2 * Copyright (c) 2013 Google, Inc
5 * Pavel Herrmann <morpheus.ibis@gmail.com>
6 * Marek Vasut <marex@denx.de>
8 * SPDX-License-Identifier: GPL-2.0+
14 #include <dm/uclass-id.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED (1 << 0)
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA (1 << 1)
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC (1 << 2)
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4)
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5)
42 #define DM_FLAG_BOUND (1 << 6)
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_FLAG_NAME_ALLOCED (1 << 7)
47 #define DM_FLAG_OF_PLATDATA (1 << 8)
50 * Call driver remove function to stop currently active DMA transfers or
51 * give DMA buffers back to the HW / controller. This may be needed for
52 * some drivers to do some final stage cleanup before the OS is called
55 #define DM_FLAG_ACTIVE_DMA (1 << 9)
58 * One or multiple of these flags are passed to device_remove() so that
59 * a selective device removal as specified by the remove-stage and the
60 * driver flags can be done.
63 /* Normal remove, remove all devices */
64 DM_REMOVE_NORMAL = 1 << 0,
66 /* Remove devices with active DMA */
67 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
69 /* Add more use cases here */
71 /* Remove devices with any active flag */
72 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA,
76 * struct udevice - An instance of a driver
78 * This holds information about a device, which is a driver bound to a
79 * particular port or peripheral (essentially a driver instance).
81 * A device will come into existence through a 'bind' call, either due to
82 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
83 * in the device tree (in which case of_offset is >= 0). In the latter case
84 * we translate the device tree information into platdata in a function
85 * implemented by the driver ofdata_to_platdata method (called just before the
86 * probe method if the device has a device tree node.
88 * All three of platdata, priv and uclass_priv can be allocated by the
89 * driver, or you can use the auto_alloc_size members of struct driver and
90 * struct uclass_driver to have driver model do this automatically.
92 * @driver: The driver used by this device
93 * @name: Name of device, typically the FDT node name
94 * @platdata: Configuration data for this device
95 * @parent_platdata: The parent bus's configuration data for this device
96 * @uclass_platdata: The uclass's configuration data for this device
97 * @of_offset: Device tree node offset for this device (- for none)
98 * @driver_data: Driver data word for the entry that matched this device with
100 * @parent: Parent of this device, or NULL for the top level device
101 * @priv: Private data for this device
102 * @uclass: Pointer to uclass for this device
103 * @uclass_priv: The uclass's private data for this device
104 * @parent_priv: The parent's private data for this device
105 * @uclass_node: Used by uclass to link its devices
106 * @child_head: List of children of this device
107 * @sibling_node: Next device in list of all devices
108 * @flags: Flags for this device DM_FLAG_...
109 * @req_seq: Requested sequence number for this device (-1 = any)
110 * @seq: Allocated sequence number for this device (-1 = none). This is set up
111 * when the device is probed and will be unique within the device's uclass.
112 * @devres_head: List of memory allocations associated with this device.
113 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
114 * add to this list. Memory so-allocated will be freed
115 * automatically when the device is removed / unbound
118 const struct driver *driver;
121 void *parent_platdata;
122 void *uclass_platdata;
125 struct udevice *parent;
127 struct uclass *uclass;
130 struct list_head uclass_node;
131 struct list_head child_head;
132 struct list_head sibling_node;
137 struct list_head devres_head;
141 /* Maximum sequence number supported */
142 #define DM_MAX_SEQ 999
144 /* Returns the operations for a device */
145 #define device_get_ops(dev) (dev->driver->ops)
147 /* Returns non-zero if the device is active (probed and not removed) */
148 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED)
150 static inline int dev_of_offset(const struct udevice *dev)
152 return dev->of_offset;
155 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
157 dev->of_offset = of_offset;
161 * struct udevice_id - Lists the compatible strings supported by a driver
162 * @compatible: Compatible string
163 * @data: Data for this compatible string
166 const char *compatible;
170 #if CONFIG_IS_ENABLED(OF_CONTROL)
171 #define of_match_ptr(_ptr) (_ptr)
173 #define of_match_ptr(_ptr) NULL
174 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
177 * struct driver - A driver for a feature or peripheral
179 * This holds methods for setting up a new device, and also removing it.
180 * The device needs information to set itself up - this is provided either
181 * by platdata or a device tree node (which we find by looking up
182 * matching compatible strings with of_match).
184 * Drivers all belong to a uclass, representing a class of devices of the
185 * same type. Common elements of the drivers can be implemented in the uclass,
186 * or the uclass can provide a consistent interface to the drivers within
190 * @id: Identiies the uclass we belong to
191 * @of_match: List of compatible strings to match, and any identifying data
193 * @bind: Called to bind a device to its driver
194 * @probe: Called to probe a device, i.e. activate it
195 * @remove: Called to remove a device, i.e. de-activate it
196 * @unbind: Called to unbind a device from its driver
197 * @ofdata_to_platdata: Called before probe to decode device tree data
198 * @child_post_bind: Called after a new child has been bound
199 * @child_pre_probe: Called before a child device is probed. The device has
200 * memory allocated but it has not yet been probed.
201 * @child_post_remove: Called after a child device is removed. The device
202 * has memory allocated but its device_remove() method has been called.
203 * @priv_auto_alloc_size: If non-zero this is the size of the private data
204 * to be allocated in the device's ->priv pointer. If zero, then the driver
205 * is responsible for allocating any data required.
206 * @platdata_auto_alloc_size: If non-zero this is the size of the
207 * platform data to be allocated in the device's ->platdata pointer.
208 * This is typically only useful for device-tree-aware drivers (those with
209 * an of_match), since drivers which use platdata will have the data
210 * provided in the U_BOOT_DEVICE() instantiation.
211 * @per_child_auto_alloc_size: Each device can hold private data owned by
212 * its parent. If required this will be automatically allocated if this
214 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
215 * its children. If non-zero this is the size of this data, to be allocated
216 * in the child's parent_platdata pointer.
217 * @ops: Driver-specific operations. This is typically a list of function
218 * pointers defined by the driver, to implement driver functions required by
220 * @flags: driver flags - see DM_FLAGS_...
225 const struct udevice_id *of_match;
226 int (*bind)(struct udevice *dev);
227 int (*probe)(struct udevice *dev);
228 int (*remove)(struct udevice *dev);
229 int (*unbind)(struct udevice *dev);
230 int (*ofdata_to_platdata)(struct udevice *dev);
231 int (*child_post_bind)(struct udevice *dev);
232 int (*child_pre_probe)(struct udevice *dev);
233 int (*child_post_remove)(struct udevice *dev);
234 int priv_auto_alloc_size;
235 int platdata_auto_alloc_size;
236 int per_child_auto_alloc_size;
237 int per_child_platdata_auto_alloc_size;
238 const void *ops; /* driver-specific operations */
242 /* Declare a new U-Boot driver */
243 #define U_BOOT_DRIVER(__name) \
244 ll_entry_declare(struct driver, __name, driver)
246 /* Get a pointer to a given driver */
247 #define DM_GET_DRIVER(__name) \
248 ll_entry_get(struct driver, __name, driver)
251 * dev_get_platdata() - Get the platform data for a device
253 * This checks that dev is not NULL, but no other checks for now
255 * @dev Device to check
256 * @return platform data, or NULL if none
258 void *dev_get_platdata(struct udevice *dev);
261 * dev_get_parent_platdata() - Get the parent platform data for a device
263 * This checks that dev is not NULL, but no other checks for now
265 * @dev Device to check
266 * @return parent's platform data, or NULL if none
268 void *dev_get_parent_platdata(struct udevice *dev);
271 * dev_get_uclass_platdata() - Get the uclass platform data for a device
273 * This checks that dev is not NULL, but no other checks for now
275 * @dev Device to check
276 * @return uclass's platform data, or NULL if none
278 void *dev_get_uclass_platdata(struct udevice *dev);
281 * dev_get_priv() - Get the private data for a device
283 * This checks that dev is not NULL, but no other checks for now
285 * @dev Device to check
286 * @return private data, or NULL if none
288 void *dev_get_priv(struct udevice *dev);
291 * dev_get_parent_priv() - Get the parent private data for a device
293 * The parent private data is data stored in the device but owned by the
294 * parent. For example, a USB device may have parent data which contains
295 * information about how to talk to the device over USB.
297 * This checks that dev is not NULL, but no other checks for now
299 * @dev Device to check
300 * @return parent data, or NULL if none
302 void *dev_get_parent_priv(struct udevice *dev);
305 * dev_get_uclass_priv() - Get the private uclass data for a device
307 * This checks that dev is not NULL, but no other checks for now
309 * @dev Device to check
310 * @return private uclass data for this device, or NULL if none
312 void *dev_get_uclass_priv(struct udevice *dev);
315 * struct dev_get_parent() - Get the parent of a device
317 * @child: Child to check
318 * @return parent of child, or NULL if this is the root device
320 struct udevice *dev_get_parent(struct udevice *child);
323 * dev_get_driver_data() - get the driver data used to bind a device
325 * When a device is bound using a device tree node, it matches a
326 * particular compatible string in struct udevice_id. This function
327 * returns the associated data value for that compatible string. This is
328 * the 'data' field in struct udevice_id.
330 * As an example, consider this structure:
331 * static const struct udevice_id tegra_i2c_ids[] = {
332 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
333 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
334 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
338 * When driver model finds a driver for this it will store the 'data' value
339 * corresponding to the compatible string it matches. This function returns
340 * that value. This allows the driver to handle several variants of a device.
342 * For USB devices, this is the driver_info field in struct usb_device_id.
344 * @dev: Device to check
345 * @return driver data (0 if none is provided)
347 ulong dev_get_driver_data(struct udevice *dev);
350 * dev_get_driver_ops() - get the device's driver's operations
352 * This checks that dev is not NULL, and returns the pointer to device's
353 * driver's operations.
355 * @dev: Device to check
356 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
358 const void *dev_get_driver_ops(struct udevice *dev);
361 * device_get_uclass_id() - return the uclass ID of a device
363 * @dev: Device to check
364 * @return uclass ID for the device
366 enum uclass_id device_get_uclass_id(struct udevice *dev);
369 * dev_get_uclass_name() - return the uclass name of a device
371 * This checks that dev is not NULL.
373 * @dev: Device to check
374 * @return pointer to the uclass name for the device
376 const char *dev_get_uclass_name(struct udevice *dev);
379 * device_get_child() - Get the child of a device by index
381 * Returns the numbered child, 0 being the first. This does not use
382 * sequence numbers, only the natural order.
384 * @dev: Parent device to check
385 * @index: Child index
386 * @devp: Returns pointer to device
387 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
390 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
393 * device_find_child_by_seq() - Find a child device based on a sequence
395 * This searches for a device with the given seq or req_seq.
397 * For seq, if an active device has this sequence it will be returned.
398 * If there is no such device then this will return -ENODEV.
400 * For req_seq, if a device (whether activated or not) has this req_seq
401 * value, that device will be returned. This is a strong indication that
402 * the device will receive that sequence when activated.
404 * @parent: Parent device
405 * @seq_or_req_seq: Sequence number to find (0=first)
406 * @find_req_seq: true to find req_seq, false to find seq
407 * @devp: Returns pointer to device (there is only one per for each seq).
408 * Set to NULL if none is found
409 * @return 0 if OK, -ve on error
411 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
412 bool find_req_seq, struct udevice **devp);
415 * device_get_child_by_seq() - Get a child device based on a sequence
417 * If an active device has this sequence it will be returned. If there is no
418 * such device then this will check for a device that is requesting this
421 * The device is probed to activate it ready for use.
423 * @parent: Parent device
424 * @seq: Sequence number to find (0=first)
425 * @devp: Returns pointer to device (there is only one per for each seq)
426 * Set to NULL if none is found
427 * @return 0 if OK, -ve on error
429 int device_get_child_by_seq(struct udevice *parent, int seq,
430 struct udevice **devp);
433 * device_find_child_by_of_offset() - Find a child device based on FDT offset
435 * Locates a child device by its device tree offset.
437 * @parent: Parent device
438 * @of_offset: Device tree offset to find
439 * @devp: Returns pointer to device if found, otherwise this is set to NULL
440 * @return 0 if OK, -ve on error
442 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
443 struct udevice **devp);
446 * device_get_child_by_of_offset() - Get a child device based on FDT offset
448 * Locates a child device by its device tree offset.
450 * The device is probed to activate it ready for use.
452 * @parent: Parent device
453 * @of_offset: Device tree offset to find
454 * @devp: Returns pointer to device if found, otherwise this is set to NULL
455 * @return 0 if OK, -ve on error
457 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
458 struct udevice **devp);
461 * device_get_global_by_of_offset() - Get a device based on FDT offset
463 * Locates a device by its device tree offset, searching globally throughout
464 * the all driver model devices.
466 * The device is probed to activate it ready for use.
468 * @of_offset: Device tree offset to find
469 * @devp: Returns pointer to device if found, otherwise this is set to NULL
470 * @return 0 if OK, -ve on error
472 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
475 * device_find_first_child() - Find the first child of a device
477 * @parent: Parent device to search
478 * @devp: Returns first child device, or NULL if none
481 int device_find_first_child(struct udevice *parent, struct udevice **devp);
484 * device_find_next_child() - Find the next child of a device
486 * @devp: Pointer to previous child device on entry. Returns pointer to next
487 * child device, or NULL if none
490 int device_find_next_child(struct udevice **devp);
493 * dev_get_addr() - Get the reg property of a device
495 * @dev: Pointer to a device
499 fdt_addr_t dev_get_addr(struct udevice *dev);
502 * dev_get_addr_ptr() - Return pointer to the address of the reg property
505 * @dev: Pointer to a device
507 * @return Pointer to addr, or NULL if there is no such property
509 void *dev_get_addr_ptr(struct udevice *dev);
512 * dev_map_physmem() - Read device address from reg property of the
513 * device node and map the address into CPU address
516 * @dev: Pointer to device
517 * @size: size of the memory to map
519 * @return mapped address, or NULL if the device does not have reg
522 void *dev_map_physmem(struct udevice *dev, unsigned long size);
525 * dev_get_addr_index() - Get the indexed reg property of a device
527 * @dev: Pointer to a device
528 * @index: the 'reg' property can hold a list of <addr, size> pairs
529 * and @index is used to select which one is required
533 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
536 * dev_get_addr_size_index() - Get the indexed reg property of a device
538 * Returns the address and size specified in the 'reg' property of a device.
540 * @dev: Pointer to a device
541 * @index: the 'reg' property can hold a list of <addr, size> pairs
542 * and @index is used to select which one is required
543 * @size: Pointer to size varible - this function returns the size
544 * specified in the 'reg' property here
548 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index,
552 * dev_get_addr_name() - Get the reg property of a device, indexed by name
554 * @dev: Pointer to a device
555 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
556 * 'reg-names' property providing named-based identification. @index
557 * indicates the value to search for in 'reg-names'.
561 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
564 * device_has_children() - check if a device has any children
566 * @dev: Device to check
567 * @return true if the device has one or more children
569 bool device_has_children(struct udevice *dev);
572 * device_has_active_children() - check if a device has any active children
574 * @dev: Device to check
575 * @return true if the device has one or more children and at least one of
576 * them is active (probed).
578 bool device_has_active_children(struct udevice *dev);
581 * device_is_last_sibling() - check if a device is the last sibling
583 * This function can be useful for display purposes, when special action needs
584 * to be taken when displaying the last sibling. This can happen when a tree
585 * view of devices is being displayed.
587 * @dev: Device to check
588 * @return true if there are no more siblings after this one - i.e. is it
591 bool device_is_last_sibling(struct udevice *dev);
594 * device_set_name() - set the name of a device
596 * This must be called in the device's bind() method and no later. Normally
597 * this is unnecessary but for probed devices which don't get a useful name
598 * this function can be helpful.
600 * The name is allocated and will be freed automatically when the device is
603 * @dev: Device to update
604 * @name: New name (this string is allocated new memory and attached to
606 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
609 int device_set_name(struct udevice *dev, const char *name);
612 * device_set_name_alloced() - note that a device name is allocated
614 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
615 * unbound the name will be freed. This avoids memory leaks.
617 * @dev: Device to update
619 void device_set_name_alloced(struct udevice *dev);
622 * of_device_is_compatible() - check if the device is compatible with the compat
624 * This allows to check whether the device is comaptible with the compat.
626 * @dev: udevice pointer for which compatible needs to be verified.
627 * @compat: Compatible string which needs to verified in the given
629 * @return true if OK, false if the compatible is not found
631 bool of_device_is_compatible(struct udevice *dev, const char *compat);
634 * of_machine_is_compatible() - check if the machine is compatible with
637 * This allows to check whether the machine is comaptible with the compat.
639 * @compat: Compatible string which needs to verified
640 * @return true if OK, false if the compatible is not found
642 bool of_machine_is_compatible(const char *compat);
645 * device_is_on_pci_bus - Test if a device is on a PCI bus
647 * @dev: device to test
648 * @return: true if it is on a PCI bus, false otherwise
650 static inline bool device_is_on_pci_bus(struct udevice *dev)
652 return device_get_uclass_id(dev->parent) == UCLASS_PCI;
656 * device_foreach_child_safe() - iterate through child devices safely
658 * This allows the @pos child to be removed in the loop if required.
660 * @pos: struct udevice * for the current device
661 * @next: struct udevice * for the next device
662 * @parent: parent device to scan
664 #define device_foreach_child_safe(pos, next, parent) \
665 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
668 * dm_scan_fdt_dev() - Bind child device in a the device tree
670 * This handles device which have sub-nodes in the device tree. It scans all
671 * sub-nodes and binds drivers for each node where a driver can be found.
673 * If this is called prior to relocation, only pre-relocation devices will be
674 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
675 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
678 * @dev: Device to scan
679 * @return 0 if OK, -ve on error
681 int dm_scan_fdt_dev(struct udevice *dev);
683 /* device resource management */
684 typedef void (*dr_release_t)(struct udevice *dev, void *res);
685 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
689 #ifdef CONFIG_DEBUG_DEVRES
690 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
692 #define _devres_alloc(release, size, gfp) \
693 __devres_alloc(release, size, gfp, #release)
695 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
699 * devres_alloc() - Allocate device resource data
700 * @release: Release function devres will be associated with
701 * @size: Allocation size
702 * @gfp: Allocation flags
704 * Allocate devres of @size bytes. The allocated area is associated
705 * with @release. The returned pointer can be passed to
706 * other devres_*() functions.
709 * Pointer to allocated devres on success, NULL on failure.
711 #define devres_alloc(release, size, gfp) \
712 _devres_alloc(release, size, gfp | __GFP_ZERO)
715 * devres_free() - Free device resource data
716 * @res: Pointer to devres data to free
718 * Free devres created with devres_alloc().
720 void devres_free(void *res);
723 * devres_add() - Register device resource
724 * @dev: Device to add resource to
725 * @res: Resource to register
727 * Register devres @res to @dev. @res should have been allocated
728 * using devres_alloc(). On driver detach, the associated release
729 * function will be invoked and devres will be freed automatically.
731 void devres_add(struct udevice *dev, void *res);
734 * devres_find() - Find device resource
735 * @dev: Device to lookup resource from
736 * @release: Look for resources associated with this release function
737 * @match: Match function (optional)
738 * @match_data: Data for the match function
740 * Find the latest devres of @dev which is associated with @release
741 * and for which @match returns 1. If @match is NULL, it's considered
744 * @return pointer to found devres, NULL if not found.
746 void *devres_find(struct udevice *dev, dr_release_t release,
747 dr_match_t match, void *match_data);
750 * devres_get() - Find devres, if non-existent, add one atomically
751 * @dev: Device to lookup or add devres for
752 * @new_res: Pointer to new initialized devres to add if not found
753 * @match: Match function (optional)
754 * @match_data: Data for the match function
756 * Find the latest devres of @dev which has the same release function
757 * as @new_res and for which @match return 1. If found, @new_res is
758 * freed; otherwise, @new_res is added atomically.
760 * @return ointer to found or added devres.
762 void *devres_get(struct udevice *dev, void *new_res,
763 dr_match_t match, void *match_data);
766 * devres_remove() - Find a device resource and remove it
767 * @dev: Device to find resource from
768 * @release: Look for resources associated with this release function
769 * @match: Match function (optional)
770 * @match_data: Data for the match function
772 * Find the latest devres of @dev associated with @release and for
773 * which @match returns 1. If @match is NULL, it's considered to
774 * match all. If found, the resource is removed atomically and
777 * @return ointer to removed devres on success, NULL if not found.
779 void *devres_remove(struct udevice *dev, dr_release_t release,
780 dr_match_t match, void *match_data);
783 * devres_destroy() - Find a device resource and destroy it
784 * @dev: Device to find resource from
785 * @release: Look for resources associated with this release function
786 * @match: Match function (optional)
787 * @match_data: Data for the match function
789 * Find the latest devres of @dev associated with @release and for
790 * which @match returns 1. If @match is NULL, it's considered to
791 * match all. If found, the resource is removed atomically and freed.
793 * Note that the release function for the resource will not be called,
794 * only the devres-allocated data will be freed. The caller becomes
795 * responsible for freeing any other data.
797 * @return 0 if devres is found and freed, -ENOENT if not found.
799 int devres_destroy(struct udevice *dev, dr_release_t release,
800 dr_match_t match, void *match_data);
803 * devres_release() - Find a device resource and destroy it, calling release
804 * @dev: Device to find resource from
805 * @release: Look for resources associated with this release function
806 * @match: Match function (optional)
807 * @match_data: Data for the match function
809 * Find the latest devres of @dev associated with @release and for
810 * which @match returns 1. If @match is NULL, it's considered to
811 * match all. If found, the resource is removed atomically, the
812 * release function called and the resource freed.
814 * @return 0 if devres is found and freed, -ENOENT if not found.
816 int devres_release(struct udevice *dev, dr_release_t release,
817 dr_match_t match, void *match_data);
819 /* managed devm_k.alloc/kfree for device drivers */
821 * devm_kmalloc() - Resource-managed kmalloc
822 * @dev: Device to allocate memory for
823 * @size: Allocation size
824 * @gfp: Allocation gfp flags
826 * Managed kmalloc. Memory allocated with this function is
827 * automatically freed on driver detach. Like all other devres
828 * resources, guaranteed alignment is unsigned long long.
830 * @return pointer to allocated memory on success, NULL on failure.
832 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
833 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
835 return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
837 static inline void *devm_kmalloc_array(struct udevice *dev,
838 size_t n, size_t size, gfp_t flags)
840 if (size != 0 && n > SIZE_MAX / size)
842 return devm_kmalloc(dev, n * size, flags);
844 static inline void *devm_kcalloc(struct udevice *dev,
845 size_t n, size_t size, gfp_t flags)
847 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
851 * devm_kfree() - Resource-managed kfree
852 * @dev: Device this memory belongs to
853 * @ptr: Memory to free
855 * Free memory allocated with devm_kmalloc().
857 void devm_kfree(struct udevice *dev, void *ptr);
859 #else /* ! CONFIG_DEVRES */
861 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
863 return kzalloc(size, gfp);
866 static inline void devres_free(void *res)
871 static inline void devres_add(struct udevice *dev, void *res)
875 static inline void *devres_find(struct udevice *dev, dr_release_t release,
876 dr_match_t match, void *match_data)
881 static inline void *devres_get(struct udevice *dev, void *new_res,
882 dr_match_t match, void *match_data)
887 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
888 dr_match_t match, void *match_data)
893 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
894 dr_match_t match, void *match_data)
899 static inline int devres_release(struct udevice *dev, dr_release_t release,
900 dr_match_t match, void *match_data)
905 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
907 return kmalloc(size, gfp);
910 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
912 return kzalloc(size, gfp);
915 static inline void *devm_kmaloc_array(struct udevice *dev,
916 size_t n, size_t size, gfp_t flags)
918 /* TODO: add kmalloc_array() to linux/compat.h */
919 if (size != 0 && n > SIZE_MAX / size)
921 return kmalloc(n * size, flags);
924 static inline void *devm_kcalloc(struct udevice *dev,
925 size_t n, size_t size, gfp_t flags)
927 /* TODO: add kcalloc() to linux/compat.h */
928 return kmalloc(n * size, flags | __GFP_ZERO);
931 static inline void devm_kfree(struct udevice *dev, void *ptr)
936 #endif /* ! CONFIG_DEVRES */
939 * dm_set_translation_offset() - Set translation offset
940 * @offs: Translation offset
942 * Some platforms need a special address translation. Those
943 * platforms (e.g. mvebu in SPL) can configure a translation
944 * offset in the DM by calling this function. It will be
945 * added to all addresses returned in dev_get_addr().
947 void dm_set_translation_offset(fdt_addr_t offs);
950 * dm_get_translation_offset() - Get translation offset
952 * This function returns the translation offset that can
953 * be configured by calling dm_set_translation_offset().
955 * @return translation offset for the device address (0 as default).
957 fdt_addr_t dm_get_translation_offset(void);