Merge branch 'master' of git://git.denx.de/u-boot-samsung
[oweals/u-boot.git] / include / dm / device.h
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:     GPL-2.0+
9  */
10
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20
21 struct driver_info;
22
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED               (1 << 0)
25
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA             (1 << 1)
28
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC               (1 << 2)
31
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA      (1 << 3)
34
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA      (1 << 4)
37
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA          (1 << 5)
40
41 /* Device is bound */
42 #define DM_FLAG_BOUND                   (1 << 6)
43
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_FLAG_NAME_ALLOCED            (1 << 7)
46
47 #define DM_FLAG_OF_PLATDATA             (1 << 8)
48
49 /*
50  * Call driver remove function to stop currently active DMA transfers or
51  * give DMA buffers back to the HW / controller. This may be needed for
52  * some drivers to do some final stage cleanup before the OS is called
53  * (U-Boot exit)
54  */
55 #define DM_FLAG_ACTIVE_DMA              (1 << 9)
56
57 /*
58  * One or multiple of these flags are passed to device_remove() so that
59  * a selective device removal as specified by the remove-stage and the
60  * driver flags can be done.
61  */
62 enum {
63         /* Normal remove, remove all devices */
64         DM_REMOVE_NORMAL     = 1 << 0,
65
66         /* Remove devices with active DMA */
67         DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
68
69         /* Add more use cases here */
70
71         /* Remove devices with any active flag */
72         DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA,
73 };
74
75 /**
76  * struct udevice - An instance of a driver
77  *
78  * This holds information about a device, which is a driver bound to a
79  * particular port or peripheral (essentially a driver instance).
80  *
81  * A device will come into existence through a 'bind' call, either due to
82  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
83  * in the device tree (in which case of_offset is >= 0). In the latter case
84  * we translate the device tree information into platdata in a function
85  * implemented by the driver ofdata_to_platdata method (called just before the
86  * probe method if the device has a device tree node.
87  *
88  * All three of platdata, priv and uclass_priv can be allocated by the
89  * driver, or you can use the auto_alloc_size members of struct driver and
90  * struct uclass_driver to have driver model do this automatically.
91  *
92  * @driver: The driver used by this device
93  * @name: Name of device, typically the FDT node name
94  * @platdata: Configuration data for this device
95  * @parent_platdata: The parent bus's configuration data for this device
96  * @uclass_platdata: The uclass's configuration data for this device
97  * @of_offset: Device tree node offset for this device (- for none)
98  * @driver_data: Driver data word for the entry that matched this device with
99  *              its driver
100  * @parent: Parent of this device, or NULL for the top level device
101  * @priv: Private data for this device
102  * @uclass: Pointer to uclass for this device
103  * @uclass_priv: The uclass's private data for this device
104  * @parent_priv: The parent's private data for this device
105  * @uclass_node: Used by uclass to link its devices
106  * @child_head: List of children of this device
107  * @sibling_node: Next device in list of all devices
108  * @flags: Flags for this device DM_FLAG_...
109  * @req_seq: Requested sequence number for this device (-1 = any)
110  * @seq: Allocated sequence number for this device (-1 = none). This is set up
111  * when the device is probed and will be unique within the device's uclass.
112  * @devres_head: List of memory allocations associated with this device.
113  *              When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
114  *              add to this list. Memory so-allocated will be freed
115  *              automatically when the device is removed / unbound
116  */
117 struct udevice {
118         const struct driver *driver;
119         const char *name;
120         void *platdata;
121         void *parent_platdata;
122         void *uclass_platdata;
123         int of_offset;
124         ulong driver_data;
125         struct udevice *parent;
126         void *priv;
127         struct uclass *uclass;
128         void *uclass_priv;
129         void *parent_priv;
130         struct list_head uclass_node;
131         struct list_head child_head;
132         struct list_head sibling_node;
133         uint32_t flags;
134         int req_seq;
135         int seq;
136 #ifdef CONFIG_DEVRES
137         struct list_head devres_head;
138 #endif
139 };
140
141 /* Maximum sequence number supported */
142 #define DM_MAX_SEQ      999
143
144 /* Returns the operations for a device */
145 #define device_get_ops(dev)     (dev->driver->ops)
146
147 /* Returns non-zero if the device is active (probed and not removed) */
148 #define device_active(dev)      ((dev)->flags & DM_FLAG_ACTIVATED)
149
150 static inline int dev_of_offset(const struct udevice *dev)
151 {
152         return dev->of_offset;
153 }
154
155 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
156 {
157         dev->of_offset = of_offset;
158 }
159
160 /**
161  * struct udevice_id - Lists the compatible strings supported by a driver
162  * @compatible: Compatible string
163  * @data: Data for this compatible string
164  */
165 struct udevice_id {
166         const char *compatible;
167         ulong data;
168 };
169
170 #if CONFIG_IS_ENABLED(OF_CONTROL)
171 #define of_match_ptr(_ptr)      (_ptr)
172 #else
173 #define of_match_ptr(_ptr)      NULL
174 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
175
176 /**
177  * struct driver - A driver for a feature or peripheral
178  *
179  * This holds methods for setting up a new device, and also removing it.
180  * The device needs information to set itself up - this is provided either
181  * by platdata or a device tree node (which we find by looking up
182  * matching compatible strings with of_match).
183  *
184  * Drivers all belong to a uclass, representing a class of devices of the
185  * same type. Common elements of the drivers can be implemented in the uclass,
186  * or the uclass can provide a consistent interface to the drivers within
187  * it.
188  *
189  * @name: Device name
190  * @id: Identiies the uclass we belong to
191  * @of_match: List of compatible strings to match, and any identifying data
192  * for each.
193  * @bind: Called to bind a device to its driver
194  * @probe: Called to probe a device, i.e. activate it
195  * @remove: Called to remove a device, i.e. de-activate it
196  * @unbind: Called to unbind a device from its driver
197  * @ofdata_to_platdata: Called before probe to decode device tree data
198  * @child_post_bind: Called after a new child has been bound
199  * @child_pre_probe: Called before a child device is probed. The device has
200  * memory allocated but it has not yet been probed.
201  * @child_post_remove: Called after a child device is removed. The device
202  * has memory allocated but its device_remove() method has been called.
203  * @priv_auto_alloc_size: If non-zero this is the size of the private data
204  * to be allocated in the device's ->priv pointer. If zero, then the driver
205  * is responsible for allocating any data required.
206  * @platdata_auto_alloc_size: If non-zero this is the size of the
207  * platform data to be allocated in the device's ->platdata pointer.
208  * This is typically only useful for device-tree-aware drivers (those with
209  * an of_match), since drivers which use platdata will have the data
210  * provided in the U_BOOT_DEVICE() instantiation.
211  * @per_child_auto_alloc_size: Each device can hold private data owned by
212  * its parent. If required this will be automatically allocated if this
213  * value is non-zero.
214  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
215  * its children. If non-zero this is the size of this data, to be allocated
216  * in the child's parent_platdata pointer.
217  * @ops: Driver-specific operations. This is typically a list of function
218  * pointers defined by the driver, to implement driver functions required by
219  * the uclass.
220  * @flags: driver flags - see DM_FLAGS_...
221  */
222 struct driver {
223         char *name;
224         enum uclass_id id;
225         const struct udevice_id *of_match;
226         int (*bind)(struct udevice *dev);
227         int (*probe)(struct udevice *dev);
228         int (*remove)(struct udevice *dev);
229         int (*unbind)(struct udevice *dev);
230         int (*ofdata_to_platdata)(struct udevice *dev);
231         int (*child_post_bind)(struct udevice *dev);
232         int (*child_pre_probe)(struct udevice *dev);
233         int (*child_post_remove)(struct udevice *dev);
234         int priv_auto_alloc_size;
235         int platdata_auto_alloc_size;
236         int per_child_auto_alloc_size;
237         int per_child_platdata_auto_alloc_size;
238         const void *ops;        /* driver-specific operations */
239         uint32_t flags;
240 };
241
242 /* Declare a new U-Boot driver */
243 #define U_BOOT_DRIVER(__name)                                           \
244         ll_entry_declare(struct driver, __name, driver)
245
246 /* Get a pointer to a given driver */
247 #define DM_GET_DRIVER(__name)                                           \
248         ll_entry_get(struct driver, __name, driver)
249
250 /**
251  * dev_get_platdata() - Get the platform data for a device
252  *
253  * This checks that dev is not NULL, but no other checks for now
254  *
255  * @dev         Device to check
256  * @return platform data, or NULL if none
257  */
258 void *dev_get_platdata(struct udevice *dev);
259
260 /**
261  * dev_get_parent_platdata() - Get the parent platform data for a device
262  *
263  * This checks that dev is not NULL, but no other checks for now
264  *
265  * @dev         Device to check
266  * @return parent's platform data, or NULL if none
267  */
268 void *dev_get_parent_platdata(struct udevice *dev);
269
270 /**
271  * dev_get_uclass_platdata() - Get the uclass platform data for a device
272  *
273  * This checks that dev is not NULL, but no other checks for now
274  *
275  * @dev         Device to check
276  * @return uclass's platform data, or NULL if none
277  */
278 void *dev_get_uclass_platdata(struct udevice *dev);
279
280 /**
281  * dev_get_priv() - Get the private data for a device
282  *
283  * This checks that dev is not NULL, but no other checks for now
284  *
285  * @dev         Device to check
286  * @return private data, or NULL if none
287  */
288 void *dev_get_priv(struct udevice *dev);
289
290 /**
291  * dev_get_parent_priv() - Get the parent private data for a device
292  *
293  * The parent private data is data stored in the device but owned by the
294  * parent. For example, a USB device may have parent data which contains
295  * information about how to talk to the device over USB.
296  *
297  * This checks that dev is not NULL, but no other checks for now
298  *
299  * @dev         Device to check
300  * @return parent data, or NULL if none
301  */
302 void *dev_get_parent_priv(struct udevice *dev);
303
304 /**
305  * dev_get_uclass_priv() - Get the private uclass data for a device
306  *
307  * This checks that dev is not NULL, but no other checks for now
308  *
309  * @dev         Device to check
310  * @return private uclass data for this device, or NULL if none
311  */
312 void *dev_get_uclass_priv(struct udevice *dev);
313
314 /**
315  * struct dev_get_parent() - Get the parent of a device
316  *
317  * @child:      Child to check
318  * @return parent of child, or NULL if this is the root device
319  */
320 struct udevice *dev_get_parent(struct udevice *child);
321
322 /**
323  * dev_get_driver_data() - get the driver data used to bind a device
324  *
325  * When a device is bound using a device tree node, it matches a
326  * particular compatible string in struct udevice_id. This function
327  * returns the associated data value for that compatible string. This is
328  * the 'data' field in struct udevice_id.
329  *
330  * As an example, consider this structure:
331  * static const struct udevice_id tegra_i2c_ids[] = {
332  *      { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
333  *      { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
334  *      { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
335  *      { }
336  * };
337  *
338  * When driver model finds a driver for this it will store the 'data' value
339  * corresponding to the compatible string it matches. This function returns
340  * that value. This allows the driver to handle several variants of a device.
341  *
342  * For USB devices, this is the driver_info field in struct usb_device_id.
343  *
344  * @dev:        Device to check
345  * @return driver data (0 if none is provided)
346  */
347 ulong dev_get_driver_data(struct udevice *dev);
348
349 /**
350  * dev_get_driver_ops() - get the device's driver's operations
351  *
352  * This checks that dev is not NULL, and returns the pointer to device's
353  * driver's operations.
354  *
355  * @dev:        Device to check
356  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
357  */
358 const void *dev_get_driver_ops(struct udevice *dev);
359
360 /**
361  * device_get_uclass_id() - return the uclass ID of a device
362  *
363  * @dev:        Device to check
364  * @return uclass ID for the device
365  */
366 enum uclass_id device_get_uclass_id(struct udevice *dev);
367
368 /**
369  * dev_get_uclass_name() - return the uclass name of a device
370  *
371  * This checks that dev is not NULL.
372  *
373  * @dev:        Device to check
374  * @return  pointer to the uclass name for the device
375  */
376 const char *dev_get_uclass_name(struct udevice *dev);
377
378 /**
379  * device_get_child() - Get the child of a device by index
380  *
381  * Returns the numbered child, 0 being the first. This does not use
382  * sequence numbers, only the natural order.
383  *
384  * @dev:        Parent device to check
385  * @index:      Child index
386  * @devp:       Returns pointer to device
387  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
388  *         to probe
389  */
390 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
391
392 /**
393  * device_find_child_by_seq() - Find a child device based on a sequence
394  *
395  * This searches for a device with the given seq or req_seq.
396  *
397  * For seq, if an active device has this sequence it will be returned.
398  * If there is no such device then this will return -ENODEV.
399  *
400  * For req_seq, if a device (whether activated or not) has this req_seq
401  * value, that device will be returned. This is a strong indication that
402  * the device will receive that sequence when activated.
403  *
404  * @parent: Parent device
405  * @seq_or_req_seq: Sequence number to find (0=first)
406  * @find_req_seq: true to find req_seq, false to find seq
407  * @devp: Returns pointer to device (there is only one per for each seq).
408  * Set to NULL if none is found
409  * @return 0 if OK, -ve on error
410  */
411 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
412                              bool find_req_seq, struct udevice **devp);
413
414 /**
415  * device_get_child_by_seq() - Get a child device based on a sequence
416  *
417  * If an active device has this sequence it will be returned. If there is no
418  * such device then this will check for a device that is requesting this
419  * sequence.
420  *
421  * The device is probed to activate it ready for use.
422  *
423  * @parent: Parent device
424  * @seq: Sequence number to find (0=first)
425  * @devp: Returns pointer to device (there is only one per for each seq)
426  * Set to NULL if none is found
427  * @return 0 if OK, -ve on error
428  */
429 int device_get_child_by_seq(struct udevice *parent, int seq,
430                             struct udevice **devp);
431
432 /**
433  * device_find_child_by_of_offset() - Find a child device based on FDT offset
434  *
435  * Locates a child device by its device tree offset.
436  *
437  * @parent: Parent device
438  * @of_offset: Device tree offset to find
439  * @devp: Returns pointer to device if found, otherwise this is set to NULL
440  * @return 0 if OK, -ve on error
441  */
442 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
443                                    struct udevice **devp);
444
445 /**
446  * device_get_child_by_of_offset() - Get a child device based on FDT offset
447  *
448  * Locates a child device by its device tree offset.
449  *
450  * The device is probed to activate it ready for use.
451  *
452  * @parent: Parent device
453  * @of_offset: Device tree offset to find
454  * @devp: Returns pointer to device if found, otherwise this is set to NULL
455  * @return 0 if OK, -ve on error
456  */
457 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
458                                   struct udevice **devp);
459
460 /**
461  * device_get_global_by_of_offset() - Get a device based on FDT offset
462  *
463  * Locates a device by its device tree offset, searching globally throughout
464  * the all driver model devices.
465  *
466  * The device is probed to activate it ready for use.
467  *
468  * @of_offset: Device tree offset to find
469  * @devp: Returns pointer to device if found, otherwise this is set to NULL
470  * @return 0 if OK, -ve on error
471  */
472 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
473
474 /**
475  * device_find_first_child() - Find the first child of a device
476  *
477  * @parent: Parent device to search
478  * @devp: Returns first child device, or NULL if none
479  * @return 0
480  */
481 int device_find_first_child(struct udevice *parent, struct udevice **devp);
482
483 /**
484  * device_find_next_child() - Find the next child of a device
485  *
486  * @devp: Pointer to previous child device on entry. Returns pointer to next
487  *              child device, or NULL if none
488  * @return 0
489  */
490 int device_find_next_child(struct udevice **devp);
491
492 /**
493  * dev_get_addr() - Get the reg property of a device
494  *
495  * @dev: Pointer to a device
496  *
497  * @return addr
498  */
499 fdt_addr_t dev_get_addr(struct udevice *dev);
500
501 /**
502  * dev_get_addr_ptr() - Return pointer to the address of the reg property
503  *                      of a device
504  *
505  * @dev: Pointer to a device
506  *
507  * @return Pointer to addr, or NULL if there is no such property
508  */
509 void *dev_get_addr_ptr(struct udevice *dev);
510
511 /**
512  * dev_map_physmem() - Read device address from reg property of the
513  *                     device node and map the address into CPU address
514  *                     space.
515  *
516  * @dev: Pointer to device
517  * @size: size of the memory to map
518  *
519  * @return  mapped address, or NULL if the device does not have reg
520  *          property.
521  */
522 void *dev_map_physmem(struct udevice *dev, unsigned long size);
523
524 /**
525  * dev_get_addr_index() - Get the indexed reg property of a device
526  *
527  * @dev: Pointer to a device
528  * @index: the 'reg' property can hold a list of <addr, size> pairs
529  *         and @index is used to select which one is required
530  *
531  * @return addr
532  */
533 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
534
535 /**
536  * dev_get_addr_size_index() - Get the indexed reg property of a device
537  *
538  * Returns the address and size specified in the 'reg' property of a device.
539  *
540  * @dev: Pointer to a device
541  * @index: the 'reg' property can hold a list of <addr, size> pairs
542  *         and @index is used to select which one is required
543  * @size: Pointer to size varible - this function returns the size
544  *        specified in the 'reg' property here
545  *
546  * @return addr
547  */
548 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index,
549                                    fdt_size_t *size);
550
551 /**
552  * dev_get_addr_name() - Get the reg property of a device, indexed by name
553  *
554  * @dev: Pointer to a device
555  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
556  *        'reg-names' property providing named-based identification. @index
557  *        indicates the value to search for in 'reg-names'.
558  *
559  * @return addr
560  */
561 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
562
563 /**
564  * device_has_children() - check if a device has any children
565  *
566  * @dev:        Device to check
567  * @return true if the device has one or more children
568  */
569 bool device_has_children(struct udevice *dev);
570
571 /**
572  * device_has_active_children() - check if a device has any active children
573  *
574  * @dev:        Device to check
575  * @return true if the device has one or more children and at least one of
576  * them is active (probed).
577  */
578 bool device_has_active_children(struct udevice *dev);
579
580 /**
581  * device_is_last_sibling() - check if a device is the last sibling
582  *
583  * This function can be useful for display purposes, when special action needs
584  * to be taken when displaying the last sibling. This can happen when a tree
585  * view of devices is being displayed.
586  *
587  * @dev:        Device to check
588  * @return true if there are no more siblings after this one - i.e. is it
589  * last in the list.
590  */
591 bool device_is_last_sibling(struct udevice *dev);
592
593 /**
594  * device_set_name() - set the name of a device
595  *
596  * This must be called in the device's bind() method and no later. Normally
597  * this is unnecessary but for probed devices which don't get a useful name
598  * this function can be helpful.
599  *
600  * The name is allocated and will be freed automatically when the device is
601  * unbound.
602  *
603  * @dev:        Device to update
604  * @name:       New name (this string is allocated new memory and attached to
605  *              the device)
606  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
607  * string
608  */
609 int device_set_name(struct udevice *dev, const char *name);
610
611 /**
612  * device_set_name_alloced() - note that a device name is allocated
613  *
614  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
615  * unbound the name will be freed. This avoids memory leaks.
616  *
617  * @dev:        Device to update
618  */
619 void device_set_name_alloced(struct udevice *dev);
620
621 /**
622  * of_device_is_compatible() - check if the device is compatible with the compat
623  *
624  * This allows to check whether the device is comaptible with the compat.
625  *
626  * @dev:        udevice pointer for which compatible needs to be verified.
627  * @compat:     Compatible string which needs to verified in the given
628  *              device
629  * @return true if OK, false if the compatible is not found
630  */
631 bool of_device_is_compatible(struct udevice *dev, const char *compat);
632
633 /**
634  * of_machine_is_compatible() - check if the machine is compatible with
635  *                              the compat
636  *
637  * This allows to check whether the machine is comaptible with the compat.
638  *
639  * @compat:     Compatible string which needs to verified
640  * @return true if OK, false if the compatible is not found
641  */
642 bool of_machine_is_compatible(const char *compat);
643
644 /**
645  * device_is_on_pci_bus - Test if a device is on a PCI bus
646  *
647  * @dev:        device to test
648  * @return:     true if it is on a PCI bus, false otherwise
649  */
650 static inline bool device_is_on_pci_bus(struct udevice *dev)
651 {
652         return device_get_uclass_id(dev->parent) == UCLASS_PCI;
653 }
654
655 /**
656  * device_foreach_child_safe() - iterate through child devices safely
657  *
658  * This allows the @pos child to be removed in the loop if required.
659  *
660  * @pos: struct udevice * for the current device
661  * @next: struct udevice * for the next device
662  * @parent: parent device to scan
663  */
664 #define device_foreach_child_safe(pos, next, parent)    \
665         list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
666
667 /**
668  * dm_scan_fdt_dev() - Bind child device in a the device tree
669  *
670  * This handles device which have sub-nodes in the device tree. It scans all
671  * sub-nodes and binds drivers for each node where a driver can be found.
672  *
673  * If this is called prior to relocation, only pre-relocation devices will be
674  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
675  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
676  * be bound.
677  *
678  * @dev:        Device to scan
679  * @return 0 if OK, -ve on error
680  */
681 int dm_scan_fdt_dev(struct udevice *dev);
682
683 /* device resource management */
684 typedef void (*dr_release_t)(struct udevice *dev, void *res);
685 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
686
687 #ifdef CONFIG_DEVRES
688
689 #ifdef CONFIG_DEBUG_DEVRES
690 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
691                      const char *name);
692 #define _devres_alloc(release, size, gfp) \
693         __devres_alloc(release, size, gfp, #release)
694 #else
695 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
696 #endif
697
698 /**
699  * devres_alloc() - Allocate device resource data
700  * @release: Release function devres will be associated with
701  * @size: Allocation size
702  * @gfp: Allocation flags
703  *
704  * Allocate devres of @size bytes.  The allocated area is associated
705  * with @release.  The returned pointer can be passed to
706  * other devres_*() functions.
707  *
708  * RETURNS:
709  * Pointer to allocated devres on success, NULL on failure.
710  */
711 #define devres_alloc(release, size, gfp) \
712         _devres_alloc(release, size, gfp | __GFP_ZERO)
713
714 /**
715  * devres_free() - Free device resource data
716  * @res: Pointer to devres data to free
717  *
718  * Free devres created with devres_alloc().
719  */
720 void devres_free(void *res);
721
722 /**
723  * devres_add() - Register device resource
724  * @dev: Device to add resource to
725  * @res: Resource to register
726  *
727  * Register devres @res to @dev.  @res should have been allocated
728  * using devres_alloc().  On driver detach, the associated release
729  * function will be invoked and devres will be freed automatically.
730  */
731 void devres_add(struct udevice *dev, void *res);
732
733 /**
734  * devres_find() - Find device resource
735  * @dev: Device to lookup resource from
736  * @release: Look for resources associated with this release function
737  * @match: Match function (optional)
738  * @match_data: Data for the match function
739  *
740  * Find the latest devres of @dev which is associated with @release
741  * and for which @match returns 1.  If @match is NULL, it's considered
742  * to match all.
743  *
744  * @return pointer to found devres, NULL if not found.
745  */
746 void *devres_find(struct udevice *dev, dr_release_t release,
747                   dr_match_t match, void *match_data);
748
749 /**
750  * devres_get() - Find devres, if non-existent, add one atomically
751  * @dev: Device to lookup or add devres for
752  * @new_res: Pointer to new initialized devres to add if not found
753  * @match: Match function (optional)
754  * @match_data: Data for the match function
755  *
756  * Find the latest devres of @dev which has the same release function
757  * as @new_res and for which @match return 1.  If found, @new_res is
758  * freed; otherwise, @new_res is added atomically.
759  *
760  * @return ointer to found or added devres.
761  */
762 void *devres_get(struct udevice *dev, void *new_res,
763                  dr_match_t match, void *match_data);
764
765 /**
766  * devres_remove() - Find a device resource and remove it
767  * @dev: Device to find resource from
768  * @release: Look for resources associated with this release function
769  * @match: Match function (optional)
770  * @match_data: Data for the match function
771  *
772  * Find the latest devres of @dev associated with @release and for
773  * which @match returns 1.  If @match is NULL, it's considered to
774  * match all.  If found, the resource is removed atomically and
775  * returned.
776  *
777  * @return ointer to removed devres on success, NULL if not found.
778  */
779 void *devres_remove(struct udevice *dev, dr_release_t release,
780                     dr_match_t match, void *match_data);
781
782 /**
783  * devres_destroy() - Find a device resource and destroy it
784  * @dev: Device to find resource from
785  * @release: Look for resources associated with this release function
786  * @match: Match function (optional)
787  * @match_data: Data for the match function
788  *
789  * Find the latest devres of @dev associated with @release and for
790  * which @match returns 1.  If @match is NULL, it's considered to
791  * match all.  If found, the resource is removed atomically and freed.
792  *
793  * Note that the release function for the resource will not be called,
794  * only the devres-allocated data will be freed.  The caller becomes
795  * responsible for freeing any other data.
796  *
797  * @return 0 if devres is found and freed, -ENOENT if not found.
798  */
799 int devres_destroy(struct udevice *dev, dr_release_t release,
800                    dr_match_t match, void *match_data);
801
802 /**
803  * devres_release() - Find a device resource and destroy it, calling release
804  * @dev: Device to find resource from
805  * @release: Look for resources associated with this release function
806  * @match: Match function (optional)
807  * @match_data: Data for the match function
808  *
809  * Find the latest devres of @dev associated with @release and for
810  * which @match returns 1.  If @match is NULL, it's considered to
811  * match all.  If found, the resource is removed atomically, the
812  * release function called and the resource freed.
813  *
814  * @return 0 if devres is found and freed, -ENOENT if not found.
815  */
816 int devres_release(struct udevice *dev, dr_release_t release,
817                    dr_match_t match, void *match_data);
818
819 /* managed devm_k.alloc/kfree for device drivers */
820 /**
821  * devm_kmalloc() - Resource-managed kmalloc
822  * @dev: Device to allocate memory for
823  * @size: Allocation size
824  * @gfp: Allocation gfp flags
825  *
826  * Managed kmalloc.  Memory allocated with this function is
827  * automatically freed on driver detach.  Like all other devres
828  * resources, guaranteed alignment is unsigned long long.
829  *
830  * @return pointer to allocated memory on success, NULL on failure.
831  */
832 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
833 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
834 {
835         return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
836 }
837 static inline void *devm_kmalloc_array(struct udevice *dev,
838                                        size_t n, size_t size, gfp_t flags)
839 {
840         if (size != 0 && n > SIZE_MAX / size)
841                 return NULL;
842         return devm_kmalloc(dev, n * size, flags);
843 }
844 static inline void *devm_kcalloc(struct udevice *dev,
845                                  size_t n, size_t size, gfp_t flags)
846 {
847         return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
848 }
849
850 /**
851  * devm_kfree() - Resource-managed kfree
852  * @dev: Device this memory belongs to
853  * @ptr: Memory to free
854  *
855  * Free memory allocated with devm_kmalloc().
856  */
857 void devm_kfree(struct udevice *dev, void *ptr);
858
859 #else /* ! CONFIG_DEVRES */
860
861 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
862 {
863         return kzalloc(size, gfp);
864 }
865
866 static inline void devres_free(void *res)
867 {
868         kfree(res);
869 }
870
871 static inline void devres_add(struct udevice *dev, void *res)
872 {
873 }
874
875 static inline void *devres_find(struct udevice *dev, dr_release_t release,
876                                 dr_match_t match, void *match_data)
877 {
878         return NULL;
879 }
880
881 static inline void *devres_get(struct udevice *dev, void *new_res,
882                                dr_match_t match, void *match_data)
883 {
884         return NULL;
885 }
886
887 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
888                                   dr_match_t match, void *match_data)
889 {
890         return NULL;
891 }
892
893 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
894                                  dr_match_t match, void *match_data)
895 {
896         return 0;
897 }
898
899 static inline int devres_release(struct udevice *dev, dr_release_t release,
900                                  dr_match_t match, void *match_data)
901 {
902         return 0;
903 }
904
905 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
906 {
907         return kmalloc(size, gfp);
908 }
909
910 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
911 {
912         return kzalloc(size, gfp);
913 }
914
915 static inline void *devm_kmaloc_array(struct udevice *dev,
916                                       size_t n, size_t size, gfp_t flags)
917 {
918         /* TODO: add kmalloc_array() to linux/compat.h */
919         if (size != 0 && n > SIZE_MAX / size)
920                 return NULL;
921         return kmalloc(n * size, flags);
922 }
923
924 static inline void *devm_kcalloc(struct udevice *dev,
925                                  size_t n, size_t size, gfp_t flags)
926 {
927         /* TODO: add kcalloc() to linux/compat.h */
928         return kmalloc(n * size, flags | __GFP_ZERO);
929 }
930
931 static inline void devm_kfree(struct udevice *dev, void *ptr)
932 {
933         kfree(ptr);
934 }
935
936 #endif /* ! CONFIG_DEVRES */
937
938 /**
939  * dm_set_translation_offset() - Set translation offset
940  * @offs: Translation offset
941  *
942  * Some platforms need a special address translation. Those
943  * platforms (e.g. mvebu in SPL) can configure a translation
944  * offset in the DM by calling this function. It will be
945  * added to all addresses returned in dev_get_addr().
946  */
947 void dm_set_translation_offset(fdt_addr_t offs);
948
949 /**
950  * dm_get_translation_offset() - Get translation offset
951  *
952  * This function returns the translation offset that can
953  * be configured by calling dm_set_translation_offset().
954  *
955  * @return translation offset for the device address (0 as default).
956  */
957 fdt_addr_t dm_get_translation_offset(void);
958
959 #endif