Linux-libre 5.7.6-gnu
[librecmc/linux-libre.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct pagevec;
20
21 /*
22  * Bits in mapping->flags.
23  */
24 enum mapping_flags {
25         AS_EIO          = 0,    /* IO error on async write */
26         AS_ENOSPC       = 1,    /* ENOSPC on async write */
27         AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
28         AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
29         AS_EXITING      = 4,    /* final truncate in progress */
30         /* writeback related tags are not used */
31         AS_NO_WRITEBACK_TAGS = 5,
32 };
33
34 /**
35  * mapping_set_error - record a writeback error in the address_space
36  * @mapping: the mapping in which an error should be set
37  * @error: the error to set in the mapping
38  *
39  * When writeback fails in some way, we must record that error so that
40  * userspace can be informed when fsync and the like are called.  We endeavor
41  * to report errors on any file that was open at the time of the error.  Some
42  * internal callers also need to know when writeback errors have occurred.
43  *
44  * When a writeback error occurs, most filesystems will want to call
45  * mapping_set_error to record the error in the mapping so that it can be
46  * reported when the application calls fsync(2).
47  */
48 static inline void mapping_set_error(struct address_space *mapping, int error)
49 {
50         if (likely(!error))
51                 return;
52
53         /* Record in wb_err for checkers using errseq_t based tracking */
54         filemap_set_wb_err(mapping, error);
55
56         /* Record it in flags for now, for legacy callers */
57         if (error == -ENOSPC)
58                 set_bit(AS_ENOSPC, &mapping->flags);
59         else
60                 set_bit(AS_EIO, &mapping->flags);
61 }
62
63 static inline void mapping_set_unevictable(struct address_space *mapping)
64 {
65         set_bit(AS_UNEVICTABLE, &mapping->flags);
66 }
67
68 static inline void mapping_clear_unevictable(struct address_space *mapping)
69 {
70         clear_bit(AS_UNEVICTABLE, &mapping->flags);
71 }
72
73 static inline bool mapping_unevictable(struct address_space *mapping)
74 {
75         return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
76 }
77
78 static inline void mapping_set_exiting(struct address_space *mapping)
79 {
80         set_bit(AS_EXITING, &mapping->flags);
81 }
82
83 static inline int mapping_exiting(struct address_space *mapping)
84 {
85         return test_bit(AS_EXITING, &mapping->flags);
86 }
87
88 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
89 {
90         set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
91 }
92
93 static inline int mapping_use_writeback_tags(struct address_space *mapping)
94 {
95         return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
96 }
97
98 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
99 {
100         return mapping->gfp_mask;
101 }
102
103 /* Restricts the given gfp_mask to what the mapping allows. */
104 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
105                 gfp_t gfp_mask)
106 {
107         return mapping_gfp_mask(mapping) & gfp_mask;
108 }
109
110 /*
111  * This is non-atomic.  Only to be used before the mapping is activated.
112  * Probably needs a barrier...
113  */
114 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
115 {
116         m->gfp_mask = mask;
117 }
118
119 void release_pages(struct page **pages, int nr);
120
121 /*
122  * speculatively take a reference to a page.
123  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
124  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
125  *
126  * This function must be called inside the same rcu_read_lock() section as has
127  * been used to lookup the page in the pagecache radix-tree (or page table):
128  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
129  *
130  * Unless an RCU grace period has passed, the count of all pages coming out
131  * of the allocator must be considered unstable. page_count may return higher
132  * than expected, and put_page must be able to do the right thing when the
133  * page has been finished with, no matter what it is subsequently allocated
134  * for (because put_page is what is used here to drop an invalid speculative
135  * reference).
136  *
137  * This is the interesting part of the lockless pagecache (and lockless
138  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
139  * has the following pattern:
140  * 1. find page in radix tree
141  * 2. conditionally increment refcount
142  * 3. check the page is still in pagecache (if no, goto 1)
143  *
144  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
145  * following (with the i_pages lock held):
146  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
147  * B. remove page from pagecache
148  * C. free the page
149  *
150  * There are 2 critical interleavings that matter:
151  * - 2 runs before A: in this case, A sees elevated refcount and bails out
152  * - A runs before 2: in this case, 2 sees zero refcount and retries;
153  *   subsequently, B will complete and 1 will find no page, causing the
154  *   lookup to return NULL.
155  *
156  * It is possible that between 1 and 2, the page is removed then the exact same
157  * page is inserted into the same position in pagecache. That's OK: the
158  * old find_get_page using a lock could equally have run before or after
159  * such a re-insertion, depending on order that locks are granted.
160  *
161  * Lookups racing against pagecache insertion isn't a big problem: either 1
162  * will find the page or it will not. Likewise, the old find_get_page could run
163  * either before the insertion or afterwards, depending on timing.
164  */
165 static inline int __page_cache_add_speculative(struct page *page, int count)
166 {
167 #ifdef CONFIG_TINY_RCU
168 # ifdef CONFIG_PREEMPT_COUNT
169         VM_BUG_ON(!in_atomic() && !irqs_disabled());
170 # endif
171         /*
172          * Preempt must be disabled here - we rely on rcu_read_lock doing
173          * this for us.
174          *
175          * Pagecache won't be truncated from interrupt context, so if we have
176          * found a page in the radix tree here, we have pinned its refcount by
177          * disabling preempt, and hence no need for the "speculative get" that
178          * SMP requires.
179          */
180         VM_BUG_ON_PAGE(page_count(page) == 0, page);
181         page_ref_add(page, count);
182
183 #else
184         if (unlikely(!page_ref_add_unless(page, count, 0))) {
185                 /*
186                  * Either the page has been freed, or will be freed.
187                  * In either case, retry here and the caller should
188                  * do the right thing (see comments above).
189                  */
190                 return 0;
191         }
192 #endif
193         VM_BUG_ON_PAGE(PageTail(page), page);
194
195         return 1;
196 }
197
198 static inline int page_cache_get_speculative(struct page *page)
199 {
200         return __page_cache_add_speculative(page, 1);
201 }
202
203 static inline int page_cache_add_speculative(struct page *page, int count)
204 {
205         return __page_cache_add_speculative(page, count);
206 }
207
208 #ifdef CONFIG_NUMA
209 extern struct page *__page_cache_alloc(gfp_t gfp);
210 #else
211 static inline struct page *__page_cache_alloc(gfp_t gfp)
212 {
213         return alloc_pages(gfp, 0);
214 }
215 #endif
216
217 static inline struct page *page_cache_alloc(struct address_space *x)
218 {
219         return __page_cache_alloc(mapping_gfp_mask(x));
220 }
221
222 static inline gfp_t readahead_gfp_mask(struct address_space *x)
223 {
224         return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
225 }
226
227 typedef int filler_t(void *, struct page *);
228
229 pgoff_t page_cache_next_miss(struct address_space *mapping,
230                              pgoff_t index, unsigned long max_scan);
231 pgoff_t page_cache_prev_miss(struct address_space *mapping,
232                              pgoff_t index, unsigned long max_scan);
233
234 #define FGP_ACCESSED            0x00000001
235 #define FGP_LOCK                0x00000002
236 #define FGP_CREAT               0x00000004
237 #define FGP_WRITE               0x00000008
238 #define FGP_NOFS                0x00000010
239 #define FGP_NOWAIT              0x00000020
240 #define FGP_FOR_MMAP            0x00000040
241
242 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
243                 int fgp_flags, gfp_t cache_gfp_mask);
244
245 /**
246  * find_get_page - find and get a page reference
247  * @mapping: the address_space to search
248  * @offset: the page index
249  *
250  * Looks up the page cache slot at @mapping & @offset.  If there is a
251  * page cache page, it is returned with an increased refcount.
252  *
253  * Otherwise, %NULL is returned.
254  */
255 static inline struct page *find_get_page(struct address_space *mapping,
256                                         pgoff_t offset)
257 {
258         return pagecache_get_page(mapping, offset, 0, 0);
259 }
260
261 static inline struct page *find_get_page_flags(struct address_space *mapping,
262                                         pgoff_t offset, int fgp_flags)
263 {
264         return pagecache_get_page(mapping, offset, fgp_flags, 0);
265 }
266
267 /**
268  * find_lock_page - locate, pin and lock a pagecache page
269  * @mapping: the address_space to search
270  * @offset: the page index
271  *
272  * Looks up the page cache slot at @mapping & @offset.  If there is a
273  * page cache page, it is returned locked and with an increased
274  * refcount.
275  *
276  * Otherwise, %NULL is returned.
277  *
278  * find_lock_page() may sleep.
279  */
280 static inline struct page *find_lock_page(struct address_space *mapping,
281                                         pgoff_t offset)
282 {
283         return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
284 }
285
286 /**
287  * find_or_create_page - locate or add a pagecache page
288  * @mapping: the page's address_space
289  * @index: the page's index into the mapping
290  * @gfp_mask: page allocation mode
291  *
292  * Looks up the page cache slot at @mapping & @offset.  If there is a
293  * page cache page, it is returned locked and with an increased
294  * refcount.
295  *
296  * If the page is not present, a new page is allocated using @gfp_mask
297  * and added to the page cache and the VM's LRU list.  The page is
298  * returned locked and with an increased refcount.
299  *
300  * On memory exhaustion, %NULL is returned.
301  *
302  * find_or_create_page() may sleep, even if @gfp_flags specifies an
303  * atomic allocation!
304  */
305 static inline struct page *find_or_create_page(struct address_space *mapping,
306                                         pgoff_t index, gfp_t gfp_mask)
307 {
308         return pagecache_get_page(mapping, index,
309                                         FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
310                                         gfp_mask);
311 }
312
313 /**
314  * grab_cache_page_nowait - returns locked page at given index in given cache
315  * @mapping: target address_space
316  * @index: the page index
317  *
318  * Same as grab_cache_page(), but do not wait if the page is unavailable.
319  * This is intended for speculative data generators, where the data can
320  * be regenerated if the page couldn't be grabbed.  This routine should
321  * be safe to call while holding the lock for another page.
322  *
323  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
324  * and deadlock against the caller's locked page.
325  */
326 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
327                                 pgoff_t index)
328 {
329         return pagecache_get_page(mapping, index,
330                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
331                         mapping_gfp_mask(mapping));
332 }
333
334 /*
335  * Given the page we found in the page cache, return the page corresponding
336  * to this index in the file
337  */
338 static inline struct page *find_subpage(struct page *head, pgoff_t index)
339 {
340         /* HugeTLBfs wants the head page regardless */
341         if (PageHuge(head))
342                 return head;
343
344         return head + (index & (hpage_nr_pages(head) - 1));
345 }
346
347 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
348 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
349 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
350                           unsigned int nr_entries, struct page **entries,
351                           pgoff_t *indices);
352 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
353                         pgoff_t end, unsigned int nr_pages,
354                         struct page **pages);
355 static inline unsigned find_get_pages(struct address_space *mapping,
356                         pgoff_t *start, unsigned int nr_pages,
357                         struct page **pages)
358 {
359         return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
360                                     pages);
361 }
362 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
363                                unsigned int nr_pages, struct page **pages);
364 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
365                         pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
366                         struct page **pages);
367 static inline unsigned find_get_pages_tag(struct address_space *mapping,
368                         pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
369                         struct page **pages)
370 {
371         return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
372                                         nr_pages, pages);
373 }
374
375 struct page *grab_cache_page_write_begin(struct address_space *mapping,
376                         pgoff_t index, unsigned flags);
377
378 /*
379  * Returns locked page at given index in given cache, creating it if needed.
380  */
381 static inline struct page *grab_cache_page(struct address_space *mapping,
382                                                                 pgoff_t index)
383 {
384         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
385 }
386
387 extern struct page * read_cache_page(struct address_space *mapping,
388                                 pgoff_t index, filler_t *filler, void *data);
389 extern struct page * read_cache_page_gfp(struct address_space *mapping,
390                                 pgoff_t index, gfp_t gfp_mask);
391 extern int read_cache_pages(struct address_space *mapping,
392                 struct list_head *pages, filler_t *filler, void *data);
393
394 static inline struct page *read_mapping_page(struct address_space *mapping,
395                                 pgoff_t index, void *data)
396 {
397         return read_cache_page(mapping, index, NULL, data);
398 }
399
400 /*
401  * Get index of the page with in radix-tree
402  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
403  */
404 static inline pgoff_t page_to_index(struct page *page)
405 {
406         pgoff_t pgoff;
407
408         if (likely(!PageTransTail(page)))
409                 return page->index;
410
411         /*
412          *  We don't initialize ->index for tail pages: calculate based on
413          *  head page
414          */
415         pgoff = compound_head(page)->index;
416         pgoff += page - compound_head(page);
417         return pgoff;
418 }
419
420 /*
421  * Get the offset in PAGE_SIZE.
422  * (TODO: hugepage should have ->index in PAGE_SIZE)
423  */
424 static inline pgoff_t page_to_pgoff(struct page *page)
425 {
426         if (unlikely(PageHeadHuge(page)))
427                 return page->index << compound_order(page);
428
429         return page_to_index(page);
430 }
431
432 /*
433  * Return byte-offset into filesystem object for page.
434  */
435 static inline loff_t page_offset(struct page *page)
436 {
437         return ((loff_t)page->index) << PAGE_SHIFT;
438 }
439
440 static inline loff_t page_file_offset(struct page *page)
441 {
442         return ((loff_t)page_index(page)) << PAGE_SHIFT;
443 }
444
445 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
446                                      unsigned long address);
447
448 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
449                                         unsigned long address)
450 {
451         pgoff_t pgoff;
452         if (unlikely(is_vm_hugetlb_page(vma)))
453                 return linear_hugepage_index(vma, address);
454         pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
455         pgoff += vma->vm_pgoff;
456         return pgoff;
457 }
458
459 extern void __lock_page(struct page *page);
460 extern int __lock_page_killable(struct page *page);
461 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
462                                 unsigned int flags);
463 extern void unlock_page(struct page *page);
464
465 /*
466  * Return true if the page was successfully locked
467  */
468 static inline int trylock_page(struct page *page)
469 {
470         page = compound_head(page);
471         return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
472 }
473
474 /*
475  * lock_page may only be called if we have the page's inode pinned.
476  */
477 static inline void lock_page(struct page *page)
478 {
479         might_sleep();
480         if (!trylock_page(page))
481                 __lock_page(page);
482 }
483
484 /*
485  * lock_page_killable is like lock_page but can be interrupted by fatal
486  * signals.  It returns 0 if it locked the page and -EINTR if it was
487  * killed while waiting.
488  */
489 static inline int lock_page_killable(struct page *page)
490 {
491         might_sleep();
492         if (!trylock_page(page))
493                 return __lock_page_killable(page);
494         return 0;
495 }
496
497 /*
498  * lock_page_or_retry - Lock the page, unless this would block and the
499  * caller indicated that it can handle a retry.
500  *
501  * Return value and mmap_sem implications depend on flags; see
502  * __lock_page_or_retry().
503  */
504 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
505                                      unsigned int flags)
506 {
507         might_sleep();
508         return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
509 }
510
511 /*
512  * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
513  * and should not be used directly.
514  */
515 extern void wait_on_page_bit(struct page *page, int bit_nr);
516 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
517
518 /* 
519  * Wait for a page to be unlocked.
520  *
521  * This must be called with the caller "holding" the page,
522  * ie with increased "page->count" so that the page won't
523  * go away during the wait..
524  */
525 static inline void wait_on_page_locked(struct page *page)
526 {
527         if (PageLocked(page))
528                 wait_on_page_bit(compound_head(page), PG_locked);
529 }
530
531 static inline int wait_on_page_locked_killable(struct page *page)
532 {
533         if (!PageLocked(page))
534                 return 0;
535         return wait_on_page_bit_killable(compound_head(page), PG_locked);
536 }
537
538 extern void put_and_wait_on_page_locked(struct page *page);
539
540 void wait_on_page_writeback(struct page *page);
541 extern void end_page_writeback(struct page *page);
542 void wait_for_stable_page(struct page *page);
543
544 void page_endio(struct page *page, bool is_write, int err);
545
546 /*
547  * Add an arbitrary waiter to a page's wait queue
548  */
549 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
550
551 /*
552  * Fault everything in given userspace address range in.
553  */
554 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
555 {
556         char __user *end = uaddr + size - 1;
557
558         if (unlikely(size == 0))
559                 return 0;
560
561         if (unlikely(uaddr > end))
562                 return -EFAULT;
563         /*
564          * Writing zeroes into userspace here is OK, because we know that if
565          * the zero gets there, we'll be overwriting it.
566          */
567         do {
568                 if (unlikely(__put_user(0, uaddr) != 0))
569                         return -EFAULT;
570                 uaddr += PAGE_SIZE;
571         } while (uaddr <= end);
572
573         /* Check whether the range spilled into the next page. */
574         if (((unsigned long)uaddr & PAGE_MASK) ==
575                         ((unsigned long)end & PAGE_MASK))
576                 return __put_user(0, end);
577
578         return 0;
579 }
580
581 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
582 {
583         volatile char c;
584         const char __user *end = uaddr + size - 1;
585
586         if (unlikely(size == 0))
587                 return 0;
588
589         if (unlikely(uaddr > end))
590                 return -EFAULT;
591
592         do {
593                 if (unlikely(__get_user(c, uaddr) != 0))
594                         return -EFAULT;
595                 uaddr += PAGE_SIZE;
596         } while (uaddr <= end);
597
598         /* Check whether the range spilled into the next page. */
599         if (((unsigned long)uaddr & PAGE_MASK) ==
600                         ((unsigned long)end & PAGE_MASK)) {
601                 return __get_user(c, end);
602         }
603
604         (void)c;
605         return 0;
606 }
607
608 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
609                                 pgoff_t index, gfp_t gfp_mask);
610 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
611                                 pgoff_t index, gfp_t gfp_mask);
612 extern void delete_from_page_cache(struct page *page);
613 extern void __delete_from_page_cache(struct page *page, void *shadow);
614 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
615 void delete_from_page_cache_batch(struct address_space *mapping,
616                                   struct pagevec *pvec);
617
618 /*
619  * Like add_to_page_cache_locked, but used to add newly allocated pages:
620  * the page is new, so we can just run __SetPageLocked() against it.
621  */
622 static inline int add_to_page_cache(struct page *page,
623                 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
624 {
625         int error;
626
627         __SetPageLocked(page);
628         error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
629         if (unlikely(error))
630                 __ClearPageLocked(page);
631         return error;
632 }
633
634 static inline unsigned long dir_pages(struct inode *inode)
635 {
636         return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
637                                PAGE_SHIFT;
638 }
639
640 /**
641  * page_mkwrite_check_truncate - check if page was truncated
642  * @page: the page to check
643  * @inode: the inode to check the page against
644  *
645  * Returns the number of bytes in the page up to EOF,
646  * or -EFAULT if the page was truncated.
647  */
648 static inline int page_mkwrite_check_truncate(struct page *page,
649                                               struct inode *inode)
650 {
651         loff_t size = i_size_read(inode);
652         pgoff_t index = size >> PAGE_SHIFT;
653         int offset = offset_in_page(size);
654
655         if (page->mapping != inode->i_mapping)
656                 return -EFAULT;
657
658         /* page is wholly inside EOF */
659         if (page->index < index)
660                 return PAGE_SIZE;
661         /* page is wholly past EOF */
662         if (page->index > index || !offset)
663                 return -EFAULT;
664         /* page is partially inside EOF */
665         return offset;
666 }
667
668 #endif /* _LINUX_PAGEMAP_H */