Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / kernel / time / alarmtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similarto hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corperation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29
30 #include "posix-timers.h"
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/alarmtimer.h>
34
35 /**
36  * struct alarm_base - Alarm timer bases
37  * @lock:               Lock for syncrhonized access to the base
38  * @timerqueue:         Timerqueue head managing the list of events
39  * @gettime:            Function to read the time correlating to the base
40  * @base_clockid:       clockid for the base
41  */
42 static struct alarm_base {
43         spinlock_t              lock;
44         struct timerqueue_head  timerqueue;
45         ktime_t                 (*gettime)(void);
46         clockid_t               base_clockid;
47 } alarm_bases[ALARM_NUMTYPE];
48
49 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
50 /* freezer information to handle clock_nanosleep triggered wakeups */
51 static enum alarmtimer_type freezer_alarmtype;
52 static ktime_t freezer_expires;
53 static ktime_t freezer_delta;
54 static DEFINE_SPINLOCK(freezer_delta_lock);
55 #endif
56
57 #ifdef CONFIG_RTC_CLASS
58 static struct wakeup_source *ws;
59
60 /* rtc timer and device for setting alarm wakeups at suspend */
61 static struct rtc_timer         rtctimer;
62 static struct rtc_device        *rtcdev;
63 static DEFINE_SPINLOCK(rtcdev_lock);
64
65 /**
66  * alarmtimer_get_rtcdev - Return selected rtcdevice
67  *
68  * This function returns the rtc device to use for wakealarms.
69  * If one has not already been chosen, it checks to see if a
70  * functional rtc device is available.
71  */
72 struct rtc_device *alarmtimer_get_rtcdev(void)
73 {
74         unsigned long flags;
75         struct rtc_device *ret;
76
77         spin_lock_irqsave(&rtcdev_lock, flags);
78         ret = rtcdev;
79         spin_unlock_irqrestore(&rtcdev_lock, flags);
80
81         return ret;
82 }
83 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
84
85 static int alarmtimer_rtc_add_device(struct device *dev,
86                                 struct class_interface *class_intf)
87 {
88         unsigned long flags;
89         struct rtc_device *rtc = to_rtc_device(dev);
90         struct wakeup_source *__ws;
91
92         if (rtcdev)
93                 return -EBUSY;
94
95         if (!rtc->ops->set_alarm)
96                 return -1;
97         if (!device_may_wakeup(rtc->dev.parent))
98                 return -1;
99
100         __ws = wakeup_source_register("alarmtimer");
101
102         spin_lock_irqsave(&rtcdev_lock, flags);
103         if (!rtcdev) {
104                 if (!try_module_get(rtc->owner)) {
105                         spin_unlock_irqrestore(&rtcdev_lock, flags);
106                         return -1;
107                 }
108
109                 rtcdev = rtc;
110                 /* hold a reference so it doesn't go away */
111                 get_device(dev);
112                 ws = __ws;
113                 __ws = NULL;
114         }
115         spin_unlock_irqrestore(&rtcdev_lock, flags);
116
117         wakeup_source_unregister(__ws);
118
119         return 0;
120 }
121
122 static inline void alarmtimer_rtc_timer_init(void)
123 {
124         rtc_timer_init(&rtctimer, NULL, NULL);
125 }
126
127 static struct class_interface alarmtimer_rtc_interface = {
128         .add_dev = &alarmtimer_rtc_add_device,
129 };
130
131 static int alarmtimer_rtc_interface_setup(void)
132 {
133         alarmtimer_rtc_interface.class = rtc_class;
134         return class_interface_register(&alarmtimer_rtc_interface);
135 }
136 static void alarmtimer_rtc_interface_remove(void)
137 {
138         class_interface_unregister(&alarmtimer_rtc_interface);
139 }
140 #else
141 struct rtc_device *alarmtimer_get_rtcdev(void)
142 {
143         return NULL;
144 }
145 #define rtcdev (NULL)
146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147 static inline void alarmtimer_rtc_interface_remove(void) { }
148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153  * @base: pointer to the base where the timer is being run
154  * @alarm: pointer to alarm being enqueued.
155  *
156  * Adds alarm to a alarm_base timerqueue
157  *
158  * Must hold base->lock when calling.
159  */
160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163                 timerqueue_del(&base->timerqueue, &alarm->node);
164
165         timerqueue_add(&base->timerqueue, &alarm->node);
166         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171  * @base: pointer to the base where the timer is running
172  * @alarm: pointer to alarm being removed
173  *
174  * Removes alarm to a alarm_base timerqueue
175  *
176  * Must hold base->lock when calling.
177  */
178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181                 return;
182
183         timerqueue_del(&base->timerqueue, &alarm->node);
184         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189  * alarmtimer_fired - Handles alarm hrtimer being fired.
190  * @timer: pointer to hrtimer being run
191  *
192  * When a alarm timer fires, this runs through the timerqueue to
193  * see which alarms expired, and runs those. If there are more alarm
194  * timers queued for the future, we set the hrtimer to fire when
195  * when the next future alarm timer expires.
196  */
197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199         struct alarm *alarm = container_of(timer, struct alarm, timer);
200         struct alarm_base *base = &alarm_bases[alarm->type];
201         unsigned long flags;
202         int ret = HRTIMER_NORESTART;
203         int restart = ALARMTIMER_NORESTART;
204
205         spin_lock_irqsave(&base->lock, flags);
206         alarmtimer_dequeue(base, alarm);
207         spin_unlock_irqrestore(&base->lock, flags);
208
209         if (alarm->function)
210                 restart = alarm->function(alarm, base->gettime());
211
212         spin_lock_irqsave(&base->lock, flags);
213         if (restart != ALARMTIMER_NORESTART) {
214                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215                 alarmtimer_enqueue(base, alarm);
216                 ret = HRTIMER_RESTART;
217         }
218         spin_unlock_irqrestore(&base->lock, flags);
219
220         trace_alarmtimer_fired(alarm, base->gettime());
221         return ret;
222
223 }
224
225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227         struct alarm_base *base = &alarm_bases[alarm->type];
228         return ktime_sub(alarm->node.expires, base->gettime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234  * alarmtimer_suspend - Suspend time callback
235  * @dev: unused
236  *
237  * When we are going into suspend, we look through the bases
238  * to see which is the soonest timer to expire. We then
239  * set an rtc timer to fire that far into the future, which
240  * will wake us from suspend.
241  */
242 static int alarmtimer_suspend(struct device *dev)
243 {
244         ktime_t min, now, expires;
245         int i, ret, type;
246         struct rtc_device *rtc;
247         unsigned long flags;
248         struct rtc_time tm;
249
250         spin_lock_irqsave(&freezer_delta_lock, flags);
251         min = freezer_delta;
252         expires = freezer_expires;
253         type = freezer_alarmtype;
254         freezer_delta = 0;
255         spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257         rtc = alarmtimer_get_rtcdev();
258         /* If we have no rtcdev, just return */
259         if (!rtc)
260                 return 0;
261
262         /* Find the soonest timer to expire*/
263         for (i = 0; i < ALARM_NUMTYPE; i++) {
264                 struct alarm_base *base = &alarm_bases[i];
265                 struct timerqueue_node *next;
266                 ktime_t delta;
267
268                 spin_lock_irqsave(&base->lock, flags);
269                 next = timerqueue_getnext(&base->timerqueue);
270                 spin_unlock_irqrestore(&base->lock, flags);
271                 if (!next)
272                         continue;
273                 delta = ktime_sub(next->expires, base->gettime());
274                 if (!min || (delta < min)) {
275                         expires = next->expires;
276                         min = delta;
277                         type = i;
278                 }
279         }
280         if (min == 0)
281                 return 0;
282
283         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
285                 return -EBUSY;
286         }
287
288         trace_alarmtimer_suspend(expires, type);
289
290         /* Setup an rtc timer to fire that far in the future */
291         rtc_timer_cancel(rtc, &rtctimer);
292         rtc_read_time(rtc, &tm);
293         now = rtc_tm_to_ktime(tm);
294         now = ktime_add(now, min);
295
296         /* Set alarm, if in the past reject suspend briefly to handle */
297         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298         if (ret < 0)
299                 __pm_wakeup_event(ws, MSEC_PER_SEC);
300         return ret;
301 }
302
303 static int alarmtimer_resume(struct device *dev)
304 {
305         struct rtc_device *rtc;
306
307         rtc = alarmtimer_get_rtcdev();
308         if (rtc)
309                 rtc_timer_cancel(rtc, &rtctimer);
310         return 0;
311 }
312
313 #else
314 static int alarmtimer_suspend(struct device *dev)
315 {
316         return 0;
317 }
318
319 static int alarmtimer_resume(struct device *dev)
320 {
321         return 0;
322 }
323 #endif
324
325 static void
326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328 {
329         timerqueue_init(&alarm->node);
330         alarm->timer.function = alarmtimer_fired;
331         alarm->function = function;
332         alarm->type = type;
333         alarm->state = ALARMTIMER_STATE_INACTIVE;
334 }
335
336 /**
337  * alarm_init - Initialize an alarm structure
338  * @alarm: ptr to alarm to be initialized
339  * @type: the type of the alarm
340  * @function: callback that is run when the alarm fires
341  */
342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344 {
345         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346                      HRTIMER_MODE_ABS);
347         __alarm_init(alarm, type, function);
348 }
349 EXPORT_SYMBOL_GPL(alarm_init);
350
351 /**
352  * alarm_start - Sets an absolute alarm to fire
353  * @alarm: ptr to alarm to set
354  * @start: time to run the alarm
355  */
356 void alarm_start(struct alarm *alarm, ktime_t start)
357 {
358         struct alarm_base *base = &alarm_bases[alarm->type];
359         unsigned long flags;
360
361         spin_lock_irqsave(&base->lock, flags);
362         alarm->node.expires = start;
363         alarmtimer_enqueue(base, alarm);
364         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365         spin_unlock_irqrestore(&base->lock, flags);
366
367         trace_alarmtimer_start(alarm, base->gettime());
368 }
369 EXPORT_SYMBOL_GPL(alarm_start);
370
371 /**
372  * alarm_start_relative - Sets a relative alarm to fire
373  * @alarm: ptr to alarm to set
374  * @start: time relative to now to run the alarm
375  */
376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
377 {
378         struct alarm_base *base = &alarm_bases[alarm->type];
379
380         start = ktime_add_safe(start, base->gettime());
381         alarm_start(alarm, start);
382 }
383 EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385 void alarm_restart(struct alarm *alarm)
386 {
387         struct alarm_base *base = &alarm_bases[alarm->type];
388         unsigned long flags;
389
390         spin_lock_irqsave(&base->lock, flags);
391         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392         hrtimer_restart(&alarm->timer);
393         alarmtimer_enqueue(base, alarm);
394         spin_unlock_irqrestore(&base->lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(alarm_restart);
397
398 /**
399  * alarm_try_to_cancel - Tries to cancel an alarm timer
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not running,
403  * and -1 if the callback was running
404  */
405 int alarm_try_to_cancel(struct alarm *alarm)
406 {
407         struct alarm_base *base = &alarm_bases[alarm->type];
408         unsigned long flags;
409         int ret;
410
411         spin_lock_irqsave(&base->lock, flags);
412         ret = hrtimer_try_to_cancel(&alarm->timer);
413         if (ret >= 0)
414                 alarmtimer_dequeue(base, alarm);
415         spin_unlock_irqrestore(&base->lock, flags);
416
417         trace_alarmtimer_cancel(alarm, base->gettime());
418         return ret;
419 }
420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423 /**
424  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425  * @alarm: ptr to alarm to be canceled
426  *
427  * Returns 1 if the timer was canceled, 0 if it was not active.
428  */
429 int alarm_cancel(struct alarm *alarm)
430 {
431         for (;;) {
432                 int ret = alarm_try_to_cancel(alarm);
433                 if (ret >= 0)
434                         return ret;
435                 cpu_relax();
436         }
437 }
438 EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442 {
443         u64 overrun = 1;
444         ktime_t delta;
445
446         delta = ktime_sub(now, alarm->node.expires);
447
448         if (delta < 0)
449                 return 0;
450
451         if (unlikely(delta >= interval)) {
452                 s64 incr = ktime_to_ns(interval);
453
454                 overrun = ktime_divns(delta, incr);
455
456                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457                                                         incr*overrun);
458
459                 if (alarm->node.expires > now)
460                         return overrun;
461                 /*
462                  * This (and the ktime_add() below) is the
463                  * correction for exact:
464                  */
465                 overrun++;
466         }
467
468         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469         return overrun;
470 }
471 EXPORT_SYMBOL_GPL(alarm_forward);
472
473 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474 {
475         struct alarm_base *base = &alarm_bases[alarm->type];
476
477         return alarm_forward(alarm, base->gettime(), interval);
478 }
479 EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481 #ifdef CONFIG_POSIX_TIMERS
482
483 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484 {
485         struct alarm_base *base;
486         unsigned long flags;
487         ktime_t delta;
488
489         switch(type) {
490         case ALARM_REALTIME:
491                 base = &alarm_bases[ALARM_REALTIME];
492                 type = ALARM_REALTIME_FREEZER;
493                 break;
494         case ALARM_BOOTTIME:
495                 base = &alarm_bases[ALARM_BOOTTIME];
496                 type = ALARM_BOOTTIME_FREEZER;
497                 break;
498         default:
499                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500                 return;
501         }
502
503         delta = ktime_sub(absexp, base->gettime());
504
505         spin_lock_irqsave(&freezer_delta_lock, flags);
506         if (!freezer_delta || (delta < freezer_delta)) {
507                 freezer_delta = delta;
508                 freezer_expires = absexp;
509                 freezer_alarmtype = type;
510         }
511         spin_unlock_irqrestore(&freezer_delta_lock, flags);
512 }
513
514 /**
515  * clock2alarm - helper that converts from clockid to alarmtypes
516  * @clockid: clockid.
517  */
518 static enum alarmtimer_type clock2alarm(clockid_t clockid)
519 {
520         if (clockid == CLOCK_REALTIME_ALARM)
521                 return ALARM_REALTIME;
522         if (clockid == CLOCK_BOOTTIME_ALARM)
523                 return ALARM_BOOTTIME;
524         return -1;
525 }
526
527 /**
528  * alarm_handle_timer - Callback for posix timers
529  * @alarm: alarm that fired
530  *
531  * Posix timer callback for expired alarm timers.
532  */
533 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
534                                                         ktime_t now)
535 {
536         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
537                                             it.alarm.alarmtimer);
538         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
539         unsigned long flags;
540         int si_private = 0;
541
542         spin_lock_irqsave(&ptr->it_lock, flags);
543
544         ptr->it_active = 0;
545         if (ptr->it_interval)
546                 si_private = ++ptr->it_requeue_pending;
547
548         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
549                 /*
550                  * Handle ignored signals and rearm the timer. This will go
551                  * away once we handle ignored signals proper.
552                  */
553                 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
554                 ++ptr->it_requeue_pending;
555                 ptr->it_active = 1;
556                 result = ALARMTIMER_RESTART;
557         }
558         spin_unlock_irqrestore(&ptr->it_lock, flags);
559
560         return result;
561 }
562
563 /**
564  * alarm_timer_rearm - Posix timer callback for rearming timer
565  * @timr:       Pointer to the posixtimer data struct
566  */
567 static void alarm_timer_rearm(struct k_itimer *timr)
568 {
569         struct alarm *alarm = &timr->it.alarm.alarmtimer;
570
571         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
572         alarm_start(alarm, alarm->node.expires);
573 }
574
575 /**
576  * alarm_timer_forward - Posix timer callback for forwarding timer
577  * @timr:       Pointer to the posixtimer data struct
578  * @now:        Current time to forward the timer against
579  */
580 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
581 {
582         struct alarm *alarm = &timr->it.alarm.alarmtimer;
583
584         return alarm_forward(alarm, timr->it_interval, now);
585 }
586
587 /**
588  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
589  * @timr:       Pointer to the posixtimer data struct
590  * @now:        Current time to calculate against
591  */
592 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
593 {
594         struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596         return ktime_sub(alarm->node.expires, now);
597 }
598
599 /**
600  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
601  * @timr:       Pointer to the posixtimer data struct
602  */
603 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
604 {
605         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
606 }
607
608 /**
609  * alarm_timer_arm - Posix timer callback to arm a timer
610  * @timr:       Pointer to the posixtimer data struct
611  * @expires:    The new expiry time
612  * @absolute:   Expiry value is absolute time
613  * @sigev_none: Posix timer does not deliver signals
614  */
615 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
616                             bool absolute, bool sigev_none)
617 {
618         struct alarm *alarm = &timr->it.alarm.alarmtimer;
619         struct alarm_base *base = &alarm_bases[alarm->type];
620
621         if (!absolute)
622                 expires = ktime_add_safe(expires, base->gettime());
623         if (sigev_none)
624                 alarm->node.expires = expires;
625         else
626                 alarm_start(&timr->it.alarm.alarmtimer, expires);
627 }
628
629 /**
630  * alarm_clock_getres - posix getres interface
631  * @which_clock: clockid
632  * @tp: timespec to fill
633  *
634  * Returns the granularity of underlying alarm base clock
635  */
636 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
637 {
638         if (!alarmtimer_get_rtcdev())
639                 return -EINVAL;
640
641         tp->tv_sec = 0;
642         tp->tv_nsec = hrtimer_resolution;
643         return 0;
644 }
645
646 /**
647  * alarm_clock_get - posix clock_get interface
648  * @which_clock: clockid
649  * @tp: timespec to fill.
650  *
651  * Provides the underlying alarm base time.
652  */
653 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
654 {
655         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
656
657         if (!alarmtimer_get_rtcdev())
658                 return -EINVAL;
659
660         *tp = ktime_to_timespec64(base->gettime());
661         return 0;
662 }
663
664 /**
665  * alarm_timer_create - posix timer_create interface
666  * @new_timer: k_itimer pointer to manage
667  *
668  * Initializes the k_itimer structure.
669  */
670 static int alarm_timer_create(struct k_itimer *new_timer)
671 {
672         enum  alarmtimer_type type;
673
674         if (!alarmtimer_get_rtcdev())
675                 return -EOPNOTSUPP;
676
677         if (!capable(CAP_WAKE_ALARM))
678                 return -EPERM;
679
680         type = clock2alarm(new_timer->it_clock);
681         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
682         return 0;
683 }
684
685 /**
686  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
687  * @alarm: ptr to alarm that fired
688  *
689  * Wakes up the task that set the alarmtimer
690  */
691 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
692                                                                 ktime_t now)
693 {
694         struct task_struct *task = (struct task_struct *)alarm->data;
695
696         alarm->data = NULL;
697         if (task)
698                 wake_up_process(task);
699         return ALARMTIMER_NORESTART;
700 }
701
702 /**
703  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
704  * @alarm: ptr to alarmtimer
705  * @absexp: absolute expiration time
706  *
707  * Sets the alarm timer and sleeps until it is fired or interrupted.
708  */
709 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
710                                 enum alarmtimer_type type)
711 {
712         struct restart_block *restart;
713         alarm->data = (void *)current;
714         do {
715                 set_current_state(TASK_INTERRUPTIBLE);
716                 alarm_start(alarm, absexp);
717                 if (likely(alarm->data))
718                         schedule();
719
720                 alarm_cancel(alarm);
721         } while (alarm->data && !signal_pending(current));
722
723         __set_current_state(TASK_RUNNING);
724
725         destroy_hrtimer_on_stack(&alarm->timer);
726
727         if (!alarm->data)
728                 return 0;
729
730         if (freezing(current))
731                 alarmtimer_freezerset(absexp, type);
732         restart = &current->restart_block;
733         if (restart->nanosleep.type != TT_NONE) {
734                 struct timespec64 rmt;
735                 ktime_t rem;
736
737                 rem = ktime_sub(absexp, alarm_bases[type].gettime());
738
739                 if (rem <= 0)
740                         return 0;
741                 rmt = ktime_to_timespec64(rem);
742
743                 return nanosleep_copyout(restart, &rmt);
744         }
745         return -ERESTART_RESTARTBLOCK;
746 }
747
748 static void
749 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
750                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
751 {
752         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
753                               HRTIMER_MODE_ABS);
754         __alarm_init(alarm, type, function);
755 }
756
757 /**
758  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
759  * @restart: ptr to restart block
760  *
761  * Handles restarted clock_nanosleep calls
762  */
763 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
764 {
765         enum  alarmtimer_type type = restart->nanosleep.clockid;
766         ktime_t exp = restart->nanosleep.expires;
767         struct alarm alarm;
768
769         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
770
771         return alarmtimer_do_nsleep(&alarm, exp, type);
772 }
773
774 /**
775  * alarm_timer_nsleep - alarmtimer nanosleep
776  * @which_clock: clockid
777  * @flags: determins abstime or relative
778  * @tsreq: requested sleep time (abs or rel)
779  * @rmtp: remaining sleep time saved
780  *
781  * Handles clock_nanosleep calls against _ALARM clockids
782  */
783 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
784                               const struct timespec64 *tsreq)
785 {
786         enum  alarmtimer_type type = clock2alarm(which_clock);
787         struct restart_block *restart = &current->restart_block;
788         struct alarm alarm;
789         ktime_t exp;
790         int ret = 0;
791
792         if (!alarmtimer_get_rtcdev())
793                 return -EOPNOTSUPP;
794
795         if (flags & ~TIMER_ABSTIME)
796                 return -EINVAL;
797
798         if (!capable(CAP_WAKE_ALARM))
799                 return -EPERM;
800
801         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
802
803         exp = timespec64_to_ktime(*tsreq);
804         /* Convert (if necessary) to absolute time */
805         if (flags != TIMER_ABSTIME) {
806                 ktime_t now = alarm_bases[type].gettime();
807
808                 exp = ktime_add_safe(now, exp);
809         }
810
811         ret = alarmtimer_do_nsleep(&alarm, exp, type);
812         if (ret != -ERESTART_RESTARTBLOCK)
813                 return ret;
814
815         /* abs timers don't set remaining time or restart */
816         if (flags == TIMER_ABSTIME)
817                 return -ERESTARTNOHAND;
818
819         restart->fn = alarm_timer_nsleep_restart;
820         restart->nanosleep.clockid = type;
821         restart->nanosleep.expires = exp;
822         return ret;
823 }
824
825 const struct k_clock alarm_clock = {
826         .clock_getres           = alarm_clock_getres,
827         .clock_get              = alarm_clock_get,
828         .timer_create           = alarm_timer_create,
829         .timer_set              = common_timer_set,
830         .timer_del              = common_timer_del,
831         .timer_get              = common_timer_get,
832         .timer_arm              = alarm_timer_arm,
833         .timer_rearm            = alarm_timer_rearm,
834         .timer_forward          = alarm_timer_forward,
835         .timer_remaining        = alarm_timer_remaining,
836         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
837         .nsleep                 = alarm_timer_nsleep,
838 };
839 #endif /* CONFIG_POSIX_TIMERS */
840
841
842 /* Suspend hook structures */
843 static const struct dev_pm_ops alarmtimer_pm_ops = {
844         .suspend = alarmtimer_suspend,
845         .resume = alarmtimer_resume,
846 };
847
848 static struct platform_driver alarmtimer_driver = {
849         .driver = {
850                 .name = "alarmtimer",
851                 .pm = &alarmtimer_pm_ops,
852         }
853 };
854
855 /**
856  * alarmtimer_init - Initialize alarm timer code
857  *
858  * This function initializes the alarm bases and registers
859  * the posix clock ids.
860  */
861 static int __init alarmtimer_init(void)
862 {
863         struct platform_device *pdev;
864         int error = 0;
865         int i;
866
867         alarmtimer_rtc_timer_init();
868
869         /* Initialize alarm bases */
870         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
871         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
872         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
873         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
874         for (i = 0; i < ALARM_NUMTYPE; i++) {
875                 timerqueue_init_head(&alarm_bases[i].timerqueue);
876                 spin_lock_init(&alarm_bases[i].lock);
877         }
878
879         error = alarmtimer_rtc_interface_setup();
880         if (error)
881                 return error;
882
883         error = platform_driver_register(&alarmtimer_driver);
884         if (error)
885                 goto out_if;
886
887         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
888         if (IS_ERR(pdev)) {
889                 error = PTR_ERR(pdev);
890                 goto out_drv;
891         }
892         return 0;
893
894 out_drv:
895         platform_driver_unregister(&alarmtimer_driver);
896 out_if:
897         alarmtimer_rtc_interface_remove();
898         return error;
899 }
900 device_initcall(alarmtimer_init);