Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / fs / xfs / xfs_reflink.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_sb.h"
31 #include "xfs_ag_resv.h"
32
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 int
129 xfs_reflink_find_shared(
130         struct xfs_mount        *mp,
131         struct xfs_trans        *tp,
132         xfs_agnumber_t          agno,
133         xfs_agblock_t           agbno,
134         xfs_extlen_t            aglen,
135         xfs_agblock_t           *fbno,
136         xfs_extlen_t            *flen,
137         bool                    find_end_of_shared)
138 {
139         struct xfs_buf          *agbp;
140         struct xfs_btree_cur    *cur;
141         int                     error;
142
143         error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144         if (error)
145                 return error;
146         if (!agbp)
147                 return -ENOMEM;
148
149         cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
150
151         error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
152                         find_end_of_shared);
153
154         xfs_btree_del_cursor(cur, error);
155
156         xfs_trans_brelse(tp, agbp);
157         return error;
158 }
159
160 /*
161  * Trim the mapping to the next block where there's a change in the
162  * shared/unshared status.  More specifically, this means that we
163  * find the lowest-numbered extent of shared blocks that coincides with
164  * the given block mapping.  If the shared extent overlaps the start of
165  * the mapping, trim the mapping to the end of the shared extent.  If
166  * the shared region intersects the mapping, trim the mapping to the
167  * start of the shared extent.  If there are no shared regions that
168  * overlap, just return the original extent.
169  */
170 int
171 xfs_reflink_trim_around_shared(
172         struct xfs_inode        *ip,
173         struct xfs_bmbt_irec    *irec,
174         bool                    *shared)
175 {
176         xfs_agnumber_t          agno;
177         xfs_agblock_t           agbno;
178         xfs_extlen_t            aglen;
179         xfs_agblock_t           fbno;
180         xfs_extlen_t            flen;
181         int                     error = 0;
182
183         /* Holes, unwritten, and delalloc extents cannot be shared */
184         if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
185                 *shared = false;
186                 return 0;
187         }
188
189         trace_xfs_reflink_trim_around_shared(ip, irec);
190
191         agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
192         agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
193         aglen = irec->br_blockcount;
194
195         error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
196                         aglen, &fbno, &flen, true);
197         if (error)
198                 return error;
199
200         *shared = false;
201         if (fbno == NULLAGBLOCK) {
202                 /* No shared blocks at all. */
203                 return 0;
204         } else if (fbno == agbno) {
205                 /*
206                  * The start of this extent is shared.  Truncate the
207                  * mapping at the end of the shared region so that a
208                  * subsequent iteration starts at the start of the
209                  * unshared region.
210                  */
211                 irec->br_blockcount = flen;
212                 *shared = true;
213                 return 0;
214         } else {
215                 /*
216                  * There's a shared extent midway through this extent.
217                  * Truncate the mapping at the start of the shared
218                  * extent so that a subsequent iteration starts at the
219                  * start of the shared region.
220                  */
221                 irec->br_blockcount = fbno - agbno;
222                 return 0;
223         }
224 }
225
226 bool
227 xfs_inode_need_cow(
228         struct xfs_inode        *ip,
229         struct xfs_bmbt_irec    *imap,
230         bool                    *shared)
231 {
232         /* We can't update any real extents in always COW mode. */
233         if (xfs_is_always_cow_inode(ip) &&
234             !isnullstartblock(imap->br_startblock)) {
235                 *shared = true;
236                 return 0;
237         }
238
239         /* Trim the mapping to the nearest shared extent boundary. */
240         return xfs_reflink_trim_around_shared(ip, imap, shared);
241 }
242
243 static int
244 xfs_reflink_convert_cow_locked(
245         struct xfs_inode        *ip,
246         xfs_fileoff_t           offset_fsb,
247         xfs_filblks_t           count_fsb)
248 {
249         struct xfs_iext_cursor  icur;
250         struct xfs_bmbt_irec    got;
251         struct xfs_btree_cur    *dummy_cur = NULL;
252         int                     dummy_logflags;
253         int                     error = 0;
254
255         if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
256                 return 0;
257
258         do {
259                 if (got.br_startoff >= offset_fsb + count_fsb)
260                         break;
261                 if (got.br_state == XFS_EXT_NORM)
262                         continue;
263                 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
264                         return -EIO;
265
266                 xfs_trim_extent(&got, offset_fsb, count_fsb);
267                 if (!got.br_blockcount)
268                         continue;
269
270                 got.br_state = XFS_EXT_NORM;
271                 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
272                                 XFS_COW_FORK, &icur, &dummy_cur, &got,
273                                 &dummy_logflags);
274                 if (error)
275                         return error;
276         } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
277
278         return error;
279 }
280
281 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
282 int
283 xfs_reflink_convert_cow(
284         struct xfs_inode        *ip,
285         xfs_off_t               offset,
286         xfs_off_t               count)
287 {
288         struct xfs_mount        *mp = ip->i_mount;
289         xfs_fileoff_t           offset_fsb = XFS_B_TO_FSBT(mp, offset);
290         xfs_fileoff_t           end_fsb = XFS_B_TO_FSB(mp, offset + count);
291         xfs_filblks_t           count_fsb = end_fsb - offset_fsb;
292         int                     error;
293
294         ASSERT(count != 0);
295
296         xfs_ilock(ip, XFS_ILOCK_EXCL);
297         error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
298         xfs_iunlock(ip, XFS_ILOCK_EXCL);
299         return error;
300 }
301
302 /*
303  * Find the extent that maps the given range in the COW fork. Even if the extent
304  * is not shared we might have a preallocation for it in the COW fork. If so we
305  * use it that rather than trigger a new allocation.
306  */
307 static int
308 xfs_find_trim_cow_extent(
309         struct xfs_inode        *ip,
310         struct xfs_bmbt_irec    *imap,
311         bool                    *shared,
312         bool                    *found)
313 {
314         xfs_fileoff_t           offset_fsb = imap->br_startoff;
315         xfs_filblks_t           count_fsb = imap->br_blockcount;
316         struct xfs_iext_cursor  icur;
317         struct xfs_bmbt_irec    got;
318
319         *found = false;
320
321         /*
322          * If we don't find an overlapping extent, trim the range we need to
323          * allocate to fit the hole we found.
324          */
325         if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
326                 got.br_startoff = offset_fsb + count_fsb;
327         if (got.br_startoff > offset_fsb) {
328                 xfs_trim_extent(imap, imap->br_startoff,
329                                 got.br_startoff - imap->br_startoff);
330                 return xfs_inode_need_cow(ip, imap, shared);
331         }
332
333         *shared = true;
334         if (isnullstartblock(got.br_startblock)) {
335                 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
336                 return 0;
337         }
338
339         /* real extent found - no need to allocate */
340         xfs_trim_extent(&got, offset_fsb, count_fsb);
341         *imap = got;
342         *found = true;
343         return 0;
344 }
345
346 /* Allocate all CoW reservations covering a range of blocks in a file. */
347 int
348 xfs_reflink_allocate_cow(
349         struct xfs_inode        *ip,
350         struct xfs_bmbt_irec    *imap,
351         bool                    *shared,
352         uint                    *lockmode,
353         bool                    convert_now)
354 {
355         struct xfs_mount        *mp = ip->i_mount;
356         xfs_fileoff_t           offset_fsb = imap->br_startoff;
357         xfs_filblks_t           count_fsb = imap->br_blockcount;
358         struct xfs_trans        *tp;
359         int                     nimaps, error = 0;
360         bool                    found;
361         xfs_filblks_t           resaligned;
362         xfs_extlen_t            resblks = 0;
363
364         ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
365         if (!ip->i_cowfp) {
366                 ASSERT(!xfs_is_reflink_inode(ip));
367                 xfs_ifork_init_cow(ip);
368         }
369
370         error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
371         if (error || !*shared)
372                 return error;
373         if (found)
374                 goto convert;
375
376         resaligned = xfs_aligned_fsb_count(imap->br_startoff,
377                 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
378         resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
379
380         xfs_iunlock(ip, *lockmode);
381         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
382         *lockmode = XFS_ILOCK_EXCL;
383         xfs_ilock(ip, *lockmode);
384
385         if (error)
386                 return error;
387
388         error = xfs_qm_dqattach_locked(ip, false);
389         if (error)
390                 goto out_trans_cancel;
391
392         /*
393          * Check for an overlapping extent again now that we dropped the ilock.
394          */
395         error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
396         if (error || !*shared)
397                 goto out_trans_cancel;
398         if (found) {
399                 xfs_trans_cancel(tp);
400                 goto convert;
401         }
402
403         error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
404                         XFS_QMOPT_RES_REGBLKS);
405         if (error)
406                 goto out_trans_cancel;
407
408         xfs_trans_ijoin(tp, ip, 0);
409
410         /* Allocate the entire reservation as unwritten blocks. */
411         nimaps = 1;
412         error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
413                         XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
414                         resblks, imap, &nimaps);
415         if (error)
416                 goto out_unreserve;
417
418         xfs_inode_set_cowblocks_tag(ip);
419         error = xfs_trans_commit(tp);
420         if (error)
421                 return error;
422
423         /*
424          * Allocation succeeded but the requested range was not even partially
425          * satisfied?  Bail out!
426          */
427         if (nimaps == 0)
428                 return -ENOSPC;
429 convert:
430         xfs_trim_extent(imap, offset_fsb, count_fsb);
431         /*
432          * COW fork extents are supposed to remain unwritten until we're ready
433          * to initiate a disk write.  For direct I/O we are going to write the
434          * data and need the conversion, but for buffered writes we're done.
435          */
436         if (!convert_now || imap->br_state == XFS_EXT_NORM)
437                 return 0;
438         trace_xfs_reflink_convert_cow(ip, imap);
439         return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
440
441 out_unreserve:
442         xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
443                         XFS_QMOPT_RES_REGBLKS);
444 out_trans_cancel:
445         xfs_trans_cancel(tp);
446         return error;
447 }
448
449 /*
450  * Cancel CoW reservations for some block range of an inode.
451  *
452  * If cancel_real is true this function cancels all COW fork extents for the
453  * inode; if cancel_real is false, real extents are not cleared.
454  *
455  * Caller must have already joined the inode to the current transaction. The
456  * inode will be joined to the transaction returned to the caller.
457  */
458 int
459 xfs_reflink_cancel_cow_blocks(
460         struct xfs_inode                *ip,
461         struct xfs_trans                **tpp,
462         xfs_fileoff_t                   offset_fsb,
463         xfs_fileoff_t                   end_fsb,
464         bool                            cancel_real)
465 {
466         struct xfs_ifork                *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
467         struct xfs_bmbt_irec            got, del;
468         struct xfs_iext_cursor          icur;
469         int                             error = 0;
470
471         if (!xfs_inode_has_cow_data(ip))
472                 return 0;
473         if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
474                 return 0;
475
476         /* Walk backwards until we're out of the I/O range... */
477         while (got.br_startoff + got.br_blockcount > offset_fsb) {
478                 del = got;
479                 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
480
481                 /* Extent delete may have bumped ext forward */
482                 if (!del.br_blockcount) {
483                         xfs_iext_prev(ifp, &icur);
484                         goto next_extent;
485                 }
486
487                 trace_xfs_reflink_cancel_cow(ip, &del);
488
489                 if (isnullstartblock(del.br_startblock)) {
490                         error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
491                                         &icur, &got, &del);
492                         if (error)
493                                 break;
494                 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
495                         ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
496
497                         /* Free the CoW orphan record. */
498                         xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
499                                         del.br_blockcount);
500
501                         xfs_bmap_add_free(*tpp, del.br_startblock,
502                                           del.br_blockcount, NULL);
503
504                         /* Roll the transaction */
505                         error = xfs_defer_finish(tpp);
506                         if (error)
507                                 break;
508
509                         /* Remove the mapping from the CoW fork. */
510                         xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
511
512                         /* Remove the quota reservation */
513                         error = xfs_trans_reserve_quota_nblks(NULL, ip,
514                                         -(long)del.br_blockcount, 0,
515                                         XFS_QMOPT_RES_REGBLKS);
516                         if (error)
517                                 break;
518                 } else {
519                         /* Didn't do anything, push cursor back. */
520                         xfs_iext_prev(ifp, &icur);
521                 }
522 next_extent:
523                 if (!xfs_iext_get_extent(ifp, &icur, &got))
524                         break;
525         }
526
527         /* clear tag if cow fork is emptied */
528         if (!ifp->if_bytes)
529                 xfs_inode_clear_cowblocks_tag(ip);
530         return error;
531 }
532
533 /*
534  * Cancel CoW reservations for some byte range of an inode.
535  *
536  * If cancel_real is true this function cancels all COW fork extents for the
537  * inode; if cancel_real is false, real extents are not cleared.
538  */
539 int
540 xfs_reflink_cancel_cow_range(
541         struct xfs_inode        *ip,
542         xfs_off_t               offset,
543         xfs_off_t               count,
544         bool                    cancel_real)
545 {
546         struct xfs_trans        *tp;
547         xfs_fileoff_t           offset_fsb;
548         xfs_fileoff_t           end_fsb;
549         int                     error;
550
551         trace_xfs_reflink_cancel_cow_range(ip, offset, count);
552         ASSERT(ip->i_cowfp);
553
554         offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
555         if (count == NULLFILEOFF)
556                 end_fsb = NULLFILEOFF;
557         else
558                 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
559
560         /* Start a rolling transaction to remove the mappings */
561         error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
562                         0, 0, 0, &tp);
563         if (error)
564                 goto out;
565
566         xfs_ilock(ip, XFS_ILOCK_EXCL);
567         xfs_trans_ijoin(tp, ip, 0);
568
569         /* Scrape out the old CoW reservations */
570         error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
571                         cancel_real);
572         if (error)
573                 goto out_cancel;
574
575         error = xfs_trans_commit(tp);
576
577         xfs_iunlock(ip, XFS_ILOCK_EXCL);
578         return error;
579
580 out_cancel:
581         xfs_trans_cancel(tp);
582         xfs_iunlock(ip, XFS_ILOCK_EXCL);
583 out:
584         trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
585         return error;
586 }
587
588 /*
589  * Remap part of the CoW fork into the data fork.
590  *
591  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
592  * into the data fork; this function will remap what it can (at the end of the
593  * range) and update @end_fsb appropriately.  Each remap gets its own
594  * transaction because we can end up merging and splitting bmbt blocks for
595  * every remap operation and we'd like to keep the block reservation
596  * requirements as low as possible.
597  */
598 STATIC int
599 xfs_reflink_end_cow_extent(
600         struct xfs_inode        *ip,
601         xfs_fileoff_t           offset_fsb,
602         xfs_fileoff_t           *end_fsb)
603 {
604         struct xfs_bmbt_irec    got, del;
605         struct xfs_iext_cursor  icur;
606         struct xfs_mount        *mp = ip->i_mount;
607         struct xfs_trans        *tp;
608         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
609         xfs_filblks_t           rlen;
610         unsigned int            resblks;
611         int                     error;
612
613         /* No COW extents?  That's easy! */
614         if (ifp->if_bytes == 0) {
615                 *end_fsb = offset_fsb;
616                 return 0;
617         }
618
619         resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
620         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
621                         XFS_TRANS_RESERVE, &tp);
622         if (error)
623                 return error;
624
625         /*
626          * Lock the inode.  We have to ijoin without automatic unlock because
627          * the lead transaction is the refcountbt record deletion; the data
628          * fork update follows as a deferred log item.
629          */
630         xfs_ilock(ip, XFS_ILOCK_EXCL);
631         xfs_trans_ijoin(tp, ip, 0);
632
633         /*
634          * In case of racing, overlapping AIO writes no COW extents might be
635          * left by the time I/O completes for the loser of the race.  In that
636          * case we are done.
637          */
638         if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
639             got.br_startoff + got.br_blockcount <= offset_fsb) {
640                 *end_fsb = offset_fsb;
641                 goto out_cancel;
642         }
643
644         /*
645          * Structure copy @got into @del, then trim @del to the range that we
646          * were asked to remap.  We preserve @got for the eventual CoW fork
647          * deletion; from now on @del represents the mapping that we're
648          * actually remapping.
649          */
650         del = got;
651         xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
652
653         ASSERT(del.br_blockcount > 0);
654
655         /*
656          * Only remap real extents that contain data.  With AIO, speculative
657          * preallocations can leak into the range we are called upon, and we
658          * need to skip them.
659          */
660         if (!xfs_bmap_is_real_extent(&got)) {
661                 *end_fsb = del.br_startoff;
662                 goto out_cancel;
663         }
664
665         /* Unmap the old blocks in the data fork. */
666         rlen = del.br_blockcount;
667         error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
668         if (error)
669                 goto out_cancel;
670
671         /* Trim the extent to whatever got unmapped. */
672         xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
673         trace_xfs_reflink_cow_remap(ip, &del);
674
675         /* Free the CoW orphan record. */
676         xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
677
678         /* Map the new blocks into the data fork. */
679         xfs_bmap_map_extent(tp, ip, &del);
680
681         /* Charge this new data fork mapping to the on-disk quota. */
682         xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
683                         (long)del.br_blockcount);
684
685         /* Remove the mapping from the CoW fork. */
686         xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
687
688         error = xfs_trans_commit(tp);
689         xfs_iunlock(ip, XFS_ILOCK_EXCL);
690         if (error)
691                 return error;
692
693         /* Update the caller about how much progress we made. */
694         *end_fsb = del.br_startoff;
695         return 0;
696
697 out_cancel:
698         xfs_trans_cancel(tp);
699         xfs_iunlock(ip, XFS_ILOCK_EXCL);
700         return error;
701 }
702
703 /*
704  * Remap parts of a file's data fork after a successful CoW.
705  */
706 int
707 xfs_reflink_end_cow(
708         struct xfs_inode                *ip,
709         xfs_off_t                       offset,
710         xfs_off_t                       count)
711 {
712         xfs_fileoff_t                   offset_fsb;
713         xfs_fileoff_t                   end_fsb;
714         int                             error = 0;
715
716         trace_xfs_reflink_end_cow(ip, offset, count);
717
718         offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
719         end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
720
721         /*
722          * Walk backwards until we're out of the I/O range.  The loop function
723          * repeatedly cycles the ILOCK to allocate one transaction per remapped
724          * extent.
725          *
726          * If we're being called by writeback then the the pages will still
727          * have PageWriteback set, which prevents races with reflink remapping
728          * and truncate.  Reflink remapping prevents races with writeback by
729          * taking the iolock and mmaplock before flushing the pages and
730          * remapping, which means there won't be any further writeback or page
731          * cache dirtying until the reflink completes.
732          *
733          * We should never have two threads issuing writeback for the same file
734          * region.  There are also have post-eof checks in the writeback
735          * preparation code so that we don't bother writing out pages that are
736          * about to be truncated.
737          *
738          * If we're being called as part of directio write completion, the dio
739          * count is still elevated, which reflink and truncate will wait for.
740          * Reflink remapping takes the iolock and mmaplock and waits for
741          * pending dio to finish, which should prevent any directio until the
742          * remap completes.  Multiple concurrent directio writes to the same
743          * region are handled by end_cow processing only occurring for the
744          * threads which succeed; the outcome of multiple overlapping direct
745          * writes is not well defined anyway.
746          *
747          * It's possible that a buffered write and a direct write could collide
748          * here (the buffered write stumbles in after the dio flushes and
749          * invalidates the page cache and immediately queues writeback), but we
750          * have never supported this 100%.  If either disk write succeeds the
751          * blocks will be remapped.
752          */
753         while (end_fsb > offset_fsb && !error)
754                 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
755
756         if (error)
757                 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
758         return error;
759 }
760
761 /*
762  * Free leftover CoW reservations that didn't get cleaned out.
763  */
764 int
765 xfs_reflink_recover_cow(
766         struct xfs_mount        *mp)
767 {
768         xfs_agnumber_t          agno;
769         int                     error = 0;
770
771         if (!xfs_sb_version_hasreflink(&mp->m_sb))
772                 return 0;
773
774         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
775                 error = xfs_refcount_recover_cow_leftovers(mp, agno);
776                 if (error)
777                         break;
778         }
779
780         return error;
781 }
782
783 /*
784  * Reflinking (Block) Ranges of Two Files Together
785  *
786  * First, ensure that the reflink flag is set on both inodes.  The flag is an
787  * optimization to avoid unnecessary refcount btree lookups in the write path.
788  *
789  * Now we can iteratively remap the range of extents (and holes) in src to the
790  * corresponding ranges in dest.  Let drange and srange denote the ranges of
791  * logical blocks in dest and src touched by the reflink operation.
792  *
793  * While the length of drange is greater than zero,
794  *    - Read src's bmbt at the start of srange ("imap")
795  *    - If imap doesn't exist, make imap appear to start at the end of srange
796  *      with zero length.
797  *    - If imap starts before srange, advance imap to start at srange.
798  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
799  *    - Punch (imap start - srange start + imap len) blocks from dest at
800  *      offset (drange start).
801  *    - If imap points to a real range of pblks,
802  *         > Increase the refcount of the imap's pblks
803  *         > Map imap's pblks into dest at the offset
804  *           (drange start + imap start - srange start)
805  *    - Advance drange and srange by (imap start - srange start + imap len)
806  *
807  * Finally, if the reflink made dest longer, update both the in-core and
808  * on-disk file sizes.
809  *
810  * ASCII Art Demonstration:
811  *
812  * Let's say we want to reflink this source file:
813  *
814  * ----SSSSSSS-SSSSS----SSSSSS (src file)
815  *   <-------------------->
816  *
817  * into this destination file:
818  *
819  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
820  *        <-------------------->
821  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
822  * Observe that the range has different logical offsets in either file.
823  *
824  * Consider that the first extent in the source file doesn't line up with our
825  * reflink range.  Unmapping  and remapping are separate operations, so we can
826  * unmap more blocks from the destination file than we remap.
827  *
828  * ----SSSSSSS-SSSSS----SSSSSS
829  *   <------->
830  * --DDDDD---------DDDDD--DDD
831  *        <------->
832  *
833  * Now remap the source extent into the destination file:
834  *
835  * ----SSSSSSS-SSSSS----SSSSSS
836  *   <------->
837  * --DDDDD--SSSSSSSDDDDD--DDD
838  *        <------->
839  *
840  * Do likewise with the second hole and extent in our range.  Holes in the
841  * unmap range don't affect our operation.
842  *
843  * ----SSSSSSS-SSSSS----SSSSSS
844  *            <---->
845  * --DDDDD--SSSSSSS-SSSSS-DDD
846  *                 <---->
847  *
848  * Finally, unmap and remap part of the third extent.  This will increase the
849  * size of the destination file.
850  *
851  * ----SSSSSSS-SSSSS----SSSSSS
852  *                  <----->
853  * --DDDDD--SSSSSSS-SSSSS----SSS
854  *                       <----->
855  *
856  * Once we update the destination file's i_size, we're done.
857  */
858
859 /*
860  * Ensure the reflink bit is set in both inodes.
861  */
862 STATIC int
863 xfs_reflink_set_inode_flag(
864         struct xfs_inode        *src,
865         struct xfs_inode        *dest)
866 {
867         struct xfs_mount        *mp = src->i_mount;
868         int                     error;
869         struct xfs_trans        *tp;
870
871         if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
872                 return 0;
873
874         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
875         if (error)
876                 goto out_error;
877
878         /* Lock both files against IO */
879         if (src->i_ino == dest->i_ino)
880                 xfs_ilock(src, XFS_ILOCK_EXCL);
881         else
882                 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883
884         if (!xfs_is_reflink_inode(src)) {
885                 trace_xfs_reflink_set_inode_flag(src);
886                 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
887                 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
888                 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
889                 xfs_ifork_init_cow(src);
890         } else
891                 xfs_iunlock(src, XFS_ILOCK_EXCL);
892
893         if (src->i_ino == dest->i_ino)
894                 goto commit_flags;
895
896         if (!xfs_is_reflink_inode(dest)) {
897                 trace_xfs_reflink_set_inode_flag(dest);
898                 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
899                 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
900                 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
901                 xfs_ifork_init_cow(dest);
902         } else
903                 xfs_iunlock(dest, XFS_ILOCK_EXCL);
904
905 commit_flags:
906         error = xfs_trans_commit(tp);
907         if (error)
908                 goto out_error;
909         return error;
910
911 out_error:
912         trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
913         return error;
914 }
915
916 /*
917  * Update destination inode size & cowextsize hint, if necessary.
918  */
919 int
920 xfs_reflink_update_dest(
921         struct xfs_inode        *dest,
922         xfs_off_t               newlen,
923         xfs_extlen_t            cowextsize,
924         unsigned int            remap_flags)
925 {
926         struct xfs_mount        *mp = dest->i_mount;
927         struct xfs_trans        *tp;
928         int                     error;
929
930         if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
931                 return 0;
932
933         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
934         if (error)
935                 goto out_error;
936
937         xfs_ilock(dest, XFS_ILOCK_EXCL);
938         xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
939
940         if (newlen > i_size_read(VFS_I(dest))) {
941                 trace_xfs_reflink_update_inode_size(dest, newlen);
942                 i_size_write(VFS_I(dest), newlen);
943                 dest->i_d.di_size = newlen;
944         }
945
946         if (cowextsize) {
947                 dest->i_d.di_cowextsize = cowextsize;
948                 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
949         }
950
951         xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
952
953         error = xfs_trans_commit(tp);
954         if (error)
955                 goto out_error;
956         return error;
957
958 out_error:
959         trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
960         return error;
961 }
962
963 /*
964  * Do we have enough reserve in this AG to handle a reflink?  The refcount
965  * btree already reserved all the space it needs, but the rmap btree can grow
966  * infinitely, so we won't allow more reflinks when the AG is down to the
967  * btree reserves.
968  */
969 static int
970 xfs_reflink_ag_has_free_space(
971         struct xfs_mount        *mp,
972         xfs_agnumber_t          agno)
973 {
974         struct xfs_perag        *pag;
975         int                     error = 0;
976
977         if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
978                 return 0;
979
980         pag = xfs_perag_get(mp, agno);
981         if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
982             xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
983                 error = -ENOSPC;
984         xfs_perag_put(pag);
985         return error;
986 }
987
988 /*
989  * Unmap a range of blocks from a file, then map other blocks into the hole.
990  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
991  * The extent irec is mapped into dest at irec->br_startoff.
992  */
993 STATIC int
994 xfs_reflink_remap_extent(
995         struct xfs_inode        *ip,
996         struct xfs_bmbt_irec    *irec,
997         xfs_fileoff_t           destoff,
998         xfs_off_t               new_isize)
999 {
1000         struct xfs_mount        *mp = ip->i_mount;
1001         bool                    real_extent = xfs_bmap_is_real_extent(irec);
1002         struct xfs_trans        *tp;
1003         unsigned int            resblks;
1004         struct xfs_bmbt_irec    uirec;
1005         xfs_filblks_t           rlen;
1006         xfs_filblks_t           unmap_len;
1007         xfs_off_t               newlen;
1008         int                     error;
1009
1010         unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1011         trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1012
1013         /* No reflinking if we're low on space */
1014         if (real_extent) {
1015                 error = xfs_reflink_ag_has_free_space(mp,
1016                                 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1017                 if (error)
1018                         goto out;
1019         }
1020
1021         /* Start a rolling transaction to switch the mappings */
1022         resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1023         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1024         if (error)
1025                 goto out;
1026
1027         xfs_ilock(ip, XFS_ILOCK_EXCL);
1028         xfs_trans_ijoin(tp, ip, 0);
1029
1030         /* If we're not just clearing space, then do we have enough quota? */
1031         if (real_extent) {
1032                 error = xfs_trans_reserve_quota_nblks(tp, ip,
1033                                 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1034                 if (error)
1035                         goto out_cancel;
1036         }
1037
1038         trace_xfs_reflink_remap(ip, irec->br_startoff,
1039                                 irec->br_blockcount, irec->br_startblock);
1040
1041         /* Unmap the old blocks in the data fork. */
1042         rlen = unmap_len;
1043         while (rlen) {
1044                 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1045                 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1046                 if (error)
1047                         goto out_cancel;
1048
1049                 /*
1050                  * Trim the extent to whatever got unmapped.
1051                  * Remember, bunmapi works backwards.
1052                  */
1053                 uirec.br_startblock = irec->br_startblock + rlen;
1054                 uirec.br_startoff = irec->br_startoff + rlen;
1055                 uirec.br_blockcount = unmap_len - rlen;
1056                 uirec.br_state = irec->br_state;
1057                 unmap_len = rlen;
1058
1059                 /* If this isn't a real mapping, we're done. */
1060                 if (!real_extent || uirec.br_blockcount == 0)
1061                         goto next_extent;
1062
1063                 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1064                                 uirec.br_blockcount, uirec.br_startblock);
1065
1066                 /* Update the refcount tree */
1067                 xfs_refcount_increase_extent(tp, &uirec);
1068
1069                 /* Map the new blocks into the data fork. */
1070                 xfs_bmap_map_extent(tp, ip, &uirec);
1071
1072                 /* Update quota accounting. */
1073                 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1074                                 uirec.br_blockcount);
1075
1076                 /* Update dest isize if needed. */
1077                 newlen = XFS_FSB_TO_B(mp,
1078                                 uirec.br_startoff + uirec.br_blockcount);
1079                 newlen = min_t(xfs_off_t, newlen, new_isize);
1080                 if (newlen > i_size_read(VFS_I(ip))) {
1081                         trace_xfs_reflink_update_inode_size(ip, newlen);
1082                         i_size_write(VFS_I(ip), newlen);
1083                         ip->i_d.di_size = newlen;
1084                         xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1085                 }
1086
1087 next_extent:
1088                 /* Process all the deferred stuff. */
1089                 error = xfs_defer_finish(&tp);
1090                 if (error)
1091                         goto out_cancel;
1092         }
1093
1094         error = xfs_trans_commit(tp);
1095         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1096         if (error)
1097                 goto out;
1098         return 0;
1099
1100 out_cancel:
1101         xfs_trans_cancel(tp);
1102         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1103 out:
1104         trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1105         return error;
1106 }
1107
1108 /*
1109  * Iteratively remap one file's extents (and holes) to another's.
1110  */
1111 int
1112 xfs_reflink_remap_blocks(
1113         struct xfs_inode        *src,
1114         loff_t                  pos_in,
1115         struct xfs_inode        *dest,
1116         loff_t                  pos_out,
1117         loff_t                  remap_len,
1118         loff_t                  *remapped)
1119 {
1120         struct xfs_bmbt_irec    imap;
1121         xfs_fileoff_t           srcoff;
1122         xfs_fileoff_t           destoff;
1123         xfs_filblks_t           len;
1124         xfs_filblks_t           range_len;
1125         xfs_filblks_t           remapped_len = 0;
1126         xfs_off_t               new_isize = pos_out + remap_len;
1127         int                     nimaps;
1128         int                     error = 0;
1129
1130         destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1131         srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1132         len = XFS_B_TO_FSB(src->i_mount, remap_len);
1133
1134         /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1135         while (len) {
1136                 uint            lock_mode;
1137
1138                 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1139                                 dest, destoff);
1140
1141                 /* Read extent from the source file */
1142                 nimaps = 1;
1143                 lock_mode = xfs_ilock_data_map_shared(src);
1144                 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1145                 xfs_iunlock(src, lock_mode);
1146                 if (error)
1147                         break;
1148                 ASSERT(nimaps == 1);
1149
1150                 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1151                                 &imap);
1152
1153                 /* Translate imap into the destination file. */
1154                 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1155                 imap.br_startoff += destoff - srcoff;
1156
1157                 /* Clear dest from destoff to the end of imap and map it in. */
1158                 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1159                                 new_isize);
1160                 if (error)
1161                         break;
1162
1163                 if (fatal_signal_pending(current)) {
1164                         error = -EINTR;
1165                         break;
1166                 }
1167
1168                 /* Advance drange/srange */
1169                 srcoff += range_len;
1170                 destoff += range_len;
1171                 len -= range_len;
1172                 remapped_len += range_len;
1173         }
1174
1175         if (error)
1176                 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1177         *remapped = min_t(loff_t, remap_len,
1178                           XFS_FSB_TO_B(src->i_mount, remapped_len));
1179         return error;
1180 }
1181
1182 /*
1183  * Grab the exclusive iolock for a data copy from src to dest, making sure to
1184  * abide vfs locking order (lowest pointer value goes first) and breaking the
1185  * layout leases before proceeding.  The loop is needed because we cannot call
1186  * the blocking break_layout() with the iolocks held, and therefore have to
1187  * back out both locks.
1188  */
1189 static int
1190 xfs_iolock_two_inodes_and_break_layout(
1191         struct inode            *src,
1192         struct inode            *dest)
1193 {
1194         int                     error;
1195
1196         if (src > dest)
1197                 swap(src, dest);
1198
1199 retry:
1200         /* Wait to break both inodes' layouts before we start locking. */
1201         error = break_layout(src, true);
1202         if (error)
1203                 return error;
1204         if (src != dest) {
1205                 error = break_layout(dest, true);
1206                 if (error)
1207                         return error;
1208         }
1209
1210         /* Lock one inode and make sure nobody got in and leased it. */
1211         inode_lock(src);
1212         error = break_layout(src, false);
1213         if (error) {
1214                 inode_unlock(src);
1215                 if (error == -EWOULDBLOCK)
1216                         goto retry;
1217                 return error;
1218         }
1219
1220         if (src == dest)
1221                 return 0;
1222
1223         /* Lock the other inode and make sure nobody got in and leased it. */
1224         inode_lock_nested(dest, I_MUTEX_NONDIR2);
1225         error = break_layout(dest, false);
1226         if (error) {
1227                 inode_unlock(src);
1228                 inode_unlock(dest);
1229                 if (error == -EWOULDBLOCK)
1230                         goto retry;
1231                 return error;
1232         }
1233
1234         return 0;
1235 }
1236
1237 /* Unlock both inodes after they've been prepped for a range clone. */
1238 void
1239 xfs_reflink_remap_unlock(
1240         struct file             *file_in,
1241         struct file             *file_out)
1242 {
1243         struct inode            *inode_in = file_inode(file_in);
1244         struct xfs_inode        *src = XFS_I(inode_in);
1245         struct inode            *inode_out = file_inode(file_out);
1246         struct xfs_inode        *dest = XFS_I(inode_out);
1247         bool                    same_inode = (inode_in == inode_out);
1248
1249         xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1250         if (!same_inode)
1251                 xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1252         inode_unlock(inode_out);
1253         if (!same_inode)
1254                 inode_unlock(inode_in);
1255 }
1256
1257 /*
1258  * If we're reflinking to a point past the destination file's EOF, we must
1259  * zero any speculative post-EOF preallocations that sit between the old EOF
1260  * and the destination file offset.
1261  */
1262 static int
1263 xfs_reflink_zero_posteof(
1264         struct xfs_inode        *ip,
1265         loff_t                  pos)
1266 {
1267         loff_t                  isize = i_size_read(VFS_I(ip));
1268
1269         if (pos <= isize)
1270                 return 0;
1271
1272         trace_xfs_zero_eof(ip, isize, pos - isize);
1273         return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1274                         &xfs_iomap_ops);
1275 }
1276
1277 /*
1278  * Prepare two files for range cloning.  Upon a successful return both inodes
1279  * will have the iolock and mmaplock held, the page cache of the out file will
1280  * be truncated, and any leases on the out file will have been broken.  This
1281  * function borrows heavily from xfs_file_aio_write_checks.
1282  *
1283  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1284  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1285  * EOF block in the source dedupe range because it's not a complete block match,
1286  * hence can introduce a corruption into the file that has it's block replaced.
1287  *
1288  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1289  * "block aligned" for the purposes of cloning entire files.  However, if the
1290  * source file range includes the EOF block and it lands within the existing EOF
1291  * of the destination file, then we can expose stale data from beyond the source
1292  * file EOF in the destination file.
1293  *
1294  * XFS doesn't support partial block sharing, so in both cases we have check
1295  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1296  * down to the previous whole block and ignore the partial EOF block. While this
1297  * means we can't dedupe the last block of a file, this is an acceptible
1298  * tradeoff for simplicity on implementation.
1299  *
1300  * For cloning, we want to share the partial EOF block if it is also the new EOF
1301  * block of the destination file. If the partial EOF block lies inside the
1302  * existing destination EOF, then we have to abort the clone to avoid exposing
1303  * stale data in the destination file. Hence we reject these clone attempts with
1304  * -EINVAL in this case.
1305  */
1306 int
1307 xfs_reflink_remap_prep(
1308         struct file             *file_in,
1309         loff_t                  pos_in,
1310         struct file             *file_out,
1311         loff_t                  pos_out,
1312         loff_t                  *len,
1313         unsigned int            remap_flags)
1314 {
1315         struct inode            *inode_in = file_inode(file_in);
1316         struct xfs_inode        *src = XFS_I(inode_in);
1317         struct inode            *inode_out = file_inode(file_out);
1318         struct xfs_inode        *dest = XFS_I(inode_out);
1319         bool                    same_inode = (inode_in == inode_out);
1320         ssize_t                 ret;
1321
1322         /* Lock both files against IO */
1323         ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1324         if (ret)
1325                 return ret;
1326         if (same_inode)
1327                 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1328         else
1329                 xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
1330                                 XFS_MMAPLOCK_EXCL);
1331
1332         /* Check file eligibility and prepare for block sharing. */
1333         ret = -EINVAL;
1334         /* Don't reflink realtime inodes */
1335         if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1336                 goto out_unlock;
1337
1338         /* Don't share DAX file data for now. */
1339         if (IS_DAX(inode_in) || IS_DAX(inode_out))
1340                 goto out_unlock;
1341
1342         ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1343                         len, remap_flags);
1344         if (ret < 0 || *len == 0)
1345                 goto out_unlock;
1346
1347         /* Attach dquots to dest inode before changing block map */
1348         ret = xfs_qm_dqattach(dest);
1349         if (ret)
1350                 goto out_unlock;
1351
1352         /*
1353          * Zero existing post-eof speculative preallocations in the destination
1354          * file.
1355          */
1356         ret = xfs_reflink_zero_posteof(dest, pos_out);
1357         if (ret)
1358                 goto out_unlock;
1359
1360         /* Set flags and remap blocks. */
1361         ret = xfs_reflink_set_inode_flag(src, dest);
1362         if (ret)
1363                 goto out_unlock;
1364
1365         /*
1366          * If pos_out > EOF, we may have dirtied blocks between EOF and
1367          * pos_out. In that case, we need to extend the flush and unmap to cover
1368          * from EOF to the end of the copy length.
1369          */
1370         if (pos_out > XFS_ISIZE(dest)) {
1371                 loff_t  flen = *len + (pos_out - XFS_ISIZE(dest));
1372                 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1373         } else {
1374                 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1375         }
1376         if (ret)
1377                 goto out_unlock;
1378
1379         return 1;
1380 out_unlock:
1381         xfs_reflink_remap_unlock(file_in, file_out);
1382         return ret;
1383 }
1384
1385 /*
1386  * The user wants to preemptively CoW all shared blocks in this file,
1387  * which enables us to turn off the reflink flag.  Iterate all
1388  * extents which are not prealloc/delalloc to see which ranges are
1389  * mentioned in the refcount tree, then read those blocks into the
1390  * pagecache, dirty them, fsync them back out, and then we can update
1391  * the inode flag.  What happens if we run out of memory? :)
1392  */
1393 STATIC int
1394 xfs_reflink_dirty_extents(
1395         struct xfs_inode        *ip,
1396         xfs_fileoff_t           fbno,
1397         xfs_filblks_t           end,
1398         xfs_off_t               isize)
1399 {
1400         struct xfs_mount        *mp = ip->i_mount;
1401         xfs_agnumber_t          agno;
1402         xfs_agblock_t           agbno;
1403         xfs_extlen_t            aglen;
1404         xfs_agblock_t           rbno;
1405         xfs_extlen_t            rlen;
1406         xfs_off_t               fpos;
1407         xfs_off_t               flen;
1408         struct xfs_bmbt_irec    map[2];
1409         int                     nmaps;
1410         int                     error = 0;
1411
1412         while (end - fbno > 0) {
1413                 nmaps = 1;
1414                 /*
1415                  * Look for extents in the file.  Skip holes, delalloc, or
1416                  * unwritten extents; they can't be reflinked.
1417                  */
1418                 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1419                 if (error)
1420                         goto out;
1421                 if (nmaps == 0)
1422                         break;
1423                 if (!xfs_bmap_is_real_extent(&map[0]))
1424                         goto next;
1425
1426                 map[1] = map[0];
1427                 while (map[1].br_blockcount) {
1428                         agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1429                         agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1430                         aglen = map[1].br_blockcount;
1431
1432                         error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1433                                         aglen, &rbno, &rlen, true);
1434                         if (error)
1435                                 goto out;
1436                         if (rbno == NULLAGBLOCK)
1437                                 break;
1438
1439                         /* Dirty the pages */
1440                         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1441                         fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1442                                         (rbno - agbno));
1443                         flen = XFS_FSB_TO_B(mp, rlen);
1444                         if (fpos + flen > isize)
1445                                 flen = isize - fpos;
1446                         error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1447                                         &xfs_iomap_ops);
1448                         xfs_ilock(ip, XFS_ILOCK_EXCL);
1449                         if (error)
1450                                 goto out;
1451
1452                         map[1].br_blockcount -= (rbno - agbno + rlen);
1453                         map[1].br_startoff += (rbno - agbno + rlen);
1454                         map[1].br_startblock += (rbno - agbno + rlen);
1455                 }
1456
1457 next:
1458                 fbno = map[0].br_startoff + map[0].br_blockcount;
1459         }
1460 out:
1461         return error;
1462 }
1463
1464 /* Does this inode need the reflink flag? */
1465 int
1466 xfs_reflink_inode_has_shared_extents(
1467         struct xfs_trans                *tp,
1468         struct xfs_inode                *ip,
1469         bool                            *has_shared)
1470 {
1471         struct xfs_bmbt_irec            got;
1472         struct xfs_mount                *mp = ip->i_mount;
1473         struct xfs_ifork                *ifp;
1474         xfs_agnumber_t                  agno;
1475         xfs_agblock_t                   agbno;
1476         xfs_extlen_t                    aglen;
1477         xfs_agblock_t                   rbno;
1478         xfs_extlen_t                    rlen;
1479         struct xfs_iext_cursor          icur;
1480         bool                            found;
1481         int                             error;
1482
1483         ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1484         if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1485                 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1486                 if (error)
1487                         return error;
1488         }
1489
1490         *has_shared = false;
1491         found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1492         while (found) {
1493                 if (isnullstartblock(got.br_startblock) ||
1494                     got.br_state != XFS_EXT_NORM)
1495                         goto next;
1496                 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1497                 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1498                 aglen = got.br_blockcount;
1499
1500                 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1501                                 &rbno, &rlen, false);
1502                 if (error)
1503                         return error;
1504                 /* Is there still a shared block here? */
1505                 if (rbno != NULLAGBLOCK) {
1506                         *has_shared = true;
1507                         return 0;
1508                 }
1509 next:
1510                 found = xfs_iext_next_extent(ifp, &icur, &got);
1511         }
1512
1513         return 0;
1514 }
1515
1516 /*
1517  * Clear the inode reflink flag if there are no shared extents.
1518  *
1519  * The caller is responsible for joining the inode to the transaction passed in.
1520  * The inode will be joined to the transaction that is returned to the caller.
1521  */
1522 int
1523 xfs_reflink_clear_inode_flag(
1524         struct xfs_inode        *ip,
1525         struct xfs_trans        **tpp)
1526 {
1527         bool                    needs_flag;
1528         int                     error = 0;
1529
1530         ASSERT(xfs_is_reflink_inode(ip));
1531
1532         error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1533         if (error || needs_flag)
1534                 return error;
1535
1536         /*
1537          * We didn't find any shared blocks so turn off the reflink flag.
1538          * First, get rid of any leftover CoW mappings.
1539          */
1540         error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1541         if (error)
1542                 return error;
1543
1544         /* Clear the inode flag. */
1545         trace_xfs_reflink_unset_inode_flag(ip);
1546         ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1547         xfs_inode_clear_cowblocks_tag(ip);
1548         xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1549
1550         return error;
1551 }
1552
1553 /*
1554  * Clear the inode reflink flag if there are no shared extents and the size
1555  * hasn't changed.
1556  */
1557 STATIC int
1558 xfs_reflink_try_clear_inode_flag(
1559         struct xfs_inode        *ip)
1560 {
1561         struct xfs_mount        *mp = ip->i_mount;
1562         struct xfs_trans        *tp;
1563         int                     error = 0;
1564
1565         /* Start a rolling transaction to remove the mappings */
1566         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1567         if (error)
1568                 return error;
1569
1570         xfs_ilock(ip, XFS_ILOCK_EXCL);
1571         xfs_trans_ijoin(tp, ip, 0);
1572
1573         error = xfs_reflink_clear_inode_flag(ip, &tp);
1574         if (error)
1575                 goto cancel;
1576
1577         error = xfs_trans_commit(tp);
1578         if (error)
1579                 goto out;
1580
1581         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1582         return 0;
1583 cancel:
1584         xfs_trans_cancel(tp);
1585 out:
1586         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1587         return error;
1588 }
1589
1590 /*
1591  * Pre-COW all shared blocks within a given byte range of a file and turn off
1592  * the reflink flag if we unshare all of the file's blocks.
1593  */
1594 int
1595 xfs_reflink_unshare(
1596         struct xfs_inode        *ip,
1597         xfs_off_t               offset,
1598         xfs_off_t               len)
1599 {
1600         struct xfs_mount        *mp = ip->i_mount;
1601         xfs_fileoff_t           fbno;
1602         xfs_filblks_t           end;
1603         xfs_off_t               isize;
1604         int                     error;
1605
1606         if (!xfs_is_reflink_inode(ip))
1607                 return 0;
1608
1609         trace_xfs_reflink_unshare(ip, offset, len);
1610
1611         inode_dio_wait(VFS_I(ip));
1612
1613         /* Try to CoW the selected ranges */
1614         xfs_ilock(ip, XFS_ILOCK_EXCL);
1615         fbno = XFS_B_TO_FSBT(mp, offset);
1616         isize = i_size_read(VFS_I(ip));
1617         end = XFS_B_TO_FSB(mp, offset + len);
1618         error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1619         if (error)
1620                 goto out_unlock;
1621         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1622
1623         /* Wait for the IO to finish */
1624         error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1625         if (error)
1626                 goto out;
1627
1628         /* Turn off the reflink flag if possible. */
1629         error = xfs_reflink_try_clear_inode_flag(ip);
1630         if (error)
1631                 goto out;
1632
1633         return 0;
1634
1635 out_unlock:
1636         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1637 out:
1638         trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1639         return error;
1640 }