Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *      struct A {
124  *              struct B b;
125  *      };
126  *
127  *      struct B {
128  *              struct A a;
129  *      };
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *      struct A {
147  *              int m;
148  *              struct A *a;
149  *      };
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159
160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177
178 #define for_each_member(i, struct_type, member)                 \
179         for (i = 0, member = btf_type_member(struct_type);      \
180              i < btf_type_vlen(struct_type);                    \
181              i++, member++)
182
183 #define for_each_member_from(i, from, struct_type, member)              \
184         for (i = from, member = btf_type_member(struct_type) + from;    \
185              i < btf_type_vlen(struct_type);                            \
186              i++, member++)
187
188 #define for_each_vsi(i, struct_type, member)                    \
189         for (i = 0, member = btf_type_var_secinfo(struct_type); \
190              i < btf_type_vlen(struct_type);                    \
191              i++, member++)
192
193 #define for_each_vsi_from(i, from, struct_type, member)                         \
194         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
195              i < btf_type_vlen(struct_type);                                    \
196              i++, member++)
197
198 static DEFINE_IDR(btf_idr);
199 static DEFINE_SPINLOCK(btf_idr_lock);
200
201 struct btf {
202         void *data;
203         struct btf_type **types;
204         u32 *resolved_ids;
205         u32 *resolved_sizes;
206         const char *strings;
207         void *nohdr_data;
208         struct btf_header hdr;
209         u32 nr_types;
210         u32 types_size;
211         u32 data_size;
212         refcount_t refcnt;
213         u32 id;
214         struct rcu_head rcu;
215 };
216
217 enum verifier_phase {
218         CHECK_META,
219         CHECK_TYPE,
220 };
221
222 struct resolve_vertex {
223         const struct btf_type *t;
224         u32 type_id;
225         u16 next_member;
226 };
227
228 enum visit_state {
229         NOT_VISITED,
230         VISITED,
231         RESOLVED,
232 };
233
234 enum resolve_mode {
235         RESOLVE_TBD,    /* To Be Determined */
236         RESOLVE_PTR,    /* Resolving for Pointer */
237         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
238                                          * or array
239                                          */
240 };
241
242 #define MAX_RESOLVE_DEPTH 32
243
244 struct btf_sec_info {
245         u32 off;
246         u32 len;
247 };
248
249 struct btf_verifier_env {
250         struct btf *btf;
251         u8 *visit_states;
252         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253         struct bpf_verifier_log log;
254         u32 log_type_id;
255         u32 top_stack;
256         enum verifier_phase phase;
257         enum resolve_mode resolve_mode;
258 };
259
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261         [BTF_KIND_UNKN]         = "UNKNOWN",
262         [BTF_KIND_INT]          = "INT",
263         [BTF_KIND_PTR]          = "PTR",
264         [BTF_KIND_ARRAY]        = "ARRAY",
265         [BTF_KIND_STRUCT]       = "STRUCT",
266         [BTF_KIND_UNION]        = "UNION",
267         [BTF_KIND_ENUM]         = "ENUM",
268         [BTF_KIND_FWD]          = "FWD",
269         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
270         [BTF_KIND_VOLATILE]     = "VOLATILE",
271         [BTF_KIND_CONST]        = "CONST",
272         [BTF_KIND_RESTRICT]     = "RESTRICT",
273         [BTF_KIND_FUNC]         = "FUNC",
274         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
275         [BTF_KIND_VAR]          = "VAR",
276         [BTF_KIND_DATASEC]      = "DATASEC",
277 };
278
279 struct btf_kind_operations {
280         s32 (*check_meta)(struct btf_verifier_env *env,
281                           const struct btf_type *t,
282                           u32 meta_left);
283         int (*resolve)(struct btf_verifier_env *env,
284                        const struct resolve_vertex *v);
285         int (*check_member)(struct btf_verifier_env *env,
286                             const struct btf_type *struct_type,
287                             const struct btf_member *member,
288                             const struct btf_type *member_type);
289         int (*check_kflag_member)(struct btf_verifier_env *env,
290                                   const struct btf_type *struct_type,
291                                   const struct btf_member *member,
292                                   const struct btf_type *member_type);
293         void (*log_details)(struct btf_verifier_env *env,
294                             const struct btf_type *t);
295         void (*seq_show)(const struct btf *btf, const struct btf_type *t,
296                          u32 type_id, void *data, u8 bits_offsets,
297                          struct seq_file *m);
298 };
299
300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
301 static struct btf_type btf_void;
302
303 static int btf_resolve(struct btf_verifier_env *env,
304                        const struct btf_type *t, u32 type_id);
305
306 static bool btf_type_is_modifier(const struct btf_type *t)
307 {
308         /* Some of them is not strictly a C modifier
309          * but they are grouped into the same bucket
310          * for BTF concern:
311          *   A type (t) that refers to another
312          *   type through t->type AND its size cannot
313          *   be determined without following the t->type.
314          *
315          * ptr does not fall into this bucket
316          * because its size is always sizeof(void *).
317          */
318         switch (BTF_INFO_KIND(t->info)) {
319         case BTF_KIND_TYPEDEF:
320         case BTF_KIND_VOLATILE:
321         case BTF_KIND_CONST:
322         case BTF_KIND_RESTRICT:
323                 return true;
324         }
325
326         return false;
327 }
328
329 bool btf_type_is_void(const struct btf_type *t)
330 {
331         return t == &btf_void;
332 }
333
334 static bool btf_type_is_fwd(const struct btf_type *t)
335 {
336         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
337 }
338
339 static bool btf_type_is_func(const struct btf_type *t)
340 {
341         return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
342 }
343
344 static bool btf_type_is_func_proto(const struct btf_type *t)
345 {
346         return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
347 }
348
349 static bool btf_type_nosize(const struct btf_type *t)
350 {
351         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
352                btf_type_is_func(t) || btf_type_is_func_proto(t);
353 }
354
355 static bool btf_type_nosize_or_null(const struct btf_type *t)
356 {
357         return !t || btf_type_nosize(t);
358 }
359
360 /* union is only a special case of struct:
361  * all its offsetof(member) == 0
362  */
363 static bool btf_type_is_struct(const struct btf_type *t)
364 {
365         u8 kind = BTF_INFO_KIND(t->info);
366
367         return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
368 }
369
370 static bool __btf_type_is_struct(const struct btf_type *t)
371 {
372         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
373 }
374
375 static bool btf_type_is_array(const struct btf_type *t)
376 {
377         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
378 }
379
380 static bool btf_type_is_ptr(const struct btf_type *t)
381 {
382         return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
383 }
384
385 static bool btf_type_is_int(const struct btf_type *t)
386 {
387         return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
388 }
389
390 static bool btf_type_is_var(const struct btf_type *t)
391 {
392         return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
393 }
394
395 static bool btf_type_is_datasec(const struct btf_type *t)
396 {
397         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
398 }
399
400 /* Types that act only as a source, not sink or intermediate
401  * type when resolving.
402  */
403 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
404 {
405         return btf_type_is_var(t) ||
406                btf_type_is_datasec(t);
407 }
408
409 /* What types need to be resolved?
410  *
411  * btf_type_is_modifier() is an obvious one.
412  *
413  * btf_type_is_struct() because its member refers to
414  * another type (through member->type).
415  *
416  * btf_type_is_var() because the variable refers to
417  * another type. btf_type_is_datasec() holds multiple
418  * btf_type_is_var() types that need resolving.
419  *
420  * btf_type_is_array() because its element (array->type)
421  * refers to another type.  Array can be thought of a
422  * special case of struct while array just has the same
423  * member-type repeated by array->nelems of times.
424  */
425 static bool btf_type_needs_resolve(const struct btf_type *t)
426 {
427         return btf_type_is_modifier(t) ||
428                btf_type_is_ptr(t) ||
429                btf_type_is_struct(t) ||
430                btf_type_is_array(t) ||
431                btf_type_is_var(t) ||
432                btf_type_is_datasec(t);
433 }
434
435 /* t->size can be used */
436 static bool btf_type_has_size(const struct btf_type *t)
437 {
438         switch (BTF_INFO_KIND(t->info)) {
439         case BTF_KIND_INT:
440         case BTF_KIND_STRUCT:
441         case BTF_KIND_UNION:
442         case BTF_KIND_ENUM:
443         case BTF_KIND_DATASEC:
444                 return true;
445         }
446
447         return false;
448 }
449
450 static const char *btf_int_encoding_str(u8 encoding)
451 {
452         if (encoding == 0)
453                 return "(none)";
454         else if (encoding == BTF_INT_SIGNED)
455                 return "SIGNED";
456         else if (encoding == BTF_INT_CHAR)
457                 return "CHAR";
458         else if (encoding == BTF_INT_BOOL)
459                 return "BOOL";
460         else
461                 return "UNKN";
462 }
463
464 static u16 btf_type_vlen(const struct btf_type *t)
465 {
466         return BTF_INFO_VLEN(t->info);
467 }
468
469 static bool btf_type_kflag(const struct btf_type *t)
470 {
471         return BTF_INFO_KFLAG(t->info);
472 }
473
474 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
475                              const struct btf_member *member)
476 {
477         return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
478                                            : member->offset;
479 }
480
481 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
482                                     const struct btf_member *member)
483 {
484         return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
485                                            : 0;
486 }
487
488 static u32 btf_type_int(const struct btf_type *t)
489 {
490         return *(u32 *)(t + 1);
491 }
492
493 static const struct btf_array *btf_type_array(const struct btf_type *t)
494 {
495         return (const struct btf_array *)(t + 1);
496 }
497
498 static const struct btf_member *btf_type_member(const struct btf_type *t)
499 {
500         return (const struct btf_member *)(t + 1);
501 }
502
503 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
504 {
505         return (const struct btf_enum *)(t + 1);
506 }
507
508 static const struct btf_var *btf_type_var(const struct btf_type *t)
509 {
510         return (const struct btf_var *)(t + 1);
511 }
512
513 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
514 {
515         return (const struct btf_var_secinfo *)(t + 1);
516 }
517
518 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
519 {
520         return kind_ops[BTF_INFO_KIND(t->info)];
521 }
522
523 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
524 {
525         return BTF_STR_OFFSET_VALID(offset) &&
526                 offset < btf->hdr.str_len;
527 }
528
529 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
530 {
531         if ((first ? !isalpha(c) :
532                      !isalnum(c)) &&
533             c != '_' &&
534             ((c == '.' && !dot_ok) ||
535               c != '.'))
536                 return false;
537         return true;
538 }
539
540 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
541 {
542         /* offset must be valid */
543         const char *src = &btf->strings[offset];
544         const char *src_limit;
545
546         if (!__btf_name_char_ok(*src, true, dot_ok))
547                 return false;
548
549         /* set a limit on identifier length */
550         src_limit = src + KSYM_NAME_LEN;
551         src++;
552         while (*src && src < src_limit) {
553                 if (!__btf_name_char_ok(*src, false, dot_ok))
554                         return false;
555                 src++;
556         }
557
558         return !*src;
559 }
560
561 /* Only C-style identifier is permitted. This can be relaxed if
562  * necessary.
563  */
564 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
565 {
566         return __btf_name_valid(btf, offset, false);
567 }
568
569 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
570 {
571         return __btf_name_valid(btf, offset, true);
572 }
573
574 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
575 {
576         if (!offset)
577                 return "(anon)";
578         else if (offset < btf->hdr.str_len)
579                 return &btf->strings[offset];
580         else
581                 return "(invalid-name-offset)";
582 }
583
584 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
585 {
586         if (offset < btf->hdr.str_len)
587                 return &btf->strings[offset];
588
589         return NULL;
590 }
591
592 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
593 {
594         if (type_id > btf->nr_types)
595                 return NULL;
596
597         return btf->types[type_id];
598 }
599
600 /*
601  * Regular int is not a bit field and it must be either
602  * u8/u16/u32/u64 or __int128.
603  */
604 static bool btf_type_int_is_regular(const struct btf_type *t)
605 {
606         u8 nr_bits, nr_bytes;
607         u32 int_data;
608
609         int_data = btf_type_int(t);
610         nr_bits = BTF_INT_BITS(int_data);
611         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
612         if (BITS_PER_BYTE_MASKED(nr_bits) ||
613             BTF_INT_OFFSET(int_data) ||
614             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
615              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
616              nr_bytes != (2 * sizeof(u64)))) {
617                 return false;
618         }
619
620         return true;
621 }
622
623 /*
624  * Check that given struct member is a regular int with expected
625  * offset and size.
626  */
627 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
628                            const struct btf_member *m,
629                            u32 expected_offset, u32 expected_size)
630 {
631         const struct btf_type *t;
632         u32 id, int_data;
633         u8 nr_bits;
634
635         id = m->type;
636         t = btf_type_id_size(btf, &id, NULL);
637         if (!t || !btf_type_is_int(t))
638                 return false;
639
640         int_data = btf_type_int(t);
641         nr_bits = BTF_INT_BITS(int_data);
642         if (btf_type_kflag(s)) {
643                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
644                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
645
646                 /* if kflag set, int should be a regular int and
647                  * bit offset should be at byte boundary.
648                  */
649                 return !bitfield_size &&
650                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
651                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
652         }
653
654         if (BTF_INT_OFFSET(int_data) ||
655             BITS_PER_BYTE_MASKED(m->offset) ||
656             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
657             BITS_PER_BYTE_MASKED(nr_bits) ||
658             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
659                 return false;
660
661         return true;
662 }
663
664 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
665                                               const char *fmt, ...)
666 {
667         va_list args;
668
669         va_start(args, fmt);
670         bpf_verifier_vlog(log, fmt, args);
671         va_end(args);
672 }
673
674 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
675                                             const char *fmt, ...)
676 {
677         struct bpf_verifier_log *log = &env->log;
678         va_list args;
679
680         if (!bpf_verifier_log_needed(log))
681                 return;
682
683         va_start(args, fmt);
684         bpf_verifier_vlog(log, fmt, args);
685         va_end(args);
686 }
687
688 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
689                                                    const struct btf_type *t,
690                                                    bool log_details,
691                                                    const char *fmt, ...)
692 {
693         struct bpf_verifier_log *log = &env->log;
694         u8 kind = BTF_INFO_KIND(t->info);
695         struct btf *btf = env->btf;
696         va_list args;
697
698         if (!bpf_verifier_log_needed(log))
699                 return;
700
701         __btf_verifier_log(log, "[%u] %s %s%s",
702                            env->log_type_id,
703                            btf_kind_str[kind],
704                            __btf_name_by_offset(btf, t->name_off),
705                            log_details ? " " : "");
706
707         if (log_details)
708                 btf_type_ops(t)->log_details(env, t);
709
710         if (fmt && *fmt) {
711                 __btf_verifier_log(log, " ");
712                 va_start(args, fmt);
713                 bpf_verifier_vlog(log, fmt, args);
714                 va_end(args);
715         }
716
717         __btf_verifier_log(log, "\n");
718 }
719
720 #define btf_verifier_log_type(env, t, ...) \
721         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
722 #define btf_verifier_log_basic(env, t, ...) \
723         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
724
725 __printf(4, 5)
726 static void btf_verifier_log_member(struct btf_verifier_env *env,
727                                     const struct btf_type *struct_type,
728                                     const struct btf_member *member,
729                                     const char *fmt, ...)
730 {
731         struct bpf_verifier_log *log = &env->log;
732         struct btf *btf = env->btf;
733         va_list args;
734
735         if (!bpf_verifier_log_needed(log))
736                 return;
737
738         /* The CHECK_META phase already did a btf dump.
739          *
740          * If member is logged again, it must hit an error in
741          * parsing this member.  It is useful to print out which
742          * struct this member belongs to.
743          */
744         if (env->phase != CHECK_META)
745                 btf_verifier_log_type(env, struct_type, NULL);
746
747         if (btf_type_kflag(struct_type))
748                 __btf_verifier_log(log,
749                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
750                                    __btf_name_by_offset(btf, member->name_off),
751                                    member->type,
752                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
753                                    BTF_MEMBER_BIT_OFFSET(member->offset));
754         else
755                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
756                                    __btf_name_by_offset(btf, member->name_off),
757                                    member->type, member->offset);
758
759         if (fmt && *fmt) {
760                 __btf_verifier_log(log, " ");
761                 va_start(args, fmt);
762                 bpf_verifier_vlog(log, fmt, args);
763                 va_end(args);
764         }
765
766         __btf_verifier_log(log, "\n");
767 }
768
769 __printf(4, 5)
770 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
771                                  const struct btf_type *datasec_type,
772                                  const struct btf_var_secinfo *vsi,
773                                  const char *fmt, ...)
774 {
775         struct bpf_verifier_log *log = &env->log;
776         va_list args;
777
778         if (!bpf_verifier_log_needed(log))
779                 return;
780         if (env->phase != CHECK_META)
781                 btf_verifier_log_type(env, datasec_type, NULL);
782
783         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
784                            vsi->type, vsi->offset, vsi->size);
785         if (fmt && *fmt) {
786                 __btf_verifier_log(log, " ");
787                 va_start(args, fmt);
788                 bpf_verifier_vlog(log, fmt, args);
789                 va_end(args);
790         }
791
792         __btf_verifier_log(log, "\n");
793 }
794
795 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
796                                  u32 btf_data_size)
797 {
798         struct bpf_verifier_log *log = &env->log;
799         const struct btf *btf = env->btf;
800         const struct btf_header *hdr;
801
802         if (!bpf_verifier_log_needed(log))
803                 return;
804
805         hdr = &btf->hdr;
806         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
807         __btf_verifier_log(log, "version: %u\n", hdr->version);
808         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
809         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
810         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
811         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
812         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
813         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
814         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
815 }
816
817 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
818 {
819         struct btf *btf = env->btf;
820
821         /* < 2 because +1 for btf_void which is always in btf->types[0].
822          * btf_void is not accounted in btf->nr_types because btf_void
823          * does not come from the BTF file.
824          */
825         if (btf->types_size - btf->nr_types < 2) {
826                 /* Expand 'types' array */
827
828                 struct btf_type **new_types;
829                 u32 expand_by, new_size;
830
831                 if (btf->types_size == BTF_MAX_TYPE) {
832                         btf_verifier_log(env, "Exceeded max num of types");
833                         return -E2BIG;
834                 }
835
836                 expand_by = max_t(u32, btf->types_size >> 2, 16);
837                 new_size = min_t(u32, BTF_MAX_TYPE,
838                                  btf->types_size + expand_by);
839
840                 new_types = kvcalloc(new_size, sizeof(*new_types),
841                                      GFP_KERNEL | __GFP_NOWARN);
842                 if (!new_types)
843                         return -ENOMEM;
844
845                 if (btf->nr_types == 0)
846                         new_types[0] = &btf_void;
847                 else
848                         memcpy(new_types, btf->types,
849                                sizeof(*btf->types) * (btf->nr_types + 1));
850
851                 kvfree(btf->types);
852                 btf->types = new_types;
853                 btf->types_size = new_size;
854         }
855
856         btf->types[++(btf->nr_types)] = t;
857
858         return 0;
859 }
860
861 static int btf_alloc_id(struct btf *btf)
862 {
863         int id;
864
865         idr_preload(GFP_KERNEL);
866         spin_lock_bh(&btf_idr_lock);
867         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
868         if (id > 0)
869                 btf->id = id;
870         spin_unlock_bh(&btf_idr_lock);
871         idr_preload_end();
872
873         if (WARN_ON_ONCE(!id))
874                 return -ENOSPC;
875
876         return id > 0 ? 0 : id;
877 }
878
879 static void btf_free_id(struct btf *btf)
880 {
881         unsigned long flags;
882
883         /*
884          * In map-in-map, calling map_delete_elem() on outer
885          * map will call bpf_map_put on the inner map.
886          * It will then eventually call btf_free_id()
887          * on the inner map.  Some of the map_delete_elem()
888          * implementation may have irq disabled, so
889          * we need to use the _irqsave() version instead
890          * of the _bh() version.
891          */
892         spin_lock_irqsave(&btf_idr_lock, flags);
893         idr_remove(&btf_idr, btf->id);
894         spin_unlock_irqrestore(&btf_idr_lock, flags);
895 }
896
897 static void btf_free(struct btf *btf)
898 {
899         kvfree(btf->types);
900         kvfree(btf->resolved_sizes);
901         kvfree(btf->resolved_ids);
902         kvfree(btf->data);
903         kfree(btf);
904 }
905
906 static void btf_free_rcu(struct rcu_head *rcu)
907 {
908         struct btf *btf = container_of(rcu, struct btf, rcu);
909
910         btf_free(btf);
911 }
912
913 void btf_put(struct btf *btf)
914 {
915         if (btf && refcount_dec_and_test(&btf->refcnt)) {
916                 btf_free_id(btf);
917                 call_rcu(&btf->rcu, btf_free_rcu);
918         }
919 }
920
921 static int env_resolve_init(struct btf_verifier_env *env)
922 {
923         struct btf *btf = env->btf;
924         u32 nr_types = btf->nr_types;
925         u32 *resolved_sizes = NULL;
926         u32 *resolved_ids = NULL;
927         u8 *visit_states = NULL;
928
929         /* +1 for btf_void */
930         resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
931                                   GFP_KERNEL | __GFP_NOWARN);
932         if (!resolved_sizes)
933                 goto nomem;
934
935         resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
936                                 GFP_KERNEL | __GFP_NOWARN);
937         if (!resolved_ids)
938                 goto nomem;
939
940         visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
941                                 GFP_KERNEL | __GFP_NOWARN);
942         if (!visit_states)
943                 goto nomem;
944
945         btf->resolved_sizes = resolved_sizes;
946         btf->resolved_ids = resolved_ids;
947         env->visit_states = visit_states;
948
949         return 0;
950
951 nomem:
952         kvfree(resolved_sizes);
953         kvfree(resolved_ids);
954         kvfree(visit_states);
955         return -ENOMEM;
956 }
957
958 static void btf_verifier_env_free(struct btf_verifier_env *env)
959 {
960         kvfree(env->visit_states);
961         kfree(env);
962 }
963
964 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
965                                      const struct btf_type *next_type)
966 {
967         switch (env->resolve_mode) {
968         case RESOLVE_TBD:
969                 /* int, enum or void is a sink */
970                 return !btf_type_needs_resolve(next_type);
971         case RESOLVE_PTR:
972                 /* int, enum, void, struct, array, func or func_proto is a sink
973                  * for ptr
974                  */
975                 return !btf_type_is_modifier(next_type) &&
976                         !btf_type_is_ptr(next_type);
977         case RESOLVE_STRUCT_OR_ARRAY:
978                 /* int, enum, void, ptr, func or func_proto is a sink
979                  * for struct and array
980                  */
981                 return !btf_type_is_modifier(next_type) &&
982                         !btf_type_is_array(next_type) &&
983                         !btf_type_is_struct(next_type);
984         default:
985                 BUG();
986         }
987 }
988
989 static bool env_type_is_resolved(const struct btf_verifier_env *env,
990                                  u32 type_id)
991 {
992         return env->visit_states[type_id] == RESOLVED;
993 }
994
995 static int env_stack_push(struct btf_verifier_env *env,
996                           const struct btf_type *t, u32 type_id)
997 {
998         struct resolve_vertex *v;
999
1000         if (env->top_stack == MAX_RESOLVE_DEPTH)
1001                 return -E2BIG;
1002
1003         if (env->visit_states[type_id] != NOT_VISITED)
1004                 return -EEXIST;
1005
1006         env->visit_states[type_id] = VISITED;
1007
1008         v = &env->stack[env->top_stack++];
1009         v->t = t;
1010         v->type_id = type_id;
1011         v->next_member = 0;
1012
1013         if (env->resolve_mode == RESOLVE_TBD) {
1014                 if (btf_type_is_ptr(t))
1015                         env->resolve_mode = RESOLVE_PTR;
1016                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1017                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1018         }
1019
1020         return 0;
1021 }
1022
1023 static void env_stack_set_next_member(struct btf_verifier_env *env,
1024                                       u16 next_member)
1025 {
1026         env->stack[env->top_stack - 1].next_member = next_member;
1027 }
1028
1029 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1030                                    u32 resolved_type_id,
1031                                    u32 resolved_size)
1032 {
1033         u32 type_id = env->stack[--(env->top_stack)].type_id;
1034         struct btf *btf = env->btf;
1035
1036         btf->resolved_sizes[type_id] = resolved_size;
1037         btf->resolved_ids[type_id] = resolved_type_id;
1038         env->visit_states[type_id] = RESOLVED;
1039 }
1040
1041 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1042 {
1043         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1044 }
1045
1046 /* The input param "type_id" must point to a needs_resolve type */
1047 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1048                                                   u32 *type_id)
1049 {
1050         *type_id = btf->resolved_ids[*type_id];
1051         return btf_type_by_id(btf, *type_id);
1052 }
1053
1054 const struct btf_type *btf_type_id_size(const struct btf *btf,
1055                                         u32 *type_id, u32 *ret_size)
1056 {
1057         const struct btf_type *size_type;
1058         u32 size_type_id = *type_id;
1059         u32 size = 0;
1060
1061         size_type = btf_type_by_id(btf, size_type_id);
1062         if (btf_type_nosize_or_null(size_type))
1063                 return NULL;
1064
1065         if (btf_type_has_size(size_type)) {
1066                 size = size_type->size;
1067         } else if (btf_type_is_array(size_type)) {
1068                 size = btf->resolved_sizes[size_type_id];
1069         } else if (btf_type_is_ptr(size_type)) {
1070                 size = sizeof(void *);
1071         } else {
1072                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1073                                  !btf_type_is_var(size_type)))
1074                         return NULL;
1075
1076                 size_type_id = btf->resolved_ids[size_type_id];
1077                 size_type = btf_type_by_id(btf, size_type_id);
1078                 if (btf_type_nosize_or_null(size_type))
1079                         return NULL;
1080                 else if (btf_type_has_size(size_type))
1081                         size = size_type->size;
1082                 else if (btf_type_is_array(size_type))
1083                         size = btf->resolved_sizes[size_type_id];
1084                 else if (btf_type_is_ptr(size_type))
1085                         size = sizeof(void *);
1086                 else
1087                         return NULL;
1088         }
1089
1090         *type_id = size_type_id;
1091         if (ret_size)
1092                 *ret_size = size;
1093
1094         return size_type;
1095 }
1096
1097 static int btf_df_check_member(struct btf_verifier_env *env,
1098                                const struct btf_type *struct_type,
1099                                const struct btf_member *member,
1100                                const struct btf_type *member_type)
1101 {
1102         btf_verifier_log_basic(env, struct_type,
1103                                "Unsupported check_member");
1104         return -EINVAL;
1105 }
1106
1107 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1108                                      const struct btf_type *struct_type,
1109                                      const struct btf_member *member,
1110                                      const struct btf_type *member_type)
1111 {
1112         btf_verifier_log_basic(env, struct_type,
1113                                "Unsupported check_kflag_member");
1114         return -EINVAL;
1115 }
1116
1117 /* Used for ptr, array and struct/union type members.
1118  * int, enum and modifier types have their specific callback functions.
1119  */
1120 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1121                                           const struct btf_type *struct_type,
1122                                           const struct btf_member *member,
1123                                           const struct btf_type *member_type)
1124 {
1125         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1126                 btf_verifier_log_member(env, struct_type, member,
1127                                         "Invalid member bitfield_size");
1128                 return -EINVAL;
1129         }
1130
1131         /* bitfield size is 0, so member->offset represents bit offset only.
1132          * It is safe to call non kflag check_member variants.
1133          */
1134         return btf_type_ops(member_type)->check_member(env, struct_type,
1135                                                        member,
1136                                                        member_type);
1137 }
1138
1139 static int btf_df_resolve(struct btf_verifier_env *env,
1140                           const struct resolve_vertex *v)
1141 {
1142         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1143         return -EINVAL;
1144 }
1145
1146 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1147                             u32 type_id, void *data, u8 bits_offsets,
1148                             struct seq_file *m)
1149 {
1150         seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1151 }
1152
1153 static int btf_int_check_member(struct btf_verifier_env *env,
1154                                 const struct btf_type *struct_type,
1155                                 const struct btf_member *member,
1156                                 const struct btf_type *member_type)
1157 {
1158         u32 int_data = btf_type_int(member_type);
1159         u32 struct_bits_off = member->offset;
1160         u32 struct_size = struct_type->size;
1161         u32 nr_copy_bits;
1162         u32 bytes_offset;
1163
1164         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1165                 btf_verifier_log_member(env, struct_type, member,
1166                                         "bits_offset exceeds U32_MAX");
1167                 return -EINVAL;
1168         }
1169
1170         struct_bits_off += BTF_INT_OFFSET(int_data);
1171         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1172         nr_copy_bits = BTF_INT_BITS(int_data) +
1173                 BITS_PER_BYTE_MASKED(struct_bits_off);
1174
1175         if (nr_copy_bits > BITS_PER_U128) {
1176                 btf_verifier_log_member(env, struct_type, member,
1177                                         "nr_copy_bits exceeds 128");
1178                 return -EINVAL;
1179         }
1180
1181         if (struct_size < bytes_offset ||
1182             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1183                 btf_verifier_log_member(env, struct_type, member,
1184                                         "Member exceeds struct_size");
1185                 return -EINVAL;
1186         }
1187
1188         return 0;
1189 }
1190
1191 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1192                                       const struct btf_type *struct_type,
1193                                       const struct btf_member *member,
1194                                       const struct btf_type *member_type)
1195 {
1196         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1197         u32 int_data = btf_type_int(member_type);
1198         u32 struct_size = struct_type->size;
1199         u32 nr_copy_bits;
1200
1201         /* a regular int type is required for the kflag int member */
1202         if (!btf_type_int_is_regular(member_type)) {
1203                 btf_verifier_log_member(env, struct_type, member,
1204                                         "Invalid member base type");
1205                 return -EINVAL;
1206         }
1207
1208         /* check sanity of bitfield size */
1209         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1210         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1211         nr_int_data_bits = BTF_INT_BITS(int_data);
1212         if (!nr_bits) {
1213                 /* Not a bitfield member, member offset must be at byte
1214                  * boundary.
1215                  */
1216                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1217                         btf_verifier_log_member(env, struct_type, member,
1218                                                 "Invalid member offset");
1219                         return -EINVAL;
1220                 }
1221
1222                 nr_bits = nr_int_data_bits;
1223         } else if (nr_bits > nr_int_data_bits) {
1224                 btf_verifier_log_member(env, struct_type, member,
1225                                         "Invalid member bitfield_size");
1226                 return -EINVAL;
1227         }
1228
1229         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1230         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1231         if (nr_copy_bits > BITS_PER_U128) {
1232                 btf_verifier_log_member(env, struct_type, member,
1233                                         "nr_copy_bits exceeds 128");
1234                 return -EINVAL;
1235         }
1236
1237         if (struct_size < bytes_offset ||
1238             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1239                 btf_verifier_log_member(env, struct_type, member,
1240                                         "Member exceeds struct_size");
1241                 return -EINVAL;
1242         }
1243
1244         return 0;
1245 }
1246
1247 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1248                               const struct btf_type *t,
1249                               u32 meta_left)
1250 {
1251         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1252         u16 encoding;
1253
1254         if (meta_left < meta_needed) {
1255                 btf_verifier_log_basic(env, t,
1256                                        "meta_left:%u meta_needed:%u",
1257                                        meta_left, meta_needed);
1258                 return -EINVAL;
1259         }
1260
1261         if (btf_type_vlen(t)) {
1262                 btf_verifier_log_type(env, t, "vlen != 0");
1263                 return -EINVAL;
1264         }
1265
1266         if (btf_type_kflag(t)) {
1267                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1268                 return -EINVAL;
1269         }
1270
1271         int_data = btf_type_int(t);
1272         if (int_data & ~BTF_INT_MASK) {
1273                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1274                                        int_data);
1275                 return -EINVAL;
1276         }
1277
1278         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1279
1280         if (nr_bits > BITS_PER_U128) {
1281                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1282                                       BITS_PER_U128);
1283                 return -EINVAL;
1284         }
1285
1286         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1287                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1288                 return -EINVAL;
1289         }
1290
1291         /*
1292          * Only one of the encoding bits is allowed and it
1293          * should be sufficient for the pretty print purpose (i.e. decoding).
1294          * Multiple bits can be allowed later if it is found
1295          * to be insufficient.
1296          */
1297         encoding = BTF_INT_ENCODING(int_data);
1298         if (encoding &&
1299             encoding != BTF_INT_SIGNED &&
1300             encoding != BTF_INT_CHAR &&
1301             encoding != BTF_INT_BOOL) {
1302                 btf_verifier_log_type(env, t, "Unsupported encoding");
1303                 return -ENOTSUPP;
1304         }
1305
1306         btf_verifier_log_type(env, t, NULL);
1307
1308         return meta_needed;
1309 }
1310
1311 static void btf_int_log(struct btf_verifier_env *env,
1312                         const struct btf_type *t)
1313 {
1314         int int_data = btf_type_int(t);
1315
1316         btf_verifier_log(env,
1317                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1318                          t->size, BTF_INT_OFFSET(int_data),
1319                          BTF_INT_BITS(int_data),
1320                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1321 }
1322
1323 static void btf_int128_print(struct seq_file *m, void *data)
1324 {
1325         /* data points to a __int128 number.
1326          * Suppose
1327          *     int128_num = *(__int128 *)data;
1328          * The below formulas shows what upper_num and lower_num represents:
1329          *     upper_num = int128_num >> 64;
1330          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1331          */
1332         u64 upper_num, lower_num;
1333
1334 #ifdef __BIG_ENDIAN_BITFIELD
1335         upper_num = *(u64 *)data;
1336         lower_num = *(u64 *)(data + 8);
1337 #else
1338         upper_num = *(u64 *)(data + 8);
1339         lower_num = *(u64 *)data;
1340 #endif
1341         if (upper_num == 0)
1342                 seq_printf(m, "0x%llx", lower_num);
1343         else
1344                 seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1345 }
1346
1347 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1348                              u16 right_shift_bits)
1349 {
1350         u64 upper_num, lower_num;
1351
1352 #ifdef __BIG_ENDIAN_BITFIELD
1353         upper_num = print_num[0];
1354         lower_num = print_num[1];
1355 #else
1356         upper_num = print_num[1];
1357         lower_num = print_num[0];
1358 #endif
1359
1360         /* shake out un-needed bits by shift/or operations */
1361         if (left_shift_bits >= 64) {
1362                 upper_num = lower_num << (left_shift_bits - 64);
1363                 lower_num = 0;
1364         } else {
1365                 upper_num = (upper_num << left_shift_bits) |
1366                             (lower_num >> (64 - left_shift_bits));
1367                 lower_num = lower_num << left_shift_bits;
1368         }
1369
1370         if (right_shift_bits >= 64) {
1371                 lower_num = upper_num >> (right_shift_bits - 64);
1372                 upper_num = 0;
1373         } else {
1374                 lower_num = (lower_num >> right_shift_bits) |
1375                             (upper_num << (64 - right_shift_bits));
1376                 upper_num = upper_num >> right_shift_bits;
1377         }
1378
1379 #ifdef __BIG_ENDIAN_BITFIELD
1380         print_num[0] = upper_num;
1381         print_num[1] = lower_num;
1382 #else
1383         print_num[0] = lower_num;
1384         print_num[1] = upper_num;
1385 #endif
1386 }
1387
1388 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1389                                   u8 nr_bits, struct seq_file *m)
1390 {
1391         u16 left_shift_bits, right_shift_bits;
1392         u8 nr_copy_bytes;
1393         u8 nr_copy_bits;
1394         u64 print_num[2] = {};
1395
1396         nr_copy_bits = nr_bits + bits_offset;
1397         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1398
1399         memcpy(print_num, data, nr_copy_bytes);
1400
1401 #ifdef __BIG_ENDIAN_BITFIELD
1402         left_shift_bits = bits_offset;
1403 #else
1404         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1405 #endif
1406         right_shift_bits = BITS_PER_U128 - nr_bits;
1407
1408         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1409         btf_int128_print(m, print_num);
1410 }
1411
1412
1413 static void btf_int_bits_seq_show(const struct btf *btf,
1414                                   const struct btf_type *t,
1415                                   void *data, u8 bits_offset,
1416                                   struct seq_file *m)
1417 {
1418         u32 int_data = btf_type_int(t);
1419         u8 nr_bits = BTF_INT_BITS(int_data);
1420         u8 total_bits_offset;
1421
1422         /*
1423          * bits_offset is at most 7.
1424          * BTF_INT_OFFSET() cannot exceed 128 bits.
1425          */
1426         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1427         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1428         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1429         btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1430 }
1431
1432 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1433                              u32 type_id, void *data, u8 bits_offset,
1434                              struct seq_file *m)
1435 {
1436         u32 int_data = btf_type_int(t);
1437         u8 encoding = BTF_INT_ENCODING(int_data);
1438         bool sign = encoding & BTF_INT_SIGNED;
1439         u8 nr_bits = BTF_INT_BITS(int_data);
1440
1441         if (bits_offset || BTF_INT_OFFSET(int_data) ||
1442             BITS_PER_BYTE_MASKED(nr_bits)) {
1443                 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1444                 return;
1445         }
1446
1447         switch (nr_bits) {
1448         case 128:
1449                 btf_int128_print(m, data);
1450                 break;
1451         case 64:
1452                 if (sign)
1453                         seq_printf(m, "%lld", *(s64 *)data);
1454                 else
1455                         seq_printf(m, "%llu", *(u64 *)data);
1456                 break;
1457         case 32:
1458                 if (sign)
1459                         seq_printf(m, "%d", *(s32 *)data);
1460                 else
1461                         seq_printf(m, "%u", *(u32 *)data);
1462                 break;
1463         case 16:
1464                 if (sign)
1465                         seq_printf(m, "%d", *(s16 *)data);
1466                 else
1467                         seq_printf(m, "%u", *(u16 *)data);
1468                 break;
1469         case 8:
1470                 if (sign)
1471                         seq_printf(m, "%d", *(s8 *)data);
1472                 else
1473                         seq_printf(m, "%u", *(u8 *)data);
1474                 break;
1475         default:
1476                 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1477         }
1478 }
1479
1480 static const struct btf_kind_operations int_ops = {
1481         .check_meta = btf_int_check_meta,
1482         .resolve = btf_df_resolve,
1483         .check_member = btf_int_check_member,
1484         .check_kflag_member = btf_int_check_kflag_member,
1485         .log_details = btf_int_log,
1486         .seq_show = btf_int_seq_show,
1487 };
1488
1489 static int btf_modifier_check_member(struct btf_verifier_env *env,
1490                                      const struct btf_type *struct_type,
1491                                      const struct btf_member *member,
1492                                      const struct btf_type *member_type)
1493 {
1494         const struct btf_type *resolved_type;
1495         u32 resolved_type_id = member->type;
1496         struct btf_member resolved_member;
1497         struct btf *btf = env->btf;
1498
1499         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1500         if (!resolved_type) {
1501                 btf_verifier_log_member(env, struct_type, member,
1502                                         "Invalid member");
1503                 return -EINVAL;
1504         }
1505
1506         resolved_member = *member;
1507         resolved_member.type = resolved_type_id;
1508
1509         return btf_type_ops(resolved_type)->check_member(env, struct_type,
1510                                                          &resolved_member,
1511                                                          resolved_type);
1512 }
1513
1514 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1515                                            const struct btf_type *struct_type,
1516                                            const struct btf_member *member,
1517                                            const struct btf_type *member_type)
1518 {
1519         const struct btf_type *resolved_type;
1520         u32 resolved_type_id = member->type;
1521         struct btf_member resolved_member;
1522         struct btf *btf = env->btf;
1523
1524         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1525         if (!resolved_type) {
1526                 btf_verifier_log_member(env, struct_type, member,
1527                                         "Invalid member");
1528                 return -EINVAL;
1529         }
1530
1531         resolved_member = *member;
1532         resolved_member.type = resolved_type_id;
1533
1534         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1535                                                                &resolved_member,
1536                                                                resolved_type);
1537 }
1538
1539 static int btf_ptr_check_member(struct btf_verifier_env *env,
1540                                 const struct btf_type *struct_type,
1541                                 const struct btf_member *member,
1542                                 const struct btf_type *member_type)
1543 {
1544         u32 struct_size, struct_bits_off, bytes_offset;
1545
1546         struct_size = struct_type->size;
1547         struct_bits_off = member->offset;
1548         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1549
1550         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1551                 btf_verifier_log_member(env, struct_type, member,
1552                                         "Member is not byte aligned");
1553                 return -EINVAL;
1554         }
1555
1556         if (struct_size - bytes_offset < sizeof(void *)) {
1557                 btf_verifier_log_member(env, struct_type, member,
1558                                         "Member exceeds struct_size");
1559                 return -EINVAL;
1560         }
1561
1562         return 0;
1563 }
1564
1565 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1566                                    const struct btf_type *t,
1567                                    u32 meta_left)
1568 {
1569         if (btf_type_vlen(t)) {
1570                 btf_verifier_log_type(env, t, "vlen != 0");
1571                 return -EINVAL;
1572         }
1573
1574         if (btf_type_kflag(t)) {
1575                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1576                 return -EINVAL;
1577         }
1578
1579         if (!BTF_TYPE_ID_VALID(t->type)) {
1580                 btf_verifier_log_type(env, t, "Invalid type_id");
1581                 return -EINVAL;
1582         }
1583
1584         /* typedef type must have a valid name, and other ref types,
1585          * volatile, const, restrict, should have a null name.
1586          */
1587         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1588                 if (!t->name_off ||
1589                     !btf_name_valid_identifier(env->btf, t->name_off)) {
1590                         btf_verifier_log_type(env, t, "Invalid name");
1591                         return -EINVAL;
1592                 }
1593         } else {
1594                 if (t->name_off) {
1595                         btf_verifier_log_type(env, t, "Invalid name");
1596                         return -EINVAL;
1597                 }
1598         }
1599
1600         btf_verifier_log_type(env, t, NULL);
1601
1602         return 0;
1603 }
1604
1605 static int btf_modifier_resolve(struct btf_verifier_env *env,
1606                                 const struct resolve_vertex *v)
1607 {
1608         const struct btf_type *t = v->t;
1609         const struct btf_type *next_type;
1610         u32 next_type_id = t->type;
1611         struct btf *btf = env->btf;
1612
1613         next_type = btf_type_by_id(btf, next_type_id);
1614         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1615                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1616                 return -EINVAL;
1617         }
1618
1619         if (!env_type_is_resolve_sink(env, next_type) &&
1620             !env_type_is_resolved(env, next_type_id))
1621                 return env_stack_push(env, next_type, next_type_id);
1622
1623         /* Figure out the resolved next_type_id with size.
1624          * They will be stored in the current modifier's
1625          * resolved_ids and resolved_sizes such that it can
1626          * save us a few type-following when we use it later (e.g. in
1627          * pretty print).
1628          */
1629         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1630                 if (env_type_is_resolved(env, next_type_id))
1631                         next_type = btf_type_id_resolve(btf, &next_type_id);
1632
1633                 /* "typedef void new_void", "const void"...etc */
1634                 if (!btf_type_is_void(next_type) &&
1635                     !btf_type_is_fwd(next_type) &&
1636                     !btf_type_is_func_proto(next_type)) {
1637                         btf_verifier_log_type(env, v->t, "Invalid type_id");
1638                         return -EINVAL;
1639                 }
1640         }
1641
1642         env_stack_pop_resolved(env, next_type_id, 0);
1643
1644         return 0;
1645 }
1646
1647 static int btf_var_resolve(struct btf_verifier_env *env,
1648                            const struct resolve_vertex *v)
1649 {
1650         const struct btf_type *next_type;
1651         const struct btf_type *t = v->t;
1652         u32 next_type_id = t->type;
1653         struct btf *btf = env->btf;
1654
1655         next_type = btf_type_by_id(btf, next_type_id);
1656         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1657                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1658                 return -EINVAL;
1659         }
1660
1661         if (!env_type_is_resolve_sink(env, next_type) &&
1662             !env_type_is_resolved(env, next_type_id))
1663                 return env_stack_push(env, next_type, next_type_id);
1664
1665         if (btf_type_is_modifier(next_type)) {
1666                 const struct btf_type *resolved_type;
1667                 u32 resolved_type_id;
1668
1669                 resolved_type_id = next_type_id;
1670                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1671
1672                 if (btf_type_is_ptr(resolved_type) &&
1673                     !env_type_is_resolve_sink(env, resolved_type) &&
1674                     !env_type_is_resolved(env, resolved_type_id))
1675                         return env_stack_push(env, resolved_type,
1676                                               resolved_type_id);
1677         }
1678
1679         /* We must resolve to something concrete at this point, no
1680          * forward types or similar that would resolve to size of
1681          * zero is allowed.
1682          */
1683         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1684                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1685                 return -EINVAL;
1686         }
1687
1688         env_stack_pop_resolved(env, next_type_id, 0);
1689
1690         return 0;
1691 }
1692
1693 static int btf_ptr_resolve(struct btf_verifier_env *env,
1694                            const struct resolve_vertex *v)
1695 {
1696         const struct btf_type *next_type;
1697         const struct btf_type *t = v->t;
1698         u32 next_type_id = t->type;
1699         struct btf *btf = env->btf;
1700
1701         next_type = btf_type_by_id(btf, next_type_id);
1702         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1703                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1704                 return -EINVAL;
1705         }
1706
1707         if (!env_type_is_resolve_sink(env, next_type) &&
1708             !env_type_is_resolved(env, next_type_id))
1709                 return env_stack_push(env, next_type, next_type_id);
1710
1711         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1712          * the modifier may have stopped resolving when it was resolved
1713          * to a ptr (last-resolved-ptr).
1714          *
1715          * We now need to continue from the last-resolved-ptr to
1716          * ensure the last-resolved-ptr will not referring back to
1717          * the currenct ptr (t).
1718          */
1719         if (btf_type_is_modifier(next_type)) {
1720                 const struct btf_type *resolved_type;
1721                 u32 resolved_type_id;
1722
1723                 resolved_type_id = next_type_id;
1724                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1725
1726                 if (btf_type_is_ptr(resolved_type) &&
1727                     !env_type_is_resolve_sink(env, resolved_type) &&
1728                     !env_type_is_resolved(env, resolved_type_id))
1729                         return env_stack_push(env, resolved_type,
1730                                               resolved_type_id);
1731         }
1732
1733         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1734                 if (env_type_is_resolved(env, next_type_id))
1735                         next_type = btf_type_id_resolve(btf, &next_type_id);
1736
1737                 if (!btf_type_is_void(next_type) &&
1738                     !btf_type_is_fwd(next_type) &&
1739                     !btf_type_is_func_proto(next_type)) {
1740                         btf_verifier_log_type(env, v->t, "Invalid type_id");
1741                         return -EINVAL;
1742                 }
1743         }
1744
1745         env_stack_pop_resolved(env, next_type_id, 0);
1746
1747         return 0;
1748 }
1749
1750 static void btf_modifier_seq_show(const struct btf *btf,
1751                                   const struct btf_type *t,
1752                                   u32 type_id, void *data,
1753                                   u8 bits_offset, struct seq_file *m)
1754 {
1755         t = btf_type_id_resolve(btf, &type_id);
1756
1757         btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1758 }
1759
1760 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1761                              u32 type_id, void *data, u8 bits_offset,
1762                              struct seq_file *m)
1763 {
1764         t = btf_type_id_resolve(btf, &type_id);
1765
1766         btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1767 }
1768
1769 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1770                              u32 type_id, void *data, u8 bits_offset,
1771                              struct seq_file *m)
1772 {
1773         /* It is a hashed value */
1774         seq_printf(m, "%p", *(void **)data);
1775 }
1776
1777 static void btf_ref_type_log(struct btf_verifier_env *env,
1778                              const struct btf_type *t)
1779 {
1780         btf_verifier_log(env, "type_id=%u", t->type);
1781 }
1782
1783 static struct btf_kind_operations modifier_ops = {
1784         .check_meta = btf_ref_type_check_meta,
1785         .resolve = btf_modifier_resolve,
1786         .check_member = btf_modifier_check_member,
1787         .check_kflag_member = btf_modifier_check_kflag_member,
1788         .log_details = btf_ref_type_log,
1789         .seq_show = btf_modifier_seq_show,
1790 };
1791
1792 static struct btf_kind_operations ptr_ops = {
1793         .check_meta = btf_ref_type_check_meta,
1794         .resolve = btf_ptr_resolve,
1795         .check_member = btf_ptr_check_member,
1796         .check_kflag_member = btf_generic_check_kflag_member,
1797         .log_details = btf_ref_type_log,
1798         .seq_show = btf_ptr_seq_show,
1799 };
1800
1801 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1802                               const struct btf_type *t,
1803                               u32 meta_left)
1804 {
1805         if (btf_type_vlen(t)) {
1806                 btf_verifier_log_type(env, t, "vlen != 0");
1807                 return -EINVAL;
1808         }
1809
1810         if (t->type) {
1811                 btf_verifier_log_type(env, t, "type != 0");
1812                 return -EINVAL;
1813         }
1814
1815         /* fwd type must have a valid name */
1816         if (!t->name_off ||
1817             !btf_name_valid_identifier(env->btf, t->name_off)) {
1818                 btf_verifier_log_type(env, t, "Invalid name");
1819                 return -EINVAL;
1820         }
1821
1822         btf_verifier_log_type(env, t, NULL);
1823
1824         return 0;
1825 }
1826
1827 static void btf_fwd_type_log(struct btf_verifier_env *env,
1828                              const struct btf_type *t)
1829 {
1830         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1831 }
1832
1833 static struct btf_kind_operations fwd_ops = {
1834         .check_meta = btf_fwd_check_meta,
1835         .resolve = btf_df_resolve,
1836         .check_member = btf_df_check_member,
1837         .check_kflag_member = btf_df_check_kflag_member,
1838         .log_details = btf_fwd_type_log,
1839         .seq_show = btf_df_seq_show,
1840 };
1841
1842 static int btf_array_check_member(struct btf_verifier_env *env,
1843                                   const struct btf_type *struct_type,
1844                                   const struct btf_member *member,
1845                                   const struct btf_type *member_type)
1846 {
1847         u32 struct_bits_off = member->offset;
1848         u32 struct_size, bytes_offset;
1849         u32 array_type_id, array_size;
1850         struct btf *btf = env->btf;
1851
1852         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1853                 btf_verifier_log_member(env, struct_type, member,
1854                                         "Member is not byte aligned");
1855                 return -EINVAL;
1856         }
1857
1858         array_type_id = member->type;
1859         btf_type_id_size(btf, &array_type_id, &array_size);
1860         struct_size = struct_type->size;
1861         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1862         if (struct_size - bytes_offset < array_size) {
1863                 btf_verifier_log_member(env, struct_type, member,
1864                                         "Member exceeds struct_size");
1865                 return -EINVAL;
1866         }
1867
1868         return 0;
1869 }
1870
1871 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1872                                 const struct btf_type *t,
1873                                 u32 meta_left)
1874 {
1875         const struct btf_array *array = btf_type_array(t);
1876         u32 meta_needed = sizeof(*array);
1877
1878         if (meta_left < meta_needed) {
1879                 btf_verifier_log_basic(env, t,
1880                                        "meta_left:%u meta_needed:%u",
1881                                        meta_left, meta_needed);
1882                 return -EINVAL;
1883         }
1884
1885         /* array type should not have a name */
1886         if (t->name_off) {
1887                 btf_verifier_log_type(env, t, "Invalid name");
1888                 return -EINVAL;
1889         }
1890
1891         if (btf_type_vlen(t)) {
1892                 btf_verifier_log_type(env, t, "vlen != 0");
1893                 return -EINVAL;
1894         }
1895
1896         if (btf_type_kflag(t)) {
1897                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1898                 return -EINVAL;
1899         }
1900
1901         if (t->size) {
1902                 btf_verifier_log_type(env, t, "size != 0");
1903                 return -EINVAL;
1904         }
1905
1906         /* Array elem type and index type cannot be in type void,
1907          * so !array->type and !array->index_type are not allowed.
1908          */
1909         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1910                 btf_verifier_log_type(env, t, "Invalid elem");
1911                 return -EINVAL;
1912         }
1913
1914         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1915                 btf_verifier_log_type(env, t, "Invalid index");
1916                 return -EINVAL;
1917         }
1918
1919         btf_verifier_log_type(env, t, NULL);
1920
1921         return meta_needed;
1922 }
1923
1924 static int btf_array_resolve(struct btf_verifier_env *env,
1925                              const struct resolve_vertex *v)
1926 {
1927         const struct btf_array *array = btf_type_array(v->t);
1928         const struct btf_type *elem_type, *index_type;
1929         u32 elem_type_id, index_type_id;
1930         struct btf *btf = env->btf;
1931         u32 elem_size;
1932
1933         /* Check array->index_type */
1934         index_type_id = array->index_type;
1935         index_type = btf_type_by_id(btf, index_type_id);
1936         if (btf_type_nosize_or_null(index_type) ||
1937             btf_type_is_resolve_source_only(index_type)) {
1938                 btf_verifier_log_type(env, v->t, "Invalid index");
1939                 return -EINVAL;
1940         }
1941
1942         if (!env_type_is_resolve_sink(env, index_type) &&
1943             !env_type_is_resolved(env, index_type_id))
1944                 return env_stack_push(env, index_type, index_type_id);
1945
1946         index_type = btf_type_id_size(btf, &index_type_id, NULL);
1947         if (!index_type || !btf_type_is_int(index_type) ||
1948             !btf_type_int_is_regular(index_type)) {
1949                 btf_verifier_log_type(env, v->t, "Invalid index");
1950                 return -EINVAL;
1951         }
1952
1953         /* Check array->type */
1954         elem_type_id = array->type;
1955         elem_type = btf_type_by_id(btf, elem_type_id);
1956         if (btf_type_nosize_or_null(elem_type) ||
1957             btf_type_is_resolve_source_only(elem_type)) {
1958                 btf_verifier_log_type(env, v->t,
1959                                       "Invalid elem");
1960                 return -EINVAL;
1961         }
1962
1963         if (!env_type_is_resolve_sink(env, elem_type) &&
1964             !env_type_is_resolved(env, elem_type_id))
1965                 return env_stack_push(env, elem_type, elem_type_id);
1966
1967         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1968         if (!elem_type) {
1969                 btf_verifier_log_type(env, v->t, "Invalid elem");
1970                 return -EINVAL;
1971         }
1972
1973         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1974                 btf_verifier_log_type(env, v->t, "Invalid array of int");
1975                 return -EINVAL;
1976         }
1977
1978         if (array->nelems && elem_size > U32_MAX / array->nelems) {
1979                 btf_verifier_log_type(env, v->t,
1980                                       "Array size overflows U32_MAX");
1981                 return -EINVAL;
1982         }
1983
1984         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1985
1986         return 0;
1987 }
1988
1989 static void btf_array_log(struct btf_verifier_env *env,
1990                           const struct btf_type *t)
1991 {
1992         const struct btf_array *array = btf_type_array(t);
1993
1994         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1995                          array->type, array->index_type, array->nelems);
1996 }
1997
1998 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1999                                u32 type_id, void *data, u8 bits_offset,
2000                                struct seq_file *m)
2001 {
2002         const struct btf_array *array = btf_type_array(t);
2003         const struct btf_kind_operations *elem_ops;
2004         const struct btf_type *elem_type;
2005         u32 i, elem_size, elem_type_id;
2006
2007         elem_type_id = array->type;
2008         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2009         elem_ops = btf_type_ops(elem_type);
2010         seq_puts(m, "[");
2011         for (i = 0; i < array->nelems; i++) {
2012                 if (i)
2013                         seq_puts(m, ",");
2014
2015                 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2016                                    bits_offset, m);
2017                 data += elem_size;
2018         }
2019         seq_puts(m, "]");
2020 }
2021
2022 static struct btf_kind_operations array_ops = {
2023         .check_meta = btf_array_check_meta,
2024         .resolve = btf_array_resolve,
2025         .check_member = btf_array_check_member,
2026         .check_kflag_member = btf_generic_check_kflag_member,
2027         .log_details = btf_array_log,
2028         .seq_show = btf_array_seq_show,
2029 };
2030
2031 static int btf_struct_check_member(struct btf_verifier_env *env,
2032                                    const struct btf_type *struct_type,
2033                                    const struct btf_member *member,
2034                                    const struct btf_type *member_type)
2035 {
2036         u32 struct_bits_off = member->offset;
2037         u32 struct_size, bytes_offset;
2038
2039         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2040                 btf_verifier_log_member(env, struct_type, member,
2041                                         "Member is not byte aligned");
2042                 return -EINVAL;
2043         }
2044
2045         struct_size = struct_type->size;
2046         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2047         if (struct_size - bytes_offset < member_type->size) {
2048                 btf_verifier_log_member(env, struct_type, member,
2049                                         "Member exceeds struct_size");
2050                 return -EINVAL;
2051         }
2052
2053         return 0;
2054 }
2055
2056 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2057                                  const struct btf_type *t,
2058                                  u32 meta_left)
2059 {
2060         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2061         const struct btf_member *member;
2062         u32 meta_needed, last_offset;
2063         struct btf *btf = env->btf;
2064         u32 struct_size = t->size;
2065         u32 offset;
2066         u16 i;
2067
2068         meta_needed = btf_type_vlen(t) * sizeof(*member);
2069         if (meta_left < meta_needed) {
2070                 btf_verifier_log_basic(env, t,
2071                                        "meta_left:%u meta_needed:%u",
2072                                        meta_left, meta_needed);
2073                 return -EINVAL;
2074         }
2075
2076         /* struct type either no name or a valid one */
2077         if (t->name_off &&
2078             !btf_name_valid_identifier(env->btf, t->name_off)) {
2079                 btf_verifier_log_type(env, t, "Invalid name");
2080                 return -EINVAL;
2081         }
2082
2083         btf_verifier_log_type(env, t, NULL);
2084
2085         last_offset = 0;
2086         for_each_member(i, t, member) {
2087                 if (!btf_name_offset_valid(btf, member->name_off)) {
2088                         btf_verifier_log_member(env, t, member,
2089                                                 "Invalid member name_offset:%u",
2090                                                 member->name_off);
2091                         return -EINVAL;
2092                 }
2093
2094                 /* struct member either no name or a valid one */
2095                 if (member->name_off &&
2096                     !btf_name_valid_identifier(btf, member->name_off)) {
2097                         btf_verifier_log_member(env, t, member, "Invalid name");
2098                         return -EINVAL;
2099                 }
2100                 /* A member cannot be in type void */
2101                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2102                         btf_verifier_log_member(env, t, member,
2103                                                 "Invalid type_id");
2104                         return -EINVAL;
2105                 }
2106
2107                 offset = btf_member_bit_offset(t, member);
2108                 if (is_union && offset) {
2109                         btf_verifier_log_member(env, t, member,
2110                                                 "Invalid member bits_offset");
2111                         return -EINVAL;
2112                 }
2113
2114                 /*
2115                  * ">" instead of ">=" because the last member could be
2116                  * "char a[0];"
2117                  */
2118                 if (last_offset > offset) {
2119                         btf_verifier_log_member(env, t, member,
2120                                                 "Invalid member bits_offset");
2121                         return -EINVAL;
2122                 }
2123
2124                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2125                         btf_verifier_log_member(env, t, member,
2126                                                 "Member bits_offset exceeds its struct size");
2127                         return -EINVAL;
2128                 }
2129
2130                 btf_verifier_log_member(env, t, member, NULL);
2131                 last_offset = offset;
2132         }
2133
2134         return meta_needed;
2135 }
2136
2137 static int btf_struct_resolve(struct btf_verifier_env *env,
2138                               const struct resolve_vertex *v)
2139 {
2140         const struct btf_member *member;
2141         int err;
2142         u16 i;
2143
2144         /* Before continue resolving the next_member,
2145          * ensure the last member is indeed resolved to a
2146          * type with size info.
2147          */
2148         if (v->next_member) {
2149                 const struct btf_type *last_member_type;
2150                 const struct btf_member *last_member;
2151                 u16 last_member_type_id;
2152
2153                 last_member = btf_type_member(v->t) + v->next_member - 1;
2154                 last_member_type_id = last_member->type;
2155                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2156                                                        last_member_type_id)))
2157                         return -EINVAL;
2158
2159                 last_member_type = btf_type_by_id(env->btf,
2160                                                   last_member_type_id);
2161                 if (btf_type_kflag(v->t))
2162                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2163                                                                 last_member,
2164                                                                 last_member_type);
2165                 else
2166                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
2167                                                                 last_member,
2168                                                                 last_member_type);
2169                 if (err)
2170                         return err;
2171         }
2172
2173         for_each_member_from(i, v->next_member, v->t, member) {
2174                 u32 member_type_id = member->type;
2175                 const struct btf_type *member_type = btf_type_by_id(env->btf,
2176                                                                 member_type_id);
2177
2178                 if (btf_type_nosize_or_null(member_type) ||
2179                     btf_type_is_resolve_source_only(member_type)) {
2180                         btf_verifier_log_member(env, v->t, member,
2181                                                 "Invalid member");
2182                         return -EINVAL;
2183                 }
2184
2185                 if (!env_type_is_resolve_sink(env, member_type) &&
2186                     !env_type_is_resolved(env, member_type_id)) {
2187                         env_stack_set_next_member(env, i + 1);
2188                         return env_stack_push(env, member_type, member_type_id);
2189                 }
2190
2191                 if (btf_type_kflag(v->t))
2192                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2193                                                                             member,
2194                                                                             member_type);
2195                 else
2196                         err = btf_type_ops(member_type)->check_member(env, v->t,
2197                                                                       member,
2198                                                                       member_type);
2199                 if (err)
2200                         return err;
2201         }
2202
2203         env_stack_pop_resolved(env, 0, 0);
2204
2205         return 0;
2206 }
2207
2208 static void btf_struct_log(struct btf_verifier_env *env,
2209                            const struct btf_type *t)
2210 {
2211         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2212 }
2213
2214 /* find 'struct bpf_spin_lock' in map value.
2215  * return >= 0 offset if found
2216  * and < 0 in case of error
2217  */
2218 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2219 {
2220         const struct btf_member *member;
2221         u32 i, off = -ENOENT;
2222
2223         if (!__btf_type_is_struct(t))
2224                 return -EINVAL;
2225
2226         for_each_member(i, t, member) {
2227                 const struct btf_type *member_type = btf_type_by_id(btf,
2228                                                                     member->type);
2229                 if (!__btf_type_is_struct(member_type))
2230                         continue;
2231                 if (member_type->size != sizeof(struct bpf_spin_lock))
2232                         continue;
2233                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2234                            "bpf_spin_lock"))
2235                         continue;
2236                 if (off != -ENOENT)
2237                         /* only one 'struct bpf_spin_lock' is allowed */
2238                         return -E2BIG;
2239                 off = btf_member_bit_offset(t, member);
2240                 if (off % 8)
2241                         /* valid C code cannot generate such BTF */
2242                         return -EINVAL;
2243                 off /= 8;
2244                 if (off % __alignof__(struct bpf_spin_lock))
2245                         /* valid struct bpf_spin_lock will be 4 byte aligned */
2246                         return -EINVAL;
2247         }
2248         return off;
2249 }
2250
2251 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2252                                 u32 type_id, void *data, u8 bits_offset,
2253                                 struct seq_file *m)
2254 {
2255         const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2256         const struct btf_member *member;
2257         u32 i;
2258
2259         seq_puts(m, "{");
2260         for_each_member(i, t, member) {
2261                 const struct btf_type *member_type = btf_type_by_id(btf,
2262                                                                 member->type);
2263                 const struct btf_kind_operations *ops;
2264                 u32 member_offset, bitfield_size;
2265                 u32 bytes_offset;
2266                 u8 bits8_offset;
2267
2268                 if (i)
2269                         seq_puts(m, seq);
2270
2271                 member_offset = btf_member_bit_offset(t, member);
2272                 bitfield_size = btf_member_bitfield_size(t, member);
2273                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2274                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2275                 if (bitfield_size) {
2276                         btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2277                                               bitfield_size, m);
2278                 } else {
2279                         ops = btf_type_ops(member_type);
2280                         ops->seq_show(btf, member_type, member->type,
2281                                       data + bytes_offset, bits8_offset, m);
2282                 }
2283         }
2284         seq_puts(m, "}");
2285 }
2286
2287 static struct btf_kind_operations struct_ops = {
2288         .check_meta = btf_struct_check_meta,
2289         .resolve = btf_struct_resolve,
2290         .check_member = btf_struct_check_member,
2291         .check_kflag_member = btf_generic_check_kflag_member,
2292         .log_details = btf_struct_log,
2293         .seq_show = btf_struct_seq_show,
2294 };
2295
2296 static int btf_enum_check_member(struct btf_verifier_env *env,
2297                                  const struct btf_type *struct_type,
2298                                  const struct btf_member *member,
2299                                  const struct btf_type *member_type)
2300 {
2301         u32 struct_bits_off = member->offset;
2302         u32 struct_size, bytes_offset;
2303
2304         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2305                 btf_verifier_log_member(env, struct_type, member,
2306                                         "Member is not byte aligned");
2307                 return -EINVAL;
2308         }
2309
2310         struct_size = struct_type->size;
2311         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2312         if (struct_size - bytes_offset < sizeof(int)) {
2313                 btf_verifier_log_member(env, struct_type, member,
2314                                         "Member exceeds struct_size");
2315                 return -EINVAL;
2316         }
2317
2318         return 0;
2319 }
2320
2321 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2322                                        const struct btf_type *struct_type,
2323                                        const struct btf_member *member,
2324                                        const struct btf_type *member_type)
2325 {
2326         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2327         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2328
2329         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2330         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2331         if (!nr_bits) {
2332                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2333                         btf_verifier_log_member(env, struct_type, member,
2334                                                 "Member is not byte aligned");
2335                                 return -EINVAL;
2336                 }
2337
2338                 nr_bits = int_bitsize;
2339         } else if (nr_bits > int_bitsize) {
2340                 btf_verifier_log_member(env, struct_type, member,
2341                                         "Invalid member bitfield_size");
2342                 return -EINVAL;
2343         }
2344
2345         struct_size = struct_type->size;
2346         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2347         if (struct_size < bytes_end) {
2348                 btf_verifier_log_member(env, struct_type, member,
2349                                         "Member exceeds struct_size");
2350                 return -EINVAL;
2351         }
2352
2353         return 0;
2354 }
2355
2356 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2357                                const struct btf_type *t,
2358                                u32 meta_left)
2359 {
2360         const struct btf_enum *enums = btf_type_enum(t);
2361         struct btf *btf = env->btf;
2362         u16 i, nr_enums;
2363         u32 meta_needed;
2364
2365         nr_enums = btf_type_vlen(t);
2366         meta_needed = nr_enums * sizeof(*enums);
2367
2368         if (meta_left < meta_needed) {
2369                 btf_verifier_log_basic(env, t,
2370                                        "meta_left:%u meta_needed:%u",
2371                                        meta_left, meta_needed);
2372                 return -EINVAL;
2373         }
2374
2375         if (btf_type_kflag(t)) {
2376                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2377                 return -EINVAL;
2378         }
2379
2380         if (t->size != sizeof(int)) {
2381                 btf_verifier_log_type(env, t, "Expected size:%zu",
2382                                       sizeof(int));
2383                 return -EINVAL;
2384         }
2385
2386         /* enum type either no name or a valid one */
2387         if (t->name_off &&
2388             !btf_name_valid_identifier(env->btf, t->name_off)) {
2389                 btf_verifier_log_type(env, t, "Invalid name");
2390                 return -EINVAL;
2391         }
2392
2393         btf_verifier_log_type(env, t, NULL);
2394
2395         for (i = 0; i < nr_enums; i++) {
2396                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2397                         btf_verifier_log(env, "\tInvalid name_offset:%u",
2398                                          enums[i].name_off);
2399                         return -EINVAL;
2400                 }
2401
2402                 /* enum member must have a valid name */
2403                 if (!enums[i].name_off ||
2404                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
2405                         btf_verifier_log_type(env, t, "Invalid name");
2406                         return -EINVAL;
2407                 }
2408
2409
2410                 btf_verifier_log(env, "\t%s val=%d\n",
2411                                  __btf_name_by_offset(btf, enums[i].name_off),
2412                                  enums[i].val);
2413         }
2414
2415         return meta_needed;
2416 }
2417
2418 static void btf_enum_log(struct btf_verifier_env *env,
2419                          const struct btf_type *t)
2420 {
2421         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2422 }
2423
2424 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2425                               u32 type_id, void *data, u8 bits_offset,
2426                               struct seq_file *m)
2427 {
2428         const struct btf_enum *enums = btf_type_enum(t);
2429         u32 i, nr_enums = btf_type_vlen(t);
2430         int v = *(int *)data;
2431
2432         for (i = 0; i < nr_enums; i++) {
2433                 if (v == enums[i].val) {
2434                         seq_printf(m, "%s",
2435                                    __btf_name_by_offset(btf,
2436                                                         enums[i].name_off));
2437                         return;
2438                 }
2439         }
2440
2441         seq_printf(m, "%d", v);
2442 }
2443
2444 static struct btf_kind_operations enum_ops = {
2445         .check_meta = btf_enum_check_meta,
2446         .resolve = btf_df_resolve,
2447         .check_member = btf_enum_check_member,
2448         .check_kflag_member = btf_enum_check_kflag_member,
2449         .log_details = btf_enum_log,
2450         .seq_show = btf_enum_seq_show,
2451 };
2452
2453 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2454                                      const struct btf_type *t,
2455                                      u32 meta_left)
2456 {
2457         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2458
2459         if (meta_left < meta_needed) {
2460                 btf_verifier_log_basic(env, t,
2461                                        "meta_left:%u meta_needed:%u",
2462                                        meta_left, meta_needed);
2463                 return -EINVAL;
2464         }
2465
2466         if (t->name_off) {
2467                 btf_verifier_log_type(env, t, "Invalid name");
2468                 return -EINVAL;
2469         }
2470
2471         if (btf_type_kflag(t)) {
2472                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2473                 return -EINVAL;
2474         }
2475
2476         btf_verifier_log_type(env, t, NULL);
2477
2478         return meta_needed;
2479 }
2480
2481 static void btf_func_proto_log(struct btf_verifier_env *env,
2482                                const struct btf_type *t)
2483 {
2484         const struct btf_param *args = (const struct btf_param *)(t + 1);
2485         u16 nr_args = btf_type_vlen(t), i;
2486
2487         btf_verifier_log(env, "return=%u args=(", t->type);
2488         if (!nr_args) {
2489                 btf_verifier_log(env, "void");
2490                 goto done;
2491         }
2492
2493         if (nr_args == 1 && !args[0].type) {
2494                 /* Only one vararg */
2495                 btf_verifier_log(env, "vararg");
2496                 goto done;
2497         }
2498
2499         btf_verifier_log(env, "%u %s", args[0].type,
2500                          __btf_name_by_offset(env->btf,
2501                                               args[0].name_off));
2502         for (i = 1; i < nr_args - 1; i++)
2503                 btf_verifier_log(env, ", %u %s", args[i].type,
2504                                  __btf_name_by_offset(env->btf,
2505                                                       args[i].name_off));
2506
2507         if (nr_args > 1) {
2508                 const struct btf_param *last_arg = &args[nr_args - 1];
2509
2510                 if (last_arg->type)
2511                         btf_verifier_log(env, ", %u %s", last_arg->type,
2512                                          __btf_name_by_offset(env->btf,
2513                                                               last_arg->name_off));
2514                 else
2515                         btf_verifier_log(env, ", vararg");
2516         }
2517
2518 done:
2519         btf_verifier_log(env, ")");
2520 }
2521
2522 static struct btf_kind_operations func_proto_ops = {
2523         .check_meta = btf_func_proto_check_meta,
2524         .resolve = btf_df_resolve,
2525         /*
2526          * BTF_KIND_FUNC_PROTO cannot be directly referred by
2527          * a struct's member.
2528          *
2529          * It should be a funciton pointer instead.
2530          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2531          *
2532          * Hence, there is no btf_func_check_member().
2533          */
2534         .check_member = btf_df_check_member,
2535         .check_kflag_member = btf_df_check_kflag_member,
2536         .log_details = btf_func_proto_log,
2537         .seq_show = btf_df_seq_show,
2538 };
2539
2540 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2541                                const struct btf_type *t,
2542                                u32 meta_left)
2543 {
2544         if (!t->name_off ||
2545             !btf_name_valid_identifier(env->btf, t->name_off)) {
2546                 btf_verifier_log_type(env, t, "Invalid name");
2547                 return -EINVAL;
2548         }
2549
2550         if (btf_type_vlen(t)) {
2551                 btf_verifier_log_type(env, t, "vlen != 0");
2552                 return -EINVAL;
2553         }
2554
2555         if (btf_type_kflag(t)) {
2556                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2557                 return -EINVAL;
2558         }
2559
2560         btf_verifier_log_type(env, t, NULL);
2561
2562         return 0;
2563 }
2564
2565 static struct btf_kind_operations func_ops = {
2566         .check_meta = btf_func_check_meta,
2567         .resolve = btf_df_resolve,
2568         .check_member = btf_df_check_member,
2569         .check_kflag_member = btf_df_check_kflag_member,
2570         .log_details = btf_ref_type_log,
2571         .seq_show = btf_df_seq_show,
2572 };
2573
2574 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2575                               const struct btf_type *t,
2576                               u32 meta_left)
2577 {
2578         const struct btf_var *var;
2579         u32 meta_needed = sizeof(*var);
2580
2581         if (meta_left < meta_needed) {
2582                 btf_verifier_log_basic(env, t,
2583                                        "meta_left:%u meta_needed:%u",
2584                                        meta_left, meta_needed);
2585                 return -EINVAL;
2586         }
2587
2588         if (btf_type_vlen(t)) {
2589                 btf_verifier_log_type(env, t, "vlen != 0");
2590                 return -EINVAL;
2591         }
2592
2593         if (btf_type_kflag(t)) {
2594                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2595                 return -EINVAL;
2596         }
2597
2598         if (!t->name_off ||
2599             !__btf_name_valid(env->btf, t->name_off, true)) {
2600                 btf_verifier_log_type(env, t, "Invalid name");
2601                 return -EINVAL;
2602         }
2603
2604         /* A var cannot be in type void */
2605         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2606                 btf_verifier_log_type(env, t, "Invalid type_id");
2607                 return -EINVAL;
2608         }
2609
2610         var = btf_type_var(t);
2611         if (var->linkage != BTF_VAR_STATIC &&
2612             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2613                 btf_verifier_log_type(env, t, "Linkage not supported");
2614                 return -EINVAL;
2615         }
2616
2617         btf_verifier_log_type(env, t, NULL);
2618
2619         return meta_needed;
2620 }
2621
2622 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2623 {
2624         const struct btf_var *var = btf_type_var(t);
2625
2626         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2627 }
2628
2629 static const struct btf_kind_operations var_ops = {
2630         .check_meta             = btf_var_check_meta,
2631         .resolve                = btf_var_resolve,
2632         .check_member           = btf_df_check_member,
2633         .check_kflag_member     = btf_df_check_kflag_member,
2634         .log_details            = btf_var_log,
2635         .seq_show               = btf_var_seq_show,
2636 };
2637
2638 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2639                                   const struct btf_type *t,
2640                                   u32 meta_left)
2641 {
2642         const struct btf_var_secinfo *vsi;
2643         u64 last_vsi_end_off = 0, sum = 0;
2644         u32 i, meta_needed;
2645
2646         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2647         if (meta_left < meta_needed) {
2648                 btf_verifier_log_basic(env, t,
2649                                        "meta_left:%u meta_needed:%u",
2650                                        meta_left, meta_needed);
2651                 return -EINVAL;
2652         }
2653
2654         if (!btf_type_vlen(t)) {
2655                 btf_verifier_log_type(env, t, "vlen == 0");
2656                 return -EINVAL;
2657         }
2658
2659         if (!t->size) {
2660                 btf_verifier_log_type(env, t, "size == 0");
2661                 return -EINVAL;
2662         }
2663
2664         if (btf_type_kflag(t)) {
2665                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2666                 return -EINVAL;
2667         }
2668
2669         if (!t->name_off ||
2670             !btf_name_valid_section(env->btf, t->name_off)) {
2671                 btf_verifier_log_type(env, t, "Invalid name");
2672                 return -EINVAL;
2673         }
2674
2675         btf_verifier_log_type(env, t, NULL);
2676
2677         for_each_vsi(i, t, vsi) {
2678                 /* A var cannot be in type void */
2679                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2680                         btf_verifier_log_vsi(env, t, vsi,
2681                                              "Invalid type_id");
2682                         return -EINVAL;
2683                 }
2684
2685                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2686                         btf_verifier_log_vsi(env, t, vsi,
2687                                              "Invalid offset");
2688                         return -EINVAL;
2689                 }
2690
2691                 if (!vsi->size || vsi->size > t->size) {
2692                         btf_verifier_log_vsi(env, t, vsi,
2693                                              "Invalid size");
2694                         return -EINVAL;
2695                 }
2696
2697                 last_vsi_end_off = vsi->offset + vsi->size;
2698                 if (last_vsi_end_off > t->size) {
2699                         btf_verifier_log_vsi(env, t, vsi,
2700                                              "Invalid offset+size");
2701                         return -EINVAL;
2702                 }
2703
2704                 btf_verifier_log_vsi(env, t, vsi, NULL);
2705                 sum += vsi->size;
2706         }
2707
2708         if (t->size < sum) {
2709                 btf_verifier_log_type(env, t, "Invalid btf_info size");
2710                 return -EINVAL;
2711         }
2712
2713         return meta_needed;
2714 }
2715
2716 static int btf_datasec_resolve(struct btf_verifier_env *env,
2717                                const struct resolve_vertex *v)
2718 {
2719         const struct btf_var_secinfo *vsi;
2720         struct btf *btf = env->btf;
2721         u16 i;
2722
2723         for_each_vsi_from(i, v->next_member, v->t, vsi) {
2724                 u32 var_type_id = vsi->type, type_id, type_size = 0;
2725                 const struct btf_type *var_type = btf_type_by_id(env->btf,
2726                                                                  var_type_id);
2727                 if (!var_type || !btf_type_is_var(var_type)) {
2728                         btf_verifier_log_vsi(env, v->t, vsi,
2729                                              "Not a VAR kind member");
2730                         return -EINVAL;
2731                 }
2732
2733                 if (!env_type_is_resolve_sink(env, var_type) &&
2734                     !env_type_is_resolved(env, var_type_id)) {
2735                         env_stack_set_next_member(env, i + 1);
2736                         return env_stack_push(env, var_type, var_type_id);
2737                 }
2738
2739                 type_id = var_type->type;
2740                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
2741                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2742                         return -EINVAL;
2743                 }
2744
2745                 if (vsi->size < type_size) {
2746                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2747                         return -EINVAL;
2748                 }
2749         }
2750
2751         env_stack_pop_resolved(env, 0, 0);
2752         return 0;
2753 }
2754
2755 static void btf_datasec_log(struct btf_verifier_env *env,
2756                             const struct btf_type *t)
2757 {
2758         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2759 }
2760
2761 static void btf_datasec_seq_show(const struct btf *btf,
2762                                  const struct btf_type *t, u32 type_id,
2763                                  void *data, u8 bits_offset,
2764                                  struct seq_file *m)
2765 {
2766         const struct btf_var_secinfo *vsi;
2767         const struct btf_type *var;
2768         u32 i;
2769
2770         seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2771         for_each_vsi(i, t, vsi) {
2772                 var = btf_type_by_id(btf, vsi->type);
2773                 if (i)
2774                         seq_puts(m, ",");
2775                 btf_type_ops(var)->seq_show(btf, var, vsi->type,
2776                                             data + vsi->offset, bits_offset, m);
2777         }
2778         seq_puts(m, "}");
2779 }
2780
2781 static const struct btf_kind_operations datasec_ops = {
2782         .check_meta             = btf_datasec_check_meta,
2783         .resolve                = btf_datasec_resolve,
2784         .check_member           = btf_df_check_member,
2785         .check_kflag_member     = btf_df_check_kflag_member,
2786         .log_details            = btf_datasec_log,
2787         .seq_show               = btf_datasec_seq_show,
2788 };
2789
2790 static int btf_func_proto_check(struct btf_verifier_env *env,
2791                                 const struct btf_type *t)
2792 {
2793         const struct btf_type *ret_type;
2794         const struct btf_param *args;
2795         const struct btf *btf;
2796         u16 nr_args, i;
2797         int err;
2798
2799         btf = env->btf;
2800         args = (const struct btf_param *)(t + 1);
2801         nr_args = btf_type_vlen(t);
2802
2803         /* Check func return type which could be "void" (t->type == 0) */
2804         if (t->type) {
2805                 u32 ret_type_id = t->type;
2806
2807                 ret_type = btf_type_by_id(btf, ret_type_id);
2808                 if (!ret_type) {
2809                         btf_verifier_log_type(env, t, "Invalid return type");
2810                         return -EINVAL;
2811                 }
2812
2813                 if (btf_type_needs_resolve(ret_type) &&
2814                     !env_type_is_resolved(env, ret_type_id)) {
2815                         err = btf_resolve(env, ret_type, ret_type_id);
2816                         if (err)
2817                                 return err;
2818                 }
2819
2820                 /* Ensure the return type is a type that has a size */
2821                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2822                         btf_verifier_log_type(env, t, "Invalid return type");
2823                         return -EINVAL;
2824                 }
2825         }
2826
2827         if (!nr_args)
2828                 return 0;
2829
2830         /* Last func arg type_id could be 0 if it is a vararg */
2831         if (!args[nr_args - 1].type) {
2832                 if (args[nr_args - 1].name_off) {
2833                         btf_verifier_log_type(env, t, "Invalid arg#%u",
2834                                               nr_args);
2835                         return -EINVAL;
2836                 }
2837                 nr_args--;
2838         }
2839
2840         err = 0;
2841         for (i = 0; i < nr_args; i++) {
2842                 const struct btf_type *arg_type;
2843                 u32 arg_type_id;
2844
2845                 arg_type_id = args[i].type;
2846                 arg_type = btf_type_by_id(btf, arg_type_id);
2847                 if (!arg_type) {
2848                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2849                         err = -EINVAL;
2850                         break;
2851                 }
2852
2853                 if (args[i].name_off &&
2854                     (!btf_name_offset_valid(btf, args[i].name_off) ||
2855                      !btf_name_valid_identifier(btf, args[i].name_off))) {
2856                         btf_verifier_log_type(env, t,
2857                                               "Invalid arg#%u", i + 1);
2858                         err = -EINVAL;
2859                         break;
2860                 }
2861
2862                 if (btf_type_needs_resolve(arg_type) &&
2863                     !env_type_is_resolved(env, arg_type_id)) {
2864                         err = btf_resolve(env, arg_type, arg_type_id);
2865                         if (err)
2866                                 break;
2867                 }
2868
2869                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2870                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2871                         err = -EINVAL;
2872                         break;
2873                 }
2874         }
2875
2876         return err;
2877 }
2878
2879 static int btf_func_check(struct btf_verifier_env *env,
2880                           const struct btf_type *t)
2881 {
2882         const struct btf_type *proto_type;
2883         const struct btf_param *args;
2884         const struct btf *btf;
2885         u16 nr_args, i;
2886
2887         btf = env->btf;
2888         proto_type = btf_type_by_id(btf, t->type);
2889
2890         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2891                 btf_verifier_log_type(env, t, "Invalid type_id");
2892                 return -EINVAL;
2893         }
2894
2895         args = (const struct btf_param *)(proto_type + 1);
2896         nr_args = btf_type_vlen(proto_type);
2897         for (i = 0; i < nr_args; i++) {
2898                 if (!args[i].name_off && args[i].type) {
2899                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2900                         return -EINVAL;
2901                 }
2902         }
2903
2904         return 0;
2905 }
2906
2907 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2908         [BTF_KIND_INT] = &int_ops,
2909         [BTF_KIND_PTR] = &ptr_ops,
2910         [BTF_KIND_ARRAY] = &array_ops,
2911         [BTF_KIND_STRUCT] = &struct_ops,
2912         [BTF_KIND_UNION] = &struct_ops,
2913         [BTF_KIND_ENUM] = &enum_ops,
2914         [BTF_KIND_FWD] = &fwd_ops,
2915         [BTF_KIND_TYPEDEF] = &modifier_ops,
2916         [BTF_KIND_VOLATILE] = &modifier_ops,
2917         [BTF_KIND_CONST] = &modifier_ops,
2918         [BTF_KIND_RESTRICT] = &modifier_ops,
2919         [BTF_KIND_FUNC] = &func_ops,
2920         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2921         [BTF_KIND_VAR] = &var_ops,
2922         [BTF_KIND_DATASEC] = &datasec_ops,
2923 };
2924
2925 static s32 btf_check_meta(struct btf_verifier_env *env,
2926                           const struct btf_type *t,
2927                           u32 meta_left)
2928 {
2929         u32 saved_meta_left = meta_left;
2930         s32 var_meta_size;
2931
2932         if (meta_left < sizeof(*t)) {
2933                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2934                                  env->log_type_id, meta_left, sizeof(*t));
2935                 return -EINVAL;
2936         }
2937         meta_left -= sizeof(*t);
2938
2939         if (t->info & ~BTF_INFO_MASK) {
2940                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2941                                  env->log_type_id, t->info);
2942                 return -EINVAL;
2943         }
2944
2945         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2946             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2947                 btf_verifier_log(env, "[%u] Invalid kind:%u",
2948                                  env->log_type_id, BTF_INFO_KIND(t->info));
2949                 return -EINVAL;
2950         }
2951
2952         if (!btf_name_offset_valid(env->btf, t->name_off)) {
2953                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2954                                  env->log_type_id, t->name_off);
2955                 return -EINVAL;
2956         }
2957
2958         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2959         if (var_meta_size < 0)
2960                 return var_meta_size;
2961
2962         meta_left -= var_meta_size;
2963
2964         return saved_meta_left - meta_left;
2965 }
2966
2967 static int btf_check_all_metas(struct btf_verifier_env *env)
2968 {
2969         struct btf *btf = env->btf;
2970         struct btf_header *hdr;
2971         void *cur, *end;
2972
2973         hdr = &btf->hdr;
2974         cur = btf->nohdr_data + hdr->type_off;
2975         end = cur + hdr->type_len;
2976
2977         env->log_type_id = 1;
2978         while (cur < end) {
2979                 struct btf_type *t = cur;
2980                 s32 meta_size;
2981
2982                 meta_size = btf_check_meta(env, t, end - cur);
2983                 if (meta_size < 0)
2984                         return meta_size;
2985
2986                 btf_add_type(env, t);
2987                 cur += meta_size;
2988                 env->log_type_id++;
2989         }
2990
2991         return 0;
2992 }
2993
2994 static bool btf_resolve_valid(struct btf_verifier_env *env,
2995                               const struct btf_type *t,
2996                               u32 type_id)
2997 {
2998         struct btf *btf = env->btf;
2999
3000         if (!env_type_is_resolved(env, type_id))
3001                 return false;
3002
3003         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3004                 return !btf->resolved_ids[type_id] &&
3005                        !btf->resolved_sizes[type_id];
3006
3007         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3008             btf_type_is_var(t)) {
3009                 t = btf_type_id_resolve(btf, &type_id);
3010                 return t &&
3011                        !btf_type_is_modifier(t) &&
3012                        !btf_type_is_var(t) &&
3013                        !btf_type_is_datasec(t);
3014         }
3015
3016         if (btf_type_is_array(t)) {
3017                 const struct btf_array *array = btf_type_array(t);
3018                 const struct btf_type *elem_type;
3019                 u32 elem_type_id = array->type;
3020                 u32 elem_size;
3021
3022                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3023                 return elem_type && !btf_type_is_modifier(elem_type) &&
3024                         (array->nelems * elem_size ==
3025                          btf->resolved_sizes[type_id]);
3026         }
3027
3028         return false;
3029 }
3030
3031 static int btf_resolve(struct btf_verifier_env *env,
3032                        const struct btf_type *t, u32 type_id)
3033 {
3034         u32 save_log_type_id = env->log_type_id;
3035         const struct resolve_vertex *v;
3036         int err = 0;
3037
3038         env->resolve_mode = RESOLVE_TBD;
3039         env_stack_push(env, t, type_id);
3040         while (!err && (v = env_stack_peak(env))) {
3041                 env->log_type_id = v->type_id;
3042                 err = btf_type_ops(v->t)->resolve(env, v);
3043         }
3044
3045         env->log_type_id = type_id;
3046         if (err == -E2BIG) {
3047                 btf_verifier_log_type(env, t,
3048                                       "Exceeded max resolving depth:%u",
3049                                       MAX_RESOLVE_DEPTH);
3050         } else if (err == -EEXIST) {
3051                 btf_verifier_log_type(env, t, "Loop detected");
3052         }
3053
3054         /* Final sanity check */
3055         if (!err && !btf_resolve_valid(env, t, type_id)) {
3056                 btf_verifier_log_type(env, t, "Invalid resolve state");
3057                 err = -EINVAL;
3058         }
3059
3060         env->log_type_id = save_log_type_id;
3061         return err;
3062 }
3063
3064 static int btf_check_all_types(struct btf_verifier_env *env)
3065 {
3066         struct btf *btf = env->btf;
3067         u32 type_id;
3068         int err;
3069
3070         err = env_resolve_init(env);
3071         if (err)
3072                 return err;
3073
3074         env->phase++;
3075         for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3076                 const struct btf_type *t = btf_type_by_id(btf, type_id);
3077
3078                 env->log_type_id = type_id;
3079                 if (btf_type_needs_resolve(t) &&
3080                     !env_type_is_resolved(env, type_id)) {
3081                         err = btf_resolve(env, t, type_id);
3082                         if (err)
3083                                 return err;
3084                 }
3085
3086                 if (btf_type_is_func_proto(t)) {
3087                         err = btf_func_proto_check(env, t);
3088                         if (err)
3089                                 return err;
3090                 }
3091
3092                 if (btf_type_is_func(t)) {
3093                         err = btf_func_check(env, t);
3094                         if (err)
3095                                 return err;
3096                 }
3097         }
3098
3099         return 0;
3100 }
3101
3102 static int btf_parse_type_sec(struct btf_verifier_env *env)
3103 {
3104         const struct btf_header *hdr = &env->btf->hdr;
3105         int err;
3106
3107         /* Type section must align to 4 bytes */
3108         if (hdr->type_off & (sizeof(u32) - 1)) {
3109                 btf_verifier_log(env, "Unaligned type_off");
3110                 return -EINVAL;
3111         }
3112
3113         if (!hdr->type_len) {
3114                 btf_verifier_log(env, "No type found");
3115                 return -EINVAL;
3116         }
3117
3118         err = btf_check_all_metas(env);
3119         if (err)
3120                 return err;
3121
3122         return btf_check_all_types(env);
3123 }
3124
3125 static int btf_parse_str_sec(struct btf_verifier_env *env)
3126 {
3127         const struct btf_header *hdr;
3128         struct btf *btf = env->btf;
3129         const char *start, *end;
3130
3131         hdr = &btf->hdr;
3132         start = btf->nohdr_data + hdr->str_off;
3133         end = start + hdr->str_len;
3134
3135         if (end != btf->data + btf->data_size) {
3136                 btf_verifier_log(env, "String section is not at the end");
3137                 return -EINVAL;
3138         }
3139
3140         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3141             start[0] || end[-1]) {
3142                 btf_verifier_log(env, "Invalid string section");
3143                 return -EINVAL;
3144         }
3145
3146         btf->strings = start;
3147
3148         return 0;
3149 }
3150
3151 static const size_t btf_sec_info_offset[] = {
3152         offsetof(struct btf_header, type_off),
3153         offsetof(struct btf_header, str_off),
3154 };
3155
3156 static int btf_sec_info_cmp(const void *a, const void *b)
3157 {
3158         const struct btf_sec_info *x = a;
3159         const struct btf_sec_info *y = b;
3160
3161         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3162 }
3163
3164 static int btf_check_sec_info(struct btf_verifier_env *env,
3165                               u32 btf_data_size)
3166 {
3167         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3168         u32 total, expected_total, i;
3169         const struct btf_header *hdr;
3170         const struct btf *btf;
3171
3172         btf = env->btf;
3173         hdr = &btf->hdr;
3174
3175         /* Populate the secs from hdr */
3176         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3177                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
3178                                                    btf_sec_info_offset[i]);
3179
3180         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3181              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3182
3183         /* Check for gaps and overlap among sections */
3184         total = 0;
3185         expected_total = btf_data_size - hdr->hdr_len;
3186         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3187                 if (expected_total < secs[i].off) {
3188                         btf_verifier_log(env, "Invalid section offset");
3189                         return -EINVAL;
3190                 }
3191                 if (total < secs[i].off) {
3192                         /* gap */
3193                         btf_verifier_log(env, "Unsupported section found");
3194                         return -EINVAL;
3195                 }
3196                 if (total > secs[i].off) {
3197                         btf_verifier_log(env, "Section overlap found");
3198                         return -EINVAL;
3199                 }
3200                 if (expected_total - total < secs[i].len) {
3201                         btf_verifier_log(env,
3202                                          "Total section length too long");
3203                         return -EINVAL;
3204                 }
3205                 total += secs[i].len;
3206         }
3207
3208         /* There is data other than hdr and known sections */
3209         if (expected_total != total) {
3210                 btf_verifier_log(env, "Unsupported section found");
3211                 return -EINVAL;
3212         }
3213
3214         return 0;
3215 }
3216
3217 static int btf_parse_hdr(struct btf_verifier_env *env)
3218 {
3219         u32 hdr_len, hdr_copy, btf_data_size;
3220         const struct btf_header *hdr;
3221         struct btf *btf;
3222         int err;
3223
3224         btf = env->btf;
3225         btf_data_size = btf->data_size;
3226
3227         if (btf_data_size <
3228             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3229                 btf_verifier_log(env, "hdr_len not found");
3230                 return -EINVAL;
3231         }
3232
3233         hdr = btf->data;
3234         hdr_len = hdr->hdr_len;
3235         if (btf_data_size < hdr_len) {
3236                 btf_verifier_log(env, "btf_header not found");
3237                 return -EINVAL;
3238         }
3239
3240         /* Ensure the unsupported header fields are zero */
3241         if (hdr_len > sizeof(btf->hdr)) {
3242                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
3243                 u8 *end = btf->data + hdr_len;
3244
3245                 for (; expected_zero < end; expected_zero++) {
3246                         if (*expected_zero) {
3247                                 btf_verifier_log(env, "Unsupported btf_header");
3248                                 return -E2BIG;
3249                         }
3250                 }
3251         }
3252
3253         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3254         memcpy(&btf->hdr, btf->data, hdr_copy);
3255
3256         hdr = &btf->hdr;
3257
3258         btf_verifier_log_hdr(env, btf_data_size);
3259
3260         if (hdr->magic != BTF_MAGIC) {
3261                 btf_verifier_log(env, "Invalid magic");
3262                 return -EINVAL;
3263         }
3264
3265         if (hdr->version != BTF_VERSION) {
3266                 btf_verifier_log(env, "Unsupported version");
3267                 return -ENOTSUPP;
3268         }
3269
3270         if (hdr->flags) {
3271                 btf_verifier_log(env, "Unsupported flags");
3272                 return -ENOTSUPP;
3273         }
3274
3275         if (btf_data_size == hdr->hdr_len) {
3276                 btf_verifier_log(env, "No data");
3277                 return -EINVAL;
3278         }
3279
3280         err = btf_check_sec_info(env, btf_data_size);
3281         if (err)
3282                 return err;
3283
3284         return 0;
3285 }
3286
3287 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3288                              u32 log_level, char __user *log_ubuf, u32 log_size)
3289 {
3290         struct btf_verifier_env *env = NULL;
3291         struct bpf_verifier_log *log;
3292         struct btf *btf = NULL;
3293         u8 *data;
3294         int err;
3295
3296         if (btf_data_size > BTF_MAX_SIZE)
3297                 return ERR_PTR(-E2BIG);
3298
3299         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3300         if (!env)
3301                 return ERR_PTR(-ENOMEM);
3302
3303         log = &env->log;
3304         if (log_level || log_ubuf || log_size) {
3305                 /* user requested verbose verifier output
3306                  * and supplied buffer to store the verification trace
3307                  */
3308                 log->level = log_level;
3309                 log->ubuf = log_ubuf;
3310                 log->len_total = log_size;
3311
3312                 /* log attributes have to be sane */
3313                 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3314                     !log->level || !log->ubuf) {
3315                         err = -EINVAL;
3316                         goto errout;
3317                 }
3318         }
3319
3320         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3321         if (!btf) {
3322                 err = -ENOMEM;
3323                 goto errout;
3324         }
3325         env->btf = btf;
3326
3327         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3328         if (!data) {
3329                 err = -ENOMEM;
3330                 goto errout;
3331         }
3332
3333         btf->data = data;
3334         btf->data_size = btf_data_size;
3335
3336         if (copy_from_user(data, btf_data, btf_data_size)) {
3337                 err = -EFAULT;
3338                 goto errout;
3339         }
3340
3341         err = btf_parse_hdr(env);
3342         if (err)
3343                 goto errout;
3344
3345         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3346
3347         err = btf_parse_str_sec(env);
3348         if (err)
3349                 goto errout;
3350
3351         err = btf_parse_type_sec(env);
3352         if (err)
3353                 goto errout;
3354
3355         if (log->level && bpf_verifier_log_full(log)) {
3356                 err = -ENOSPC;
3357                 goto errout;
3358         }
3359
3360         btf_verifier_env_free(env);
3361         refcount_set(&btf->refcnt, 1);
3362         return btf;
3363
3364 errout:
3365         btf_verifier_env_free(env);
3366         if (btf)
3367                 btf_free(btf);
3368         return ERR_PTR(err);
3369 }
3370
3371 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
3372                        struct seq_file *m)
3373 {
3374         const struct btf_type *t = btf_type_by_id(btf, type_id);
3375
3376         btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
3377 }
3378
3379 static int btf_release(struct inode *inode, struct file *filp)
3380 {
3381         btf_put(filp->private_data);
3382         return 0;
3383 }
3384
3385 const struct file_operations btf_fops = {
3386         .release        = btf_release,
3387 };
3388
3389 static int __btf_new_fd(struct btf *btf)
3390 {
3391         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
3392 }
3393
3394 int btf_new_fd(const union bpf_attr *attr)
3395 {
3396         struct btf *btf;
3397         int ret;
3398
3399         btf = btf_parse(u64_to_user_ptr(attr->btf),
3400                         attr->btf_size, attr->btf_log_level,
3401                         u64_to_user_ptr(attr->btf_log_buf),
3402                         attr->btf_log_size);
3403         if (IS_ERR(btf))
3404                 return PTR_ERR(btf);
3405
3406         ret = btf_alloc_id(btf);
3407         if (ret) {
3408                 btf_free(btf);
3409                 return ret;
3410         }
3411
3412         /*
3413          * The BTF ID is published to the userspace.
3414          * All BTF free must go through call_rcu() from
3415          * now on (i.e. free by calling btf_put()).
3416          */
3417
3418         ret = __btf_new_fd(btf);
3419         if (ret < 0)
3420                 btf_put(btf);
3421
3422         return ret;
3423 }
3424
3425 struct btf *btf_get_by_fd(int fd)
3426 {
3427         struct btf *btf;
3428         struct fd f;
3429
3430         f = fdget(fd);
3431
3432         if (!f.file)
3433                 return ERR_PTR(-EBADF);
3434
3435         if (f.file->f_op != &btf_fops) {
3436                 fdput(f);
3437                 return ERR_PTR(-EINVAL);
3438         }
3439
3440         btf = f.file->private_data;
3441         refcount_inc(&btf->refcnt);
3442         fdput(f);
3443
3444         return btf;
3445 }
3446
3447 int btf_get_info_by_fd(const struct btf *btf,
3448                        const union bpf_attr *attr,
3449                        union bpf_attr __user *uattr)
3450 {
3451         struct bpf_btf_info __user *uinfo;
3452         struct bpf_btf_info info = {};
3453         u32 info_copy, btf_copy;
3454         void __user *ubtf;
3455         u32 uinfo_len;
3456
3457         uinfo = u64_to_user_ptr(attr->info.info);
3458         uinfo_len = attr->info.info_len;
3459
3460         info_copy = min_t(u32, uinfo_len, sizeof(info));
3461         if (copy_from_user(&info, uinfo, info_copy))
3462                 return -EFAULT;
3463
3464         info.id = btf->id;
3465         ubtf = u64_to_user_ptr(info.btf);
3466         btf_copy = min_t(u32, btf->data_size, info.btf_size);
3467         if (copy_to_user(ubtf, btf->data, btf_copy))
3468                 return -EFAULT;
3469         info.btf_size = btf->data_size;
3470
3471         if (copy_to_user(uinfo, &info, info_copy) ||
3472             put_user(info_copy, &uattr->info.info_len))
3473                 return -EFAULT;
3474
3475         return 0;
3476 }
3477
3478 int btf_get_fd_by_id(u32 id)
3479 {
3480         struct btf *btf;
3481         int fd;
3482
3483         rcu_read_lock();
3484         btf = idr_find(&btf_idr, id);
3485         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
3486                 btf = ERR_PTR(-ENOENT);
3487         rcu_read_unlock();
3488
3489         if (IS_ERR(btf))
3490                 return PTR_ERR(btf);
3491
3492         fd = __btf_new_fd(btf);
3493         if (fd < 0)
3494                 btf_put(btf);
3495
3496         return fd;
3497 }
3498
3499 u32 btf_id(const struct btf *btf)
3500 {
3501         return btf->id;
3502 }