 #ifdef CONFIG_SYSCTL
2967 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2968                          struct ctl_table *table, int write,
2969                          void __user *buffer, size_t *length, loff_t *ppos)
2970 {
2971         struct hstate *h = &default_hstate;
2972         unsigned long tmp = h->max_huge_pages;
2973         int ret;
2974
2975         if (!hugepages_supported())
2976                 return -EOPNOTSUPP;
2977
2978         table->data = &tmp;
2979         table->maxlen = sizeof(unsigned long);
2980         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2981         if (ret)
2982                 goto out;
2983
2984         if (write)
2985                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2986                                                   NUMA_NO_NODE, tmp, *length);
2987 out:
2988         return ret;
2989 }
2990
2991 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2992                           void __user *buffer, size_t *length, loff_t *ppos)
2993 {
2994
2995         return hugetlb_sysctl_handler_common(false, table, write,
2996                                                         buffer, length, ppos);
2997 }
2998
2999 #ifdef CONFIG_NUMA
3000 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3001                           void __user *buffer, size_t *length, loff_t *ppos)
3002 {
3003         return hugetlb_sysctl_handler_common(true, table, write,
3004                                                         buffer, length, ppos);
3005 }
3006 #endif /* CONFIG_NUMA */
3007
3008 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3009                         void __user *buffer,
3010                         size_t *length, loff_t *ppos)
3011 {
3012         struct hstate *h = &default_hstate;
3013         unsigned long tmp;
3014         int ret;
3015
3016         if (!hugepages_supported())
3017                 return -EOPNOTSUPP;
3018
3019         tmp = h->nr_overcommit_huge_pages;
3020
3021         if (write && hstate_is_gigantic(h))
3022                 return -EINVAL;
3023
3024         table->data = &tmp;
3025         table->maxlen = sizeof(unsigned long);
3026         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3027         if (ret)
3028                 goto out;
3029
3030         if (write) {
3031                 spin_lock(&hugetlb_lock);
3032                 h->nr_overcommit_huge_pages = tmp;
3033                 spin_unlock(&hugetlb_lock);
3034         }
3035 out:
3036         return ret;
3037 }
3038
3039 #endif /* CONFIG_SYSCTL */
3040
3041 void hugetlb_report_meminfo(struct seq_file *m)
3042 {
3043         struct hstate *h;
3044         unsigned long total = 0;
3045
3046         if (!hugepages_supported())
3047                 return;
3048
3049         for_each_hstate(h) {
3050                 unsigned long count = h->nr_huge_pages;
3051
3052                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3053
3054                 if (h == &default_hstate)
3055                         seq_printf(m,
3056                                    "HugePages_Total:   %5lu\n"
3057                                    "HugePages_Free:    %5lu\n"
3058                                    "HugePages_Rsvd:    %5lu\n"
3059                                    "HugePages_Surp:    %5lu\n"
3060                                    "Hugepagesize:   %8lu kB\n",
3061                                    count,
3062                                    h->free_huge_pages,
3063                                    h->resv_huge_pages,
3064                                    h->surplus_huge_pages,
3065                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3066         }
3067
3068         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3069 }
3070
3071 int hugetlb_report_node_meminfo(int nid, char *buf)
3072 {
3073         struct hstate *h = &default_hstate;
3074         if (!hugepages_supported())
3075                 return 0;
3076         return sprintf(buf,
3077                 "Node %d HugePages_Total: %5u\n"
3078                 "Node %d HugePages_Free:  %5u\n"
3079                 "Node %d HugePages_Surp:  %5u\n",
3080                 nid, h->nr_huge_pages_node[nid],
3081                 nid, h->free_huge_pages_node[nid],
3082                 nid, h->surplus_huge_pages_node[nid]);
3083 }
3084
3085 void hugetlb_show_meminfo(void)
3086 {
3087         struct hstate *h;
3088         int nid;
3089
3090         if (!hugepages_supported())
3091                 return;
3092
3093         for_each_node_state(nid, N_MEMORY)
3094                 for_each_hstate(h)
3095                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3096                                 nid,
3097                                 h->nr_huge_pages_node[nid],
3098                                 h->free_huge_pages_node[nid],
3099                                 h->surplus_huge_pages_node[nid],
3100                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3101 }
3102
3103 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3104 {
3105         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3106                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3107 }
3108
3109 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3110 unsigned long hugetlb_total_pages(void)
3111 {
3112         struct hstate *h;
3113         unsigned long nr_total_pages = 0;
3114
3115         for_each_hstate(h)
3116                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3117         return nr_total_pages;
3118 }
3119
3120 static int hugetlb_acct_memory(struct hstate *h, long delta)
3121 {
3122         int ret = -ENOMEM;
3123
3124         spin_lock(&hugetlb_lock);
3125         /*
3126          * When cpuset is configured, it breaks the strict hugetlb page
3127          * reservation as the accounting is done on a global variable. Such
3128          * reservation is completely rubbish in the presence of cpuset because
3129          * the reservation is not checked against page availability for the
3130          * current cpuset. Application can still potentially OOM'ed by kernel
3131          * with lack of free htlb page in cpuset that the task is in.
3132          * Attempt to enforce strict accounting with cpuset is almost
3133          * impossible (or too ugly) because cpuset is too fluid that
3134          * task or memory node can be dynamically moved between cpusets.
3135          *
3136          * The change of semantics for shared hugetlb mapping with cpuset is
3137          * undesirable. However, in order to preserve some of the semantics,
3138          * we fall back to check against current free page availability as
3139          * a best attempt and hopefully to minimize the impact of changing
3140          * semantics that cpuset has.
3141          */
3142         if (delta > 0) {
3143                 if (gather_surplus_pages(h, delta) < 0)
3144                         goto out;
3145
3146                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3147                         return_unused_surplus_pages(h, delta);
3148                         goto out;
3149                 }
3150         }
3151
3152         ret = 0;
3153         if (delta < 0)
3154                 return_unused_surplus_pages(h, (unsigned long) -delta);
3155
3156 out:
3157         spin_unlock(&hugetlb_lock);
3158         return ret;
3159 }
3160
3161 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3162 {
3163         struct resv_map *resv = vma_resv_map(vma);
3164
3165         /*
3166          * This new VMA should share its siblings reservation map if present.
3167          * The VMA will only ever have a valid reservation map pointer where
3168          * it is being copied for another still existing VMA.  As that VMA
3169          * has a reference to the reservation map it cannot disappear until
3170          * after this open call completes.  It is therefore safe to take a
3171          * new reference here without additional locking.
3172          */
3173         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3174                 kref_get(&resv->refs);
3175 }
3176
3177 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3178 {
3179         struct hstate *h = hstate_vma(vma);
3180         struct resv_map *resv = vma_resv_map(vma);
3181         struct hugepage_subpool *spool = subpool_vma(vma);
3182         unsigned long reserve, start, end;
3183         long gbl_reserve;
3184
3185         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3186                 return;
3187
3188         start = vma_hugecache_offset(h, vma, vma->vm_start);
3189         end = vma_hugecache_offset(h, vma, vma->vm_end);
3190
3191         reserve = (end - start) - region_count(resv, start, end);
3192
3193         kref_put(&resv->refs, resv_map_release);
3194
3195         if (reserve) {
3196                 /*
3197                  * Decrement reserve counts.  The global reserve count may be
3198                  * adjusted if the subpool has a minimum size.
3199                  */
3200                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3201                 hugetlb_acct_memory(h, -gbl_reserve);
3202         }
3203 }
3204
3205 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3206 {
3207         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3208                 return -EINVAL;
3209         return 0;
3210 }
3211
3212 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3213 {
3214         struct hstate *hstate = hstate_vma(vma);
3215
3216         return 1UL << huge_page_shift(hstate);
3217 }
3218
3219 /*
3220  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3221  * handle_mm_fault() to try to instantiate regular-sized pages in the
3222  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3223  * this far.
3224  */
3225 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3226 {
3227         BUG();
3228         return 0;
3229 }
3230
3231 /*
3232  * When a new function is introduced to vm_operations_struct and added
3233  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3234  * This is because under System V memory model, mappings created via
3235  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3236  * their original vm_ops are overwritten with shm_vm_ops.
3237  */
3238 const struct vm_operations_struct hugetlb_vm_ops = {
3239         .fault = hugetlb_vm_op_fault,
3240         .open = hugetlb_vm_op_open,
3241         .close = hugetlb_vm_op_close,
3242         .split = hugetlb_vm_op_split,
3243         .pagesize = hugetlb_vm_op_pagesize,
3244 };
3245
3246 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3247                                 int writable)
3248 {
3249         pte_t entry;
3250
3251         if (writable) {
3252                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3253                                          vma->vm_page_prot)));
3254         } else {
3255                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3256                                            vma->vm_page_prot));
3257         }
3258         entry = pte_mkyoung(entry);
3259         entry = pte_mkhuge(entry);
3260         entry = arch_make_huge_pte(entry, vma, page, writable);
3261
3262         return entry;
3263 }
3264
3265 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3266                                    unsigned long address, pte_t *ptep)
3267 {
3268         pte_t entry;
3269
3270         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3271         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3272                 update_mmu_cache(vma, address, ptep);
3273 }
3274
3275 bool is_hugetlb_entry_migration(pte_t pte)
3276 {
3277         swp_entry_t swp;
3278
3279         if (huge_pte_none(pte) || pte_present(pte))
3280                 return false;
3281         swp = pte_to_swp_entry(pte);
3282         if (non_swap_entry(swp) && is_migration_entry(swp))
3283                 return true;
3284         else
3285                 return false;
3286 }
3287
3288 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3289 {
3290         swp_entry_t swp;
3291
3292         if (huge_pte_none(pte) || pte_present(pte))
3293                 return 0;
3294         swp = pte_to_swp_entry(pte);
3295         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3296                 return 1;
3297         else
3298                 return 0;
3299 }
3300
3301 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3302                             struct vm_area_struct *vma)
3303 {
3304         pte_t *src_pte, *dst_pte, entry, dst_entry;
3305         struct page *ptepage;
3306         unsigned long addr;
3307         int cow;
3308         struct hstate *h = hstate_vma(vma);
3309         unsigned long sz = huge_page_size(h);
3310         struct mmu_notifier_range range;
3311         int ret = 0;
3312
3313         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3314
3315         if (cow) {
3316                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3317                                         vma->vm_start,
3318                                         vma->vm_end);
3319                 mmu_notifier_invalidate_range_start(&range);
3320         }
3321
3322         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3323                 spinlock_t *src_ptl, *dst_ptl;
3324                 src_pte = huge_pte_offset(src, addr, sz);
3325                 if (!src_pte)
3326                         continue;
3327                 dst_pte = huge_pte_alloc(dst, addr, sz);
3328                 if (!dst_pte) {
3329                         ret = -ENOMEM;
3330                         break;
3331                 }
3332
3333                 /*
3334                  * If the pagetables are shared don't copy or take references.
3335                  * dst_pte == src_pte is the common case of src/dest sharing.
3336                  *
3337                  * However, src could have 'unshared' and dst shares with
3338                  * another vma.  If dst_pte !none, this implies sharing.
3339                  * Check here before taking page table lock, and once again
3340                  * after taking the lock below.
3341                  */
3342                 dst_entry = huge_ptep_get(dst_pte);
3343                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3344                         continue;
3345
3346                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3347                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3348                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3349                 entry = huge_ptep_get(src_pte);
3350                 dst_entry = huge_ptep_get(dst_pte);
3351                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3352                         /*
3353                          * Skip if src entry none.  Also, skip in the
3354                          * unlikely case dst entry !none as this implies
3355                          * sharing with another vma.
3356                          */
3357                         ;
3358                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3359                                     is_hugetlb_entry_hwpoisoned(entry))) {
3360                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3361
3362                         if (is_write_migration_entry(swp_entry) && cow) {
3363                                 /*
3364                                  * COW mappings require pages in both
3365                                  * parent and child to be set to read.
3366                                  */
3367                                 make_migration_entry_read(&swp_entry);
3368                                 entry = swp_entry_to_pte(swp_entry);
3369                                 set_huge_swap_pte_at(src, addr, src_pte,
3370                                                      entry, sz);
3371                         }
3372                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3373                 } else {
3374                         if (cow) {
3375                                 /*
3376                                  * No need to notify as we are downgrading page
3377                                  * table protection not changing it to point
3378                                  * to a new page.
3379                                  *
3380                                  * See Documentation/vm/mmu_notifier.rst
3381                                  */
3382                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3383                         }
3384                         entry = huge_ptep_get(src_pte);
3385                         ptepage = pte_page(entry);
3386                         get_page(ptepage);
3387                         page_dup_rmap(ptepage, true);
3388                         set_huge_pte_at(dst, addr, dst_pte, entry);
3389                         hugetlb_count_add(pages_per_huge_page(h), dst);
3390                 }
3391                 spin_unlock(src_ptl);
3392                 spin_unlock(dst_ptl);
3393         }
3394
3395         if (cow)
3396                 mmu_notifier_invalidate_range_end(&range);
3397
3398         return ret;
3399 }
3400
3401 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3402                             unsigned long start, unsigned long end,
3403                             struct page *ref_page)
3404 {
3405         struct mm_struct *mm = vma->vm_mm;
3406         unsigned long address;
3407         pte_t *ptep;
3408         pte_t pte;
3409         spinlock_t *ptl;
3410         struct page *page;
3411         struct hstate *h = hstate_vma(vma);
3412         unsigned long sz = huge_page_size(h);
3413         struct mmu_notifier_range range;
3414
3415         WARN_ON(!is_vm_hugetlb_page(vma));
3416         BUG_ON(start & ~huge_page_mask(h));
3417         BUG_ON(end & ~huge_page_mask(h));
3418
3419         /*
3420          * This is a hugetlb vma, all the pte entries should point
3421          * to huge page.
3422          */
3423         tlb_change_page_size(tlb, sz);
3424         tlb_start_vma(tlb, vma);
3425
3426         /*
3427          * If sharing possible, alert mmu notifiers of worst case.
3428          */
3429         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3430                                 end);
3431         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3432         mmu_notifier_invalidate_range_start(&range);
3433         address = start;
3434         for (; address < end; address += sz) {
3435                 ptep = huge_pte_offset(mm, address, sz);
3436                 if (!ptep)
3437                         continue;
3438
3439                 ptl = huge_pte_lock(h, mm, ptep);
3440                 if (huge_pmd_unshare(mm, &address, ptep)) {
3441                         spin_unlock(ptl);
3442                         /*
3443                          * We just unmapped a page of PMDs by clearing a PUD.
3444                          * The caller's TLB flush range should cover this area.
3445                          */
3446                         continue;
3447                 }
3448
3449                 pte = huge_ptep_get(ptep);
3450                 if (huge_pte_none(pte)) {
3451                         spin_unlock(ptl);
3452                         continue;
3453                 }
3454
3455                 /*
3456                  * Migrating hugepage or HWPoisoned hugepage is already
3457                  * unmapped and its refcount is dropped, so just clear pte here.
3458                  */
3459                 if (unlikely(!pte_present(pte))) {
3460                         huge_pte_clear(mm, address, ptep, sz);
3461                         spin_unlock(ptl);
3462                         continue;
3463                 }
3464
3465                 page = pte_page(pte);
3466                 /*
3467                  * If a reference page is supplied, it is because a specific
3468                  * page is being unmapped, not a range. Ensure the page we
3469                  * are about to unmap is the actual page of interest.
3470                  */
3471                 if (ref_page) {
3472                         if (page != ref_page) {
3473                                 spin_unlock(ptl);
3474                                 continue;
3475                         }
3476                         /*
3477                          * Mark the VMA as having unmapped its page so that
3478                          * future faults in this VMA will fail rather than
3479                          * looking like data was lost
3480                          */
3481                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3482                 }
3483
3484                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3485                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3486                 if (huge_pte_dirty(pte))
3487                         set_page_dirty(page);
3488
3489                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3490                 page_remove_rmap(page, true);
3491
3492                 spin_unlock(ptl);
3493                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3494                 /*
3495                  * Bail out after unmapping reference page if supplied
3496                  */
3497                 if (ref_page)
3498                         break;
3499         }
3500         mmu_notifier_invalidate_range_end(&range);
3501         tlb_end_vma(tlb, vma);
3502 }
3503
3504 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3505                           struct vm_area_struct *vma, unsigned long start,
3506                           unsigned long end, struct page *ref_page)
3507 {
3508         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3509
3510         /*
3511          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3512          * test will fail on a vma being torn down, and not grab a page table
3513          * on its way out.  We're lucky that the flag has such an appropriate
3514          * name, and can in fact be safely cleared here. We could clear it
3515          * before the __unmap_hugepage_range above, but all that's necessary
3516          * is to clear it before releasing the i_mmap_rwsem. This works
3517          * because in the context this is called, the VMA is about to be
3518          * destroyed and the i_mmap_rwsem is held.
3519          */
3520         vma->vm_flags &= ~VM_MAYSHARE;
3521 }
3522
3523 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3524                           unsigned long end, struct page *ref_page)
3525 {
3526         struct mm_struct *mm;
3527         struct mmu_gather tlb;
3528         unsigned long tlb_start = start;
3529         unsigned long tlb_end = end;
3530
3531         /*
3532          * If shared PMDs were possibly used within this vma range, adjust
3533          * start/end for worst case tlb flushing.
3534          * Note that we can not be sure if PMDs are shared until we try to
3535          * unmap pages.  However, we want to make sure TLB flushing covers
3536          * the largest possible range.
3537          */
3538         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3539
3540         mm = vma->vm_mm;
3541
3542         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3543         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3544         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3545 }
3546
3547 /*
3548  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3549  * mappping it owns the reserve page for. The intention is to unmap the page
3550  * from other VMAs and let the children be SIGKILLed if they are faulting the
3551  * same region.
3552  */
3553 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3554                               struct page *page, unsigned long address)
3555 {
3556         struct hstate *h = hstate_vma(vma);
3557         struct vm_area_struct *iter_vma;
3558         struct address_space *mapping;
3559         pgoff_t pgoff;
3560
3561         /*
3562          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3563          * from page cache lookup which is in HPAGE_SIZE units.
3564          */
3565         address = address & huge_page_mask(h);
3566         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3567                         vma->vm_pgoff;
3568         mapping = vma->vm_file->f_mapping;
3569
3570         /*
3571          * Take the mapping lock for the duration of the table walk. As
3572          * this mapping should be shared between all the VMAs,
3573          * __unmap_hugepage_range() is called as the lock is already held
3574          */
3575         i_mmap_lock_write(mapping);
3576         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3577                 /* Do not unmap the current VMA */
3578                 if (iter_vma == vma)
3579                         continue;
3580
3581                 /*
3582                  * Shared VMAs have their own reserves and do not affect
3583                  * MAP_PRIVATE accounting but it is possible that a shared
3584                  * VMA is using the same page so check and skip such VMAs.
3585                  */
3586                 if (iter_vma->vm_flags & VM_MAYSHARE)
3587                         continue;
3588
3589                 /*
3590                  * Unmap the page from other VMAs without their own reserves.
3591                  * They get marked to be SIGKILLed if they fault in these
3592                  * areas. This is because a future no-page fault on this VMA
3593                  * could insert a zeroed page instead of the data existing
3594                  * from the time of fork. This would look like data corruption
3595                  */
3596                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3597                         unmap_hugepage_range(iter_vma, address,
3598                                              address + huge_page_size(h), page);
3599         }
3600         i_mmap_unlock_write(mapping);
3601 }
3602
3603 /*
3604  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3605  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3606  * cannot race with other handlers or page migration.
3607  * Keep the pte_same checks anyway to make transition from the mutex easier.
3608  */
3609 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3610                        unsigned long address, pte_t *ptep,
3611                        struct page *pagecache_page, spinlock_t *ptl)
3612 {
3613         pte_t pte;
3614         struct hstate *h = hstate_vma(vma);
3615         struct page *old_page, *new_page;
3616         int outside_reserve = 0;
3617         vm_fault_t ret = 0;
3618         unsigned long haddr = address & huge_page_mask(h);
3619         struct mmu_notifier_range range;
3620
3621         pte = huge_ptep_get(ptep);
3622         old_page = pte_page(pte);
3623
3624 retry_avoidcopy:
3625         /* If no-one else is actually using this page, avoid the copy
3626          * and just make the page writable */
3627         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3628                 page_move_anon_rmap(old_page, vma);
3629                 set_huge_ptep_writable(vma, haddr, ptep);
3630                 return 0;
3631         }
3632
3633         /*
3634          * If the process that created a MAP_PRIVATE mapping is about to
3635          * perform a COW due to a shared page count, attempt to satisfy
3636          * the allocation without using the existing reserves. The pagecache
3637          * page is used to determine if the reserve at this address was
3638          * consumed or not. If reserves were used, a partial faulted mapping
3639          * at the time of fork() could consume its reserves on COW instead
3640          * of the full address range.
3641          */
3642         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3643                         old_page != pagecache_page)
3644                 outside_reserve = 1;
3645
3646         get_page(old_page);
3647
3648         /*
3649          * Drop page table lock as buddy allocator may be called. It will
3650          * be acquired again before returning to the caller, as expected.
3651          */
3652         spin_unlock(ptl);
3653         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3654
3655         if (IS_ERR(new_page)) {
3656                 /*
3657                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3658                  * it is due to references held by a child and an insufficient
3659                  * huge page pool. To guarantee the original mappers
3660                  * reliability, unmap the page from child processes. The child
3661                  * may get SIGKILLed if it later faults.
3662                  */
3663                 if (outside_reserve) {
3664                         put_page(old_page);
3665                         BUG_ON(huge_pte_none(pte));
3666                         unmap_ref_private(mm, vma, old_page, haddr);
3667                         BUG_ON(huge_pte_none(pte));
3668                         spin_lock(ptl);
3669                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3670                         if (likely(ptep &&
3671                                    pte_same(huge_ptep_get(ptep), pte)))
3672                                 goto retry_avoidcopy;
3673                         /*
3674                          * race occurs while re-acquiring page table
3675                          * lock, and our job is done.
3676                          */
3677                         return 0;
3678                 }
3679
3680                 ret = vmf_error(PTR_ERR(new_page));
3681                 goto out_release_old;
3682         }
3683
3684         /*
3685          * When the original hugepage is shared one, it does not have
3686          * anon_vma prepared.
3687          */
3688         if (unlikely(anon_vma_prepare(vma))) {
3689                 ret = VM_FAULT_OOM;
3690                 goto out_release_all;
3691         }
3692
3693         copy_user_huge_page(new_page, old_page, address, vma,
3694                             pages_per_huge_page(h));
3695         __SetPageUptodate(new_page);
3696
3697         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3698                                 haddr + huge_page_size(h));
3699         mmu_notifier_invalidate_range_start(&range);
3700
3701         /*
3702          * Retake the page table lock to check for racing updates
3703          * before the page tables are altered
3704          */
3705         spin_lock(ptl);
3706         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3707         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3708                 ClearPagePrivate(new_page);
3709
3710                 /* Break COW */
3711                 huge_ptep_clear_flush(vma, haddr, ptep);
3712                 mmu_notifier_invalidate_range(mm, range.start, range.end);
3713                 set_huge_pte_at(mm, haddr, ptep,
3714                                 make_huge_pte(vma, new_page, 1));
3715                 page_remove_rmap(old_page, true);
3716                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3717                 set_page_huge_active(new_page);
3718                 /* Make the old page be freed below */
3719                 new_page = old_page;
3720         }
3721         spin_unlock(ptl);
3722         mmu_notifier_invalidate_range_end(&range);
3723 out_release_all:
3724         restore_reserve_on_error(h, vma, haddr, new_page);
3725         put_page(new_page);
3726 out_release_old:
3727         put_page(old_page);
3728
3729         spin_lock(ptl); /* Caller expects lock to be held */
3730         return ret;
3731 }
3732
3733 /* Return the pagecache page at a given address within a VMA */
3734 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3735                         struct vm_area_struct *vma, unsigned long address)
3736 {
3737         struct address_space *mapping;
3738         pgoff_t idx;
3739
3740         mapping = vma->vm_file->f_mapping;
3741         idx = vma_hugecache_offset(h, vma, address);
3742
3743         return find_lock_page(mapping, idx);
3744 }
3745
3746 /*
3747  * Return whether there is a pagecache page to back given address within VMA.
3748  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3749  */
3750 static bool hugetlbfs_pagecache_present(struct hstate *h,
3751                         struct vm_area_struct *vma, unsigned long address)
3752 {
3753         struct address_space *mapping;
3754         pgoff_t idx;
3755         struct page *page;
3756
3757         mapping = vma->vm_file->f_mapping;
3758         idx = vma_hugecache_offset(h, vma, address);
3759
3760         page = find_get_page(mapping, idx);
3761         if (page)
3762                 put_page(page);
3763         return page != NULL;
3764 }
3765
3766 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3767                            pgoff_t idx)
3768 {
3769         struct inode *inode = mapping->host;
3770         struct hstate *h = hstate_inode(inode);
3771         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3772
3773         if (err)
3774                 return err;
3775         ClearPagePrivate(page);
3776
3777         /*
3778          * set page dirty so that it will not be removed from cache/file
3779          * by non-hugetlbfs specific code paths.
3780          */
3781         set_page_dirty(page);
3782
3783         spin_lock(&inode->i_lock);
3784         inode->i_blocks += blocks_per_huge_page(h);
3785         spin_unlock(&inode->i_lock);
3786         return 0;
3787 }
3788
3789 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3790                         struct vm_area_struct *vma,
3791                         struct address_space *mapping, pgoff_t idx,
3792                         unsigned long address, pte_t *ptep, unsigned int flags)
3793 {
3794         struct hstate *h = hstate_vma(vma);
3795         vm_fault_t ret = VM_FAULT_SIGBUS;
3796         int anon_rmap = 0;
3797         unsigned long size;
3798         struct page *page;
3799         pte_t new_pte;
3800         spinlock_t *ptl;
3801         unsigned long haddr = address & huge_page_mask(h);
3802         bool new_page = false;
3803
3804         /*
3805          * Currently, we are forced to kill the process in the event the
3806          * original mapper has unmapped pages from the child due to a failed
3807          * COW. Warn that such a situation has occurred as it may not be obvious
3808          */
3809         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3810                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3811                            current->pid);
3812                 return ret;
3813         }
3814
3815         /*
3816          * Use page lock to guard against racing truncation
3817          * before we get page_table_lock.
3818          */
3819 retry:
3820         page = find_lock_page(mapping, idx);
3821         if (!page) {
3822                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3823                 if (idx >= size)
3824                         goto out;
3825
3826                 /*
3827                  * Check for page in userfault range
3828                  */
3829                 if (userfaultfd_missing(vma)) {
3830                         u32 hash;
3831                         struct vm_fault vmf = {
3832                                 .vma = vma,
3833                                 .address = haddr,
3834                                 .flags = flags,
3835                                 /*
3836                                  * Hard to debug if it ends up being
3837                                  * used by a callee that assumes
3838                                  * something about the other
3839                                  * uninitialized fields... same as in
3840                                  * memory.c
3841                                  */
3842                         };
3843
3844                         /*
3845                          * hugetlb_fault_mutex must be dropped before
3846                          * handling userfault.  Reacquire after handling
3847                          * fault to make calling code simpler.
3848                          */
3849                         hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3850                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3851                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3852                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3853                         goto out;
3854                 }
3855
3856                 page = alloc_huge_page(vma, haddr, 0);
3857                 if (IS_ERR(page)) {
3858                         /*
3859                          * Returning error will result in faulting task being
3860                          * sent SIGBUS.  The hugetlb fault mutex prevents two
3861                          * tasks from racing to fault in the same page which
3862                          * could result in false unable to allocate errors.
3863                          * Page migration does not take the fault mutex, but
3864                          * does a clear then write of pte's under page table
3865                          * lock.  Page fault code could race with migration,
3866                          * notice the clear pte and try to allocate a page
3867                          * here.  Before returning error, get ptl and make
3868                          * sure there really is no pte entry.
3869                          */
3870                         ptl = huge_pte_lock(h, mm, ptep);
3871                         if (!huge_pte_none(huge_ptep_get(ptep))) {
3872                                 ret = 0;
3873                                 spin_unlock(ptl);
3874                                 goto out;
3875                         }
3876                         spin_unlock(ptl);
3877                         ret = vmf_error(PTR_ERR(page));
3878                         goto out;
3879                 }
3880                 clear_huge_page(page, address, pages_per_huge_page(h));
3881                 __SetPageUptodate(page);
3882                 new_page = true;
3883
3884                 if (vma->vm_flags & VM_MAYSHARE) {
3885                         int err = huge_add_to_page_cache(page, mapping, idx);
3886                         if (err) {
3887                                 put_page(page);
3888                                 if (err == -EEXIST)
3889                                         goto retry;
3890                                 goto out;
3891                         }
3892                 } else {
3893                         lock_page(page);
3894                         if (unlikely(anon_vma_prepare(vma))) {
3895                                 ret = VM_FAULT_OOM;
3896                                 goto backout_unlocked;
3897                         }
3898                         anon_rmap = 1;
3899                 }
3900         } else {
3901                 /*
3902                  * If memory error occurs between mmap() and fault, some process
3903                  * don't have hwpoisoned swap entry for errored virtual address.
3904                  * So we need to block hugepage fault by PG_hwpoison bit check.
3905                  */
3906                 if (unlikely(PageHWPoison(page))) {
3907                         ret = VM_FAULT_HWPOISON |
3908                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3909                         goto backout_unlocked;
3910                 }
3911         }
3912
3913         /*
3914          * If we are going to COW a private mapping later, we examine the
3915          * pending reservations for this page now. This will ensure that
3916          * any allocations necessary to record that reservation occur outside
3917          * the spinlock.
3918          */
3919         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3920                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3921                         ret = VM_FAULT_OOM;
3922                         goto backout_unlocked;
3923                 }
3924                 /* Just decrements count, does not deallocate */
3925                 vma_end_reservation(h, vma, haddr);
3926         }
3927
3928         ptl = huge_pte_lock(h, mm, ptep);
3929         size = i_size_read(mapping->host) >> huge_page_shift(h);
3930         if (idx >= size)
3931                 goto backout;
3932
3933         ret = 0;
3934         if (!huge_pte_none(huge_ptep_get(ptep)))
3935                 goto backout;
3936
3937         if (anon_rmap) {
3938                 ClearPagePrivate(page);
3939                 hugepage_add_new_anon_rmap(page, vma, haddr);
3940         } else
3941                 page_dup_rmap(page, true);
3942         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3943                                 && (vma->vm_flags & VM_SHARED)));
3944         set_huge_pte_at(mm, haddr, ptep, new_pte);
3945
3946         hugetlb_count_add(pages_per_huge_page(h), mm);
3947         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3948                 /* Optimization, do the COW without a second fault */
3949                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3950         }
3951
3952         spin_unlock(ptl);
3953
3954         /*
3955          * Only make newly allocated pages active.  Existing pages found
3956          * in the pagecache could be !page_huge_active() if they have been
3957          * isolated for migration.
3958          */
3959         if (new_page)
3960                 set_page_huge_active(page);
3961
3962         unlock_page(page);
3963 out:
3964         return ret;
3965
3966 backout:
3967         spin_unlock(ptl);
3968 backout_unlocked:
3969         unlock_page(page);
3970         restore_reserve_on_error(h, vma, haddr, page);
3971         put_page(page);
3972         goto out;
3973 }
3974
3975 #ifdef CONFIG_SMP
3976 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3977                             pgoff_t idx, unsigned long address)
3978 {
3979         unsigned long key[2];
3980         u32 hash;
3981
3982         key[0] = (unsigned long) mapping;
3983         key[1] = idx;
3984
3985         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3986
3987         return hash & (num_fault_mutexes - 1);
3988 }
3989 #else
3990 /*
3991  * For uniprocesor systems we always use a single mutex, so just
3992  * return 0 and avoid the hashing overhead.
3993  */
3994 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3995                             pgoff_t idx, unsigned long address)
3996 {
3997         return 0;
3998 }
3999 #endif
4000
4001 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4002                         unsigned long address, unsigned int flags)
4003 {
4004         pte_t *ptep, entry;
4005         spinlock_t *ptl;
4006         vm_fault_t ret;
4007         u32 hash;
4008         pgoff_t idx;
4009         struct page *page = NULL;
4010         struct page *pagecache_page = NULL;
4011         struct hstate *h = hstate_vma(vma);
4012         struct address_space *mapping;
4013         int need_wait_lock = 0;
4014         unsigned long haddr = address & huge_page_mask(h);
4015
4016         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4017         if (ptep) {
4018                 entry = huge_ptep_get(ptep);
4019                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4020                         migration_entry_wait_huge(vma, mm, ptep);
4021                         return 0;
4022                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4023                         return VM_FAULT_HWPOISON_LARGE |
4024                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4025         } else {
4026                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4027                 if (!ptep)
4028                         return VM_FAULT_OOM;
4029         }
4030
4031         mapping = vma->vm_file->f_mapping;
4032         idx = vma_hugecache_offset(h, vma, haddr);
4033
4034         /*
4035          * Serialize hugepage allocation and instantiation, so that we don't
4036          * get spurious allocation failures if two CPUs race to instantiate
4037          * the same page in the page cache.
4038          */
4039         hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4040         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4041
4042         entry = huge_ptep_get(ptep);
4043         if (huge_pte_none(entry)) {
4044                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4045                 goto out_mutex;
4046         }
4047
4048         ret = 0;
4049
4050         /*
4051          * entry could be a migration/hwpoison entry at this point, so this
4052          * check prevents the kernel from going below assuming that we have
4053          * a active hugepage in pagecache. This goto expects the 2nd page fault,
4054          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4055          * handle it.
4056          */
4057         if (!pte_present(entry))
4058                 goto out_mutex;
4059
4060         /*
4061          * If we are going to COW the mapping later, we examine the pending
4062          * reservations for this page now. This will ensure that any
4063          * allocations necessary to record that reservation occur outside the
4064          * spinlock. For private mappings, we also lookup the pagecache
4065          * page now as it is used to determine if a reservation has been
4066          * consumed.
4067          */
4068         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4069                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4070                         ret = VM_FAULT_OOM;
4071                         goto out_mutex;
4072                 }
4073                 /* Just decrements count, does not deallocate */
4074                 vma_end_reservation(h, vma, haddr);
4075
4076                 if (!(vma->vm_flags & VM_MAYSHARE))
4077                         pagecache_page = hugetlbfs_pagecache_page(h,
4078                                                                 vma, haddr);
4079         }
4080
4081         ptl = huge_pte_lock(h, mm, ptep);
4082
4083         /* Check for a racing update before calling hugetlb_cow */
4084         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4085                 goto out_ptl;
4086
4087         /*
4088          * hugetlb_cow() requires page locks of pte_page(entry) and
4089          * pagecache_page, so here we need take the former one
4090          * when page != pagecache_page or !pagecache_page.
4091          */
4092         page = pte_page(entry);
4093         if (page != pagecache_page)
4094                 if (!trylock_page(page)) {
4095                         need_wait_lock = 1;
4096                         goto out_ptl;
4097                 }
4098
4099         get_page(page);
4100
4101         if (flags & FAULT_FLAG_WRITE) {
4102                 if (!huge_pte_write(entry)) {
4103                         ret = hugetlb_cow(mm, vma, address, ptep,
4104                                           pagecache_page, ptl);
4105                         goto out_put_page;
4106                 }
4107                 entry = huge_pte_mkdirty(entry);
4108         }
4109         entry = pte_mkyoung(entry);
4110         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4111                                                 flags & FAULT_FLAG_WRITE))
4112                 update_mmu_cache(vma, haddr, ptep);
4113 out_put_page:
4114         if (page != pagecache_page)
4115                 unlock_page(page);
4116         put_page(page);
4117 out_ptl:
4118         spin_unlock(ptl);
4119
4120         if (pagecache_page) {
4121                 unlock_page(pagecache_page);
4122                 put_page(pagecache_page);
4123         }
4124 out_mutex:
4125         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4126         /*
4127          * Generally it's safe to hold refcount during waiting page lock. But
4128          * here we just wait to defer the next page fault to avoid busy loop and
4129          * the page is not used after unlocked before returning from the current
4130          * page fault. So we are safe from accessing freed page, even if we wait
4131          * here without taking refcount.
4132          */
4133         if (need_wait_lock)
4134                 wait_on_page_locked(page);
4135         return ret;
4136 }
4137
4138 /*
4139  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4140  * modifications for huge pages.
4141  */
4142 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4143                             pte_t *dst_pte,
4144                             struct vm_area_struct *dst_vma,
4145                             unsigned long dst_addr,
4146                             unsigned long src_addr,
4147                             struct page **pagep)
4148 {
4149         struct address_space *mapping;
4150         pgoff_t idx;
4151         unsigned long size;
4152         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4153         struct hstate *h = hstate_vma(dst_vma);
4154         pte_t _dst_pte;
4155         spinlock_t *ptl;
4156         int ret;
4157         struct page *page;
4158
4159         if (!*pagep) {
4160                 ret = -ENOMEM;
4161                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4162                 if (IS_ERR(page))
4163                         goto out;
4164
4165                 ret = copy_huge_page_from_user(page,
4166                                                 (const void __user *) src_addr,
4167                                                 pages_per_huge_page(h), false);
4168
4169                 /* fallback to copy_from_user outside mmap_sem */
4170                 if (unlikely(ret)) {
4171                         ret = -ENOENT;
4172                         *pagep = page;
4173                         /* don't free the page */
4174                         goto out;
4175                 }
4176         } else {
4177                 page = *pagep;
4178                 *pagep = NULL;
4179         }
4180
4181         /*
4182          * The memory barrier inside __SetPageUptodate makes sure that
4183          * preceding stores to the page contents become visible before
4184          * the set_pte_at() write.
4185          */
4186         __SetPageUptodate(page);
4187
4188         mapping = dst_vma->vm_file->f_mapping;
4189         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4190
4191         /*
4192          * If shared, add to page cache
4193          */
4194         if (vm_shared) {
4195                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4196                 ret = -EFAULT;
4197                 if (idx >= size)
4198                         goto out_release_nounlock;
4199
4200                 /*
4201                  * Serialization between remove_inode_hugepages() and
4202                  * huge_add_to_page_cache() below happens through the
4203                  * hugetlb_fault_mutex_table that here must be hold by
4204                  * the caller.
4205                  */
4206                 ret = huge_add_to_page_cache(page, mapping, idx);
4207                 if (ret)
4208                         goto out_release_nounlock;
4209         }
4210
4211         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4212         spin_lock(ptl);
4213
4214         /*
4215          * Recheck the i_size after holding PT lock to make sure not
4216          * to leave any page mapped (as page_mapped()) beyond the end
4217          * of the i_size (remove_inode_hugepages() is strict about
4218          * enforcing that). If we bail out here, we'll also leave a
4219          * page in the radix tree in the vm_shared case beyond the end
4220          * of the i_size, but remove_inode_hugepages() will take care
4221          * of it as soon as we drop the hugetlb_fault_mutex_table.
4222          */
4223         size = i_size_read(mapping->host) >> huge_page_shift(h);
4224         ret = -EFAULT;
4225         if (idx >= size)
4226                 goto out_release_unlock;
4227
4228         ret = -EEXIST;
4229         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4230                 goto out_release_unlock;
4231
4232         if (vm_shared) {
4233                 page_dup_rmap(page, true);
4234         } else {
4235                 ClearPagePrivate(page);
4236                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4237         }
4238
4239         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4240         if (dst_vma->vm_flags & VM_WRITE)
4241                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4242         _dst_pte = pte_mkyoung(_dst_pte);
4243
4244         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4245
4246         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4247                                         dst_vma->vm_flags & VM_WRITE);
4248         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4249
4250         /* No need to invalidate - it was non-present before */
4251         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4252
4253         spin_unlock(ptl);
4254         set_page_huge_active(page);
4255         if (vm_shared)
4256                 unlock_page(page);
4257         ret = 0;
4258 out:
4259         return ret;
4260 out_release_unlock:
4261         spin_unlock(ptl);
4262         if (vm_shared)
4263                 unlock_page(page);
4264 out_release_nounlock:
4265         put_page(page);
4266         goto out;
4267 }
4268
4269 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4270                          struct page **pages, struct vm_area_struct **vmas,
4271                          unsigned long *position, unsigned long *nr_pages,
4272                          long i, unsigned int flags, int *nonblocking)
4273 {
4274         unsigned long pfn_offset;
4275         unsigned long vaddr = *position;
4276         unsigned long remainder = *nr_pages;
4277         struct hstate *h = hstate_vma(vma);
4278         int err = -EFAULT;
4279
4280         while (vaddr < vma->vm_end && remainder) {
4281                 pte_t *pte;
4282                 spinlock_t *ptl = NULL;
4283                 int absent;
4284                 struct page *page;
4285
4286                 /*
4287                  * If we have a pending SIGKILL, don't keep faulting pages and
4288                  * potentially allocating memory.
4289                  */
4290                 if (fatal_signal_pending(current)) {
4291                         remainder = 0;
4292                         break;
4293                 }
4294
4295                 /*
4296                  * Some archs (sparc64, sh*) have multiple pte_ts to
4297                  * each hugepage.  We have to make sure we get the
4298                  * first, for the page indexing below to work.
4299                  *
4300                  * Note that page table lock is not held when pte is null.
4301                  */
4302                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4303                                       huge_page_size(h));
4304                 if (pte)
4305                         ptl = huge_pte_lock(h, mm, pte);
4306                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4307
4308                 /*
4309                  * When coredumping, it suits get_dump_page if we just return
4310                  * an error where there's an empty slot with no huge pagecache
4311                  * to back it.  This way, we avoid allocating a hugepage, and
4312                  * the sparse dumpfile avoids allocating disk blocks, but its
4313                  * huge holes still show up with zeroes where they need to be.
4314                  */
4315                 if (absent && (flags & FOLL_DUMP) &&
4316                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4317                         if (pte)
4318                                 spin_unlock(ptl);
4319                         remainder = 0;
4320                         break;
4321                 }
4322
4323                 /*
4324                  * We need call hugetlb_fault for both hugepages under migration
4325                  * (in which case hugetlb_fault waits for the migration,) and
4326                  * hwpoisoned hugepages (in which case we need to prevent the
4327                  * caller from accessing to them.) In order to do this, we use
4328                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4329                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4330                  * both cases, and because we can't follow correct pages
4331                  * directly from any kind of swap entries.
4332                  */
4333                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4334                     ((flags & FOLL_WRITE) &&
4335                       !huge_pte_write(huge_ptep_get(pte)))) {
4336                         vm_fault_t ret;
4337                         unsigned int fault_flags = 0;
4338
4339                         if (pte)
4340                                 spin_unlock(ptl);
4341                         if (flags & FOLL_WRITE)
4342                                 fault_flags |= FAULT_FLAG_WRITE;
4343                         if (nonblocking)
4344                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4345                         if (flags & FOLL_NOWAIT)
4346                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4347                                         FAULT_FLAG_RETRY_NOWAIT;
4348                         if (flags & FOLL_TRIED) {
4349                                 VM_WARN_ON_ONCE(fault_flags &
4350                                                 FAULT_FLAG_ALLOW_RETRY);
4351                                 fault_flags |= FAULT_FLAG_TRIED;
4352                         }
4353                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4354                         if (ret & VM_FAULT_ERROR) {
4355                                 err = vm_fault_to_errno(ret, flags);
4356                                 remainder = 0;
4357                                 break;
4358                         }
4359                         if (ret & VM_FAULT_RETRY) {
4360                                 if (nonblocking &&
4361                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4362                                         *nonblocking = 0;
4363                                 *nr_pages = 0;
4364                                 /*
4365                                  * VM_FAULT_RETRY must not return an
4366                                  * error, it will return zero
4367                                  * instead.
4368                                  *
4369                                  * No need to update "position" as the
4370                                  * caller will not check it after
4371                                  * *nr_pages is set to 0.
4372                                  */
4373                                 return i;
4374                         }
4375                         continue;
4376                 }
4377
4378                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4379                 page = pte_page(huge_ptep_get(pte));
4380
4381                 /*
4382                  * Instead of doing 'try_get_page()' below in the same_page
4383                  * loop, just check the count once here.
4384                  */
4385                 if (unlikely(page_count(page) <= 0)) {
4386                         if (pages) {
4387                                 spin_unlock(ptl);
4388                                 remainder = 0;
4389                                 err = -ENOMEM;
4390                                 break;
4391                         }
4392                 }
4393 same_page:
4394                 if (pages) {
4395                         pages[i] = mem_map_offset(page, pfn_offset);
4396                         get_page(pages[i]);
4397                 }
4398
4399                 if (vmas)
4400                         vmas[i] = vma;
4401
4402                 vaddr += PAGE_SIZE;
4403                 ++pfn_offset;
4404                 --remainder;
4405                 ++i;
4406                 if (vaddr < vma->vm_end && remainder &&
4407                                 pfn_offset < pages_per_huge_page(h)) {
4408                         /*
4409                          * We use pfn_offset to avoid touching the pageframes
4410                          * of this compound page.
4411                          */
4412                         goto same_page;
4413                 }
4414                 spin_unlock(ptl);
4415         }
4416         *nr_pages = remainder;
4417         /*
4418          * setting position is actually required only if remainder is
4419          * not zero but it's faster not to add a "if (remainder)"
4420          * branch.
4421          */
4422         *position = vaddr;
4423
4424         return i ? i : err;
4425 }
4426
4427 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4428 /*
4429  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4430  * implement this.
4431  */
4432 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4433 #endif
4434
4435 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4436                 unsigned long address, unsigned long end, pgprot_t newprot)
4437 {
4438         struct mm_struct *mm = vma->vm_mm;
4439         unsigned long start = address;
4440         pte_t *ptep;
4441         pte_t pte;
4442         struct hstate *h = hstate_vma(vma);
4443         unsigned long pages = 0;
4444         bool shared_pmd = false;
4445         struct mmu_notifier_range range;
4446
4447         /*
4448          * In the case of shared PMDs, the area to flush could be beyond
4449          * start/end.  Set range.start/range.end to cover the maximum possible
4450          * range if PMD sharing is possible.
4451          */
4452         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4453                                 0, vma, mm, start, end);
4454         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4455
4456         BUG_ON(address >= end);
4457         flush_cache_range(vma, range.start, range.end);
4458
4459         mmu_notifier_invalidate_range_start(&range);
4460         i_mmap_lock_write(vma->vm_file->f_mapping);
4461         for (; address < end; address += huge_page_size(h)) {
4462                 spinlock_t *ptl;
4463                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4464                 if (!ptep)
4465                         continue;
4466                 ptl = huge_pte_lock(h, mm, ptep);
4467                 if (huge_pmd_unshare(mm, &address, ptep)) {
4468                         pages++;
4469                         spin_unlock(ptl);
4470                         shared_pmd = true;
4471                         continue;
4472                 }
4473                 pte = huge_ptep_get(ptep);
4474                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4475                         spin_unlock(ptl);
4476                         continue;
4477                 }
4478                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4479                         swp_entry_t entry = pte_to_swp_entry(pte);
4480
4481                         if (is_write_migration_entry(entry)) {
4482                                 pte_t newpte;
4483
4484                                 make_migration_entry_read(&entry);
4485                                 newpte = swp_entry_to_pte(entry);
4486                                 set_huge_swap_pte_at(mm, address, ptep,
4487                                                      newpte, huge_page_size(h));
4488                                 pages++;
4489                         }
4490                         spin_unlock(ptl);
4491                         continue;
4492                 }
4493                 if (!huge_pte_none(pte)) {
4494                         pte_t old_pte;
4495
4496                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4497                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4498                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4499                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4500                         pages++;
4501                 }
4502                 spin_unlock(ptl);
4503         }
4504         /*
4505          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4506          * may have cleared our pud entry and done put_page on the page table:
4507          * once we release i_mmap_rwsem, another task can do the final put_page
4508          * and that page table be reused and filled with junk.  If we actually
4509          * did unshare a page of pmds, flush the range corresponding to the pud.
4510          */
4511         if (shared_pmd)
4512                 flush_hugetlb_tlb_range(vma, range.start, range.end);
4513         else
4514                 flush_hugetlb_tlb_range(vma, start, end);
4515         /*
4516          * No need to call mmu_notifier_invalidate_range() we are downgrading
4517          * page table protection not changing it to point to a new page.
4518          *
4519          * See Documentation/vm/mmu_notifier.rst
4520          */
4521         i_mmap_unlock_write(vma->vm_file->f_mapping);
4522         mmu_notifier_invalidate_range_end(&range);
4523
4524         return pages << h->order;
4525 }
4526
4527 int hugetlb_reserve_pages(struct inode *inode,
4528                                         long from, long to,
4529                                         struct vm_area_struct *vma,
4530                                         vm_flags_t vm_flags)
4531 {
4532         long ret, chg;
4533         struct hstate *h = hstate_inode(inode);
4534         struct hugepage_subpool *spool = subpool_inode(inode);
4535         struct resv_map *resv_map;
4536         long gbl_reserve;
4537
4538         /* This should never happen */
4539         if (from > to) {
4540                 VM_WARN(1, "%s called with a negative range\n", __func__);
4541                 return -EINVAL;
4542         }
4543
4544         /*
4545          * Only apply hugepage reservation if asked. At fault time, an
4546          * attempt will be made for VM_NORESERVE to allocate a page
4547          * without using reserves
4548          */
4549         if (vm_flags & VM_NORESERVE)
4550                 return 0;
4551
4552         /*
4553          * Shared mappings base their reservation on the number of pages that
4554          * are already allocated on behalf of the file. Private mappings need
4555          * to reserve the full area even if read-only as mprotect() may be
4556          * called to make the mapping read-write. Assume !vma is a shm mapping
4557          */
4558         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4559                 /*
4560                  * resv_map can not be NULL as hugetlb_reserve_pages is only
4561                  * called for inodes for which resv_maps were created (see
4562                  * hugetlbfs_get_inode).
4563                  */
4564                 resv_map = inode_resv_map(inode);
4565
4566                 chg = region_chg(resv_map, from, to);
4567
4568         } else {
4569                 resv_map = resv_map_alloc();
4570                 if (!resv_map)
4571                         return -ENOMEM;
4572
4573                 chg = to - from;
4574
4575                 set_vma_resv_map(vma, resv_map);
4576                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4577         }
4578
4579         if (chg < 0) {
4580                 ret = chg;
4581                 goto out_err;
4582         }
4583
4584         /*
4585          * There must be enough pages in the subpool for the mapping. If
4586          * the subpool has a minimum size, there may be some global
4587          * reservations already in place (gbl_reserve).
4588          */
4589         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4590         if (gbl_reserve < 0) {
4591                 ret = -ENOSPC;
4592                 goto out_err;
4593         }
4594
4595         /*
4596          * Check enough hugepages are available for the reservation.
4597          * Hand the pages back to the subpool if there are not
4598          */
4599         ret = hugetlb_acct_memory(h, gbl_reserve);
4600         if (ret < 0) {
4601                 /* put back original number of pages, chg */
4602                 (void)hugepage_subpool_put_pages(spool, chg);
4603                 goto out_err;
4604         }
4605
4606         /*
4607          * Account for the reservations made. Shared mappings record regions
4608          * that have reservations as they are shared by multiple VMAs.
4609          * When the last VMA disappears, the region map says how much
4610          * the reservation was and the page cache tells how much of
4611          * the reservation was consumed. Private mappings are per-VMA and
4612          * only the consumed reservations are tracked. When the VMA
4613          * disappears, the original reservation is the VMA size and the
4614          * consumed reservations are stored in the map. Hence, nothing
4615          * else has to be done for private mappings here
4616          */
4617         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4618                 long add = region_add(resv_map, from, to);
4619
4620                 if (unlikely(chg > add)) {
4621                         /*
4622                          * pages in this range were added to the reserve
4623                          * map between region_chg and region_add.  This
4624                          * indicates a race with alloc_huge_page.  Adjust
4625                          * the subpool and reserve counts modified above
4626                          * based on the difference.
4627                          */
4628                         long rsv_adjust;
4629
4630                         rsv_adjust = hugepage_subpool_put_pages(spool,
4631                                                                 chg - add);
4632                         hugetlb_acct_memory(h, -rsv_adjust);
4633                 }
4634         }
4635         return 0;
4636 out_err:
4637         if (!vma || vma->vm_flags & VM_MAYSHARE)
4638                 /* Don't call region_abort if region_chg failed */
4639                 if (chg >= 0)
4640                         region_abort(resv_map, from, to);
4641         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4642                 kref_put(&resv_map->refs, resv_map_release);
4643         return ret;
4644 }
4645
4646 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4647                                                                 long freed)
4648 {
4649         struct hstate *h = hstate_inode(inode);
4650         struct resv_map *resv_map = inode_resv_map(inode);
4651         long chg = 0;
4652         struct hugepage_subpool *spool = subpool_inode(inode);
4653         long gbl_reserve;
4654
4655         /*
4656          * Since this routine can be called in the evict inode path for all
4657          * hugetlbfs inodes, resv_map could be NULL.
4658          */
4659         if (resv_map) {
4660                 chg = region_del(resv_map, start, end);
4661                 /*
4662                  * region_del() can fail in the rare case where a region
4663                  * must be split and another region descriptor can not be
4664                  * allocated.  If end == LONG_MAX, it will not fail.
4665                  */
4666                 if (chg < 0)
4667                         return chg;
4668         }
4669
4670         spin_lock(&inode->i_lock);
4671         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4672         spin_unlock(&inode->i_lock);
4673
4674         /*
4675          * If the subpool has a minimum size, the number of global
4676          * reservations to be released may be adjusted.
4677          */
4678         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4679         hugetlb_acct_memory(h, -gbl_reserve);
4680
4681         return 0;
4682 }
4683
4684 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4685 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4686                                 struct vm_area_struct *vma,
4687                                 unsigned long addr, pgoff_t idx)
4688 {
4689         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4690                                 svma->vm_start;
4691         unsigned long sbase = saddr & PUD_MASK;
4692         unsigned long s_end = sbase + PUD_SIZE;
4693
4694         /* Allow segments to share if only one is marked locked */
4695         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4696         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4697
4698         /*
4699          * match the virtual addresses, permission and the alignment of the
4700          * page table page.
4701          */
4702         if (pmd_index(addr) != pmd_index(saddr) ||
4703             vm_flags != svm_flags ||
4704             sbase < svma->vm_start || svma->vm_end < s_end)
4705                 return 0;
4706
4707         return saddr;
4708 }
4709
4710 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4711 {
4712         unsigned long base = addr & PUD_MASK;
4713         unsigned long end = base + PUD_SIZE;
4714
4715         /*
4716          * check on proper vm_flags and page table alignment
4717          */
4718         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4719                 return true;
4720         return false;
4721 }
4722
4723 /*
4724  * Determine if start,end range within vma could be mapped by shared pmd.
4725  * If yes, adjust start and end to cover range associated with possible
4726  * shared pmd mappings.
4727  */
4728 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4729                                 unsigned long *start, unsigned long *end)
4730 {
4731         unsigned long check_addr = *start;
4732
4733         if (!(vma->vm_flags & VM_MAYSHARE))
4734                 return;
4735
4736         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4737                 unsigned long a_start = check_addr & PUD_MASK;
4738                 unsigned long a_end = a_start + PUD_SIZE;
4739
4740                 /*
4741                  * If sharing is possible, adjust start/end if necessary.
4742                  */
4743                 if (range_in_vma(vma, a_start, a_end)) {
4744                         if (a_start < *start)
4745                                 *start = a_start;
4746                         if (a_end > *end)
4747                                 *end = a_end;
4748                 }
4749         }
4750 }
4751
4752 /*
4753  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4754  * and returns the corresponding pte. While this is not necessary for the
4755  * !shared pmd case because we can allocate the pmd later as well, it makes the
4756  * code much cleaner. pmd allocation is essential for the shared case because
4757  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4758  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4759  * bad pmd for sharing.
4760  */
4761 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4762 {
4763         struct vm_area_struct *vma = find_vma(mm, addr);
4764         struct address_space *mapping = vma->vm_file->f_mapping;
4765         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4766                         vma->vm_pgoff;
4767         struct vm_area_struct *svma;
4768         unsigned long saddr;
4769         pte_t *spte = NULL;
4770         pte_t *pte;
4771         spinlock_t *ptl;
4772
4773         if (!vma_shareable(vma, addr))
4774                 return (pte_t *)pmd_alloc(mm, pud, addr);
4775
4776         i_mmap_lock_write(mapping);
4777         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4778                 if (svma == vma)
4779                         continue;
4780
4781                 saddr = page_table_shareable(svma, vma, addr, idx);
4782                 if (saddr) {
4783                         spte = huge_pte_offset(svma->vm_mm, saddr,
4784                                                vma_mmu_pagesize(svma));
4785                         if (spte) {
4786                                 get_page(virt_to_page(spte));
4787                                 break;
4788                         }
4789                 }
4790         }
4791
4792         if (!spte)
4793                 goto out;
4794
4795         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4796         if (pud_none(*pud)) {
4797                 pud_populate(mm, pud,
4798                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4799                 mm_inc_nr_pmds(mm);
4800         } else {
4801                 put_page(virt_to_page(spte));
4802         }
4803         spin_unlock(ptl);
4804 out:
4805         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4806         i_mmap_unlock_write(mapping);
4807         return pte;
4808 }
4809
4810 /*
4811  * unmap huge page backed by shared pte.
4812  *
4813  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4814  * indicated by page_count > 1, unmap is achieved by clearing pud and
4815  * decrementing the ref count. If count == 1, the pte page is not shared.
4816  *
4817  * called with page table lock held.
4818  *
4819  * returns: 1 successfully unmapped a shared pte page
4820  *          0 the underlying pte page is not shared, or it is the last user
4821  */
4822 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4823 {
4824         pgd_t *pgd = pgd_offset(mm, *addr);
4825         p4d_t *p4d = p4d_offset(pgd, *addr);
4826         pud_t *pud = pud_offset(p4d, *addr);
4827
4828         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4829         if (page_count(virt_to_page(ptep)) == 1)
4830                 return 0;
4831
4832         pud_clear(pud);
4833         put_page(virt_to_page(ptep));
4834         mm_dec_nr_pmds(mm);
4835         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4836         return 1;
4837 }
4838 #define want_pmd_share()        (1)
4839 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4840 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4841 {
4842         return NULL;
4843 }
4844
4845 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4846 {
4847         return 0;
4848 }
4849
4850 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4851                                 unsigned long *start, unsigned long *end)
4852 {
4853 }
4854 #define want_pmd_share()        (0)
4855 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4856
4857 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4858 pte_t *huge_pte_alloc(struct mm_struct *mm,
4859                         unsigned long addr, unsigned long sz)
4860 {
4861         pgd_t *pgd;
4862         p4d_t *p4d;
4863         pud_t *pud;
4864         pte_t *pte = NULL;
4865
4866         pgd = pgd_offset(mm, addr);
4867         p4d = p4d_alloc(mm, pgd, addr);
4868         if (!p4d)
4869                 return NULL;
4870         pud = pud_alloc(mm, p4d, addr);
4871         if (pud) {
4872                 if (sz == PUD_SIZE) {
4873                         pte = (pte_t *)pud;
4874                 } else {
4875                         BUG_ON(sz != PMD_SIZE);
4876                         if (want_pmd_share() && pud_none(*pud))
4877                                 pte = huge_pmd_share(mm, addr, pud);
4878                         else
4879                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4880                 }
4881         }
4882         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4883
4884         return pte;
4885 }
4886
4887 /*
4888  * huge_pte_offset() - Walk the page table to resolve the hugepage
4889  * entry at address @addr
4890  *
4891  * Return: Pointer to page table or swap entry (PUD or PMD) for
4892  * address @addr, or NULL if a p*d_none() entry is encountered and the
4893  * size @sz doesn't match the hugepage size at this level of the page
4894  * table.
4895  */
4896 pte_t *huge_pte_offset(struct mm_struct *mm,
4897                        unsigned long addr, unsigned long sz)
4898 {
4899         pgd_t *pgd;
4900         p4d_t *p4d;
4901         pud_t *pud;
4902         pmd_t *pmd;
4903
4904         pgd = pgd_offset(mm, addr);
4905         if (!pgd_present(*pgd))
4906                 return NULL;
4907         p4d = p4d_offset(pgd, addr);
4908         if (!p4d_present(*p4d))
4909                 return NULL;
4910
4911         pud = pud_offset(p4d, addr);
4912         if (sz != PUD_SIZE && pud_none(*pud))
4913                 return NULL;
4914         /* hugepage or swap? */
4915         if (pud_huge(*pud) || !pud_present(*pud))
4916                 return (pte_t *)pud;
4917
4918         pmd = pmd_offset(pud, addr);
4919         if (sz != PMD_SIZE && pmd_none(*pmd))
4920                 return NULL;
4921         /* hugepage or swap? */
4922         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4923                 return (pte_t *)pmd;
4924
4925         return NULL;
4926 }
4927
4928 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4929
4930 /*
4931  * These functions are overwritable if your architecture needs its own
4932  * behavior.
4933  */
4934 struct page * __weak
4935 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4936                               int write)
4937 {
4938         return ERR_PTR(-EINVAL);
4939 }
4940
4941 struct page * __weak
4942 follow_huge_pd(struct vm_area_struct *vma,
4943                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4944 {
4945         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4946         return NULL;
4947 }
4948
4949 struct page * __weak
4950 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4951                 pmd_t *pmd, int flags)
4952 {
4953         struct page *page = NULL;
4954         spinlock_t *ptl;
4955         pte_t pte;
4956 retry:
4957         ptl = pmd_lockptr(mm, pmd);
4958         spin_lock(ptl);
4959         /*
4960          * make sure that the address range covered by this pmd is not
4961          * unmapped from other threads.
4962          */
4963         if (!pmd_huge(*pmd))
4964                 goto out;
4965         pte = huge_ptep_get((pte_t *)pmd);
4966         if (pte_present(pte)) {
4967                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4968                 if (flags & FOLL_GET)
4969                         get_page(page);
4970         } else {
4971                 if (is_hugetlb_entry_migration(pte)) {
4972                         spin_unlock(ptl);
4973                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4974                         goto retry;
4975                 }
4976                 /*
4977                  * hwpoisoned entry is treated as no_page_table in
4978                  * follow_page_mask().
4979                  */
4980         }
4981 out:
4982         spin_unlock(ptl);
4983         return page;
4984 }
4985
4986 struct page * __weak
4987 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4988                 pud_t *pud, int flags)
4989 {
4990         if (flags & FOLL_GET)
4991                 return NULL;
4992
4993         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4994 }
4995
4996 struct page * __weak
4997 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4998 {
4999         if (flags & FOLL_GET)
5000                 return NULL;
5001
5002         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5003 }
5004
5005 bool isolate_huge_page(struct page *page, struct list_head *list)
5006 {
5007         bool ret = true;
5008
5009         VM_BUG_ON_PAGE(!PageHead(page), page);
5010         spin_lock(&hugetlb_lock);
5011         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5012                 ret = false;
5013                 goto unlock;
5014         }
5015         clear_page_huge_active(page);
5016         list_move_tail(&page->lru, list);
5017 unlock:
5018         spin_unlock(&hugetlb_lock);
5019         return ret;
5020 }
5021
5022 void putback_active_hugepage(struct page *page)
5023 {
5024         VM_BUG_ON_PAGE(!PageHead(page), page);
5025         spin_lock(&hugetlb_lock);
5026         set_page_huge_active(page);
5027         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5028         spin_unlock(&hugetlb_lock);
5029         put_page(page);
5030 }
5031
5032 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5033 {
5034         struct hstate *h = page_hstate(oldpage);
5035
5036         hugetlb_cgroup_migrate(oldpage, newpage);
5037         set_page_owner_migrate_reason(newpage, reason);
5038
5039         /*
5040          * transfer temporary state of the new huge page. This is
5041          * reverse to other transitions because the newpage is going to
5042          * be final while the old one will be freed so it takes over
5043          * the temporary status.
5044          *
5045          * Also note that we have to transfer the per-node surplus state
5046          * here as well otherwise the global surplus count will not match
5047          * the per-node's.
5048          */
5049         if (PageHugeTemporary(newpage)) {
5050                 int old_nid = page_to_nid(oldpage);
5051                 int new_nid = page_to_nid(newpage);
5052
5053                 SetPageHugeTemporary(oldpage);
5054                 ClearPageHugeTemporary(newpage);
5055
5056                 spin_lock(&hugetlb_lock);
5057                 if (h->surplus_huge_pages_node[old_nid]) {
5058                         h->surplus_huge_pages_node[old_nid]--;
5059                         h->surplus_huge_pages_node[new_nid]++;
5060                 }
5061                 spin_unlock(&hugetlb_lock);
5062         }
5063 }