Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / fs / xfs / xfs_buf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19
20 static kmem_zone_t *xfs_buf_zone;
21
22 #define xb_to_gfp(flags) \
23         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *      b_sema (caller holds)
31  *        b_lock
32  *
33  * xfs_buf_stale:
34  *      b_sema (caller holds)
35  *        b_lock
36  *          lru_lock
37  *
38  * xfs_buf_rele:
39  *      b_lock
40  *        pag_buf_lock
41  *          lru_lock
42  *
43  * xfs_buftarg_wait_rele
44  *      lru_lock
45  *        b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *      lru_lock
49  *        b_lock (trylock due to inversion)
50  */
51
52 static inline int
53 xfs_buf_is_vmapped(
54         struct xfs_buf  *bp)
55 {
56         /*
57          * Return true if the buffer is vmapped.
58          *
59          * b_addr is null if the buffer is not mapped, but the code is clever
60          * enough to know it doesn't have to map a single page, so the check has
61          * to be both for b_addr and bp->b_page_count > 1.
62          */
63         return bp->b_addr && bp->b_page_count > 1;
64 }
65
66 static inline int
67 xfs_buf_vmap_len(
68         struct xfs_buf  *bp)
69 {
70         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71 }
72
73 /*
74  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75  * this buffer. The count is incremented once per buffer (per hold cycle)
76  * because the corresponding decrement is deferred to buffer release. Buffers
77  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78  * tracking adds unnecessary overhead. This is used for sychronization purposes
79  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80  * in-flight buffers.
81  *
82  * Buffers that are never released (e.g., superblock, iclog buffers) must set
83  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84  * never reaches zero and unmount hangs indefinitely.
85  */
86 static inline void
87 xfs_buf_ioacct_inc(
88         struct xfs_buf  *bp)
89 {
90         if (bp->b_flags & XBF_NO_IOACCT)
91                 return;
92
93         ASSERT(bp->b_flags & XBF_ASYNC);
94         spin_lock(&bp->b_lock);
95         if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96                 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97                 percpu_counter_inc(&bp->b_target->bt_io_count);
98         }
99         spin_unlock(&bp->b_lock);
100 }
101
102 /*
103  * Clear the in-flight state on a buffer about to be released to the LRU or
104  * freed and unaccount from the buftarg.
105  */
106 static inline void
107 __xfs_buf_ioacct_dec(
108         struct xfs_buf  *bp)
109 {
110         lockdep_assert_held(&bp->b_lock);
111
112         if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113                 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114                 percpu_counter_dec(&bp->b_target->bt_io_count);
115         }
116 }
117
118 static inline void
119 xfs_buf_ioacct_dec(
120         struct xfs_buf  *bp)
121 {
122         spin_lock(&bp->b_lock);
123         __xfs_buf_ioacct_dec(bp);
124         spin_unlock(&bp->b_lock);
125 }
126
127 /*
128  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129  * b_lru_ref count so that the buffer is freed immediately when the buffer
130  * reference count falls to zero. If the buffer is already on the LRU, we need
131  * to remove the reference that LRU holds on the buffer.
132  *
133  * This prevents build-up of stale buffers on the LRU.
134  */
135 void
136 xfs_buf_stale(
137         struct xfs_buf  *bp)
138 {
139         ASSERT(xfs_buf_islocked(bp));
140
141         bp->b_flags |= XBF_STALE;
142
143         /*
144          * Clear the delwri status so that a delwri queue walker will not
145          * flush this buffer to disk now that it is stale. The delwri queue has
146          * a reference to the buffer, so this is safe to do.
147          */
148         bp->b_flags &= ~_XBF_DELWRI_Q;
149
150         /*
151          * Once the buffer is marked stale and unlocked, a subsequent lookup
152          * could reset b_flags. There is no guarantee that the buffer is
153          * unaccounted (released to LRU) before that occurs. Drop in-flight
154          * status now to preserve accounting consistency.
155          */
156         spin_lock(&bp->b_lock);
157         __xfs_buf_ioacct_dec(bp);
158
159         atomic_set(&bp->b_lru_ref, 0);
160         if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161             (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162                 atomic_dec(&bp->b_hold);
163
164         ASSERT(atomic_read(&bp->b_hold) >= 1);
165         spin_unlock(&bp->b_lock);
166 }
167
168 static int
169 xfs_buf_get_maps(
170         struct xfs_buf          *bp,
171         int                     map_count)
172 {
173         ASSERT(bp->b_maps == NULL);
174         bp->b_map_count = map_count;
175
176         if (map_count == 1) {
177                 bp->b_maps = &bp->__b_map;
178                 return 0;
179         }
180
181         bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182                                 KM_NOFS);
183         if (!bp->b_maps)
184                 return -ENOMEM;
185         return 0;
186 }
187
188 /*
189  *      Frees b_pages if it was allocated.
190  */
191 static void
192 xfs_buf_free_maps(
193         struct xfs_buf  *bp)
194 {
195         if (bp->b_maps != &bp->__b_map) {
196                 kmem_free(bp->b_maps);
197                 bp->b_maps = NULL;
198         }
199 }
200
201 static struct xfs_buf *
202 _xfs_buf_alloc(
203         struct xfs_buftarg      *target,
204         struct xfs_buf_map      *map,
205         int                     nmaps,
206         xfs_buf_flags_t         flags)
207 {
208         struct xfs_buf          *bp;
209         int                     error;
210         int                     i;
211
212         bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213         if (unlikely(!bp))
214                 return NULL;
215
216         /*
217          * We don't want certain flags to appear in b_flags unless they are
218          * specifically set by later operations on the buffer.
219          */
220         flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221
222         atomic_set(&bp->b_hold, 1);
223         atomic_set(&bp->b_lru_ref, 1);
224         init_completion(&bp->b_iowait);
225         INIT_LIST_HEAD(&bp->b_lru);
226         INIT_LIST_HEAD(&bp->b_list);
227         INIT_LIST_HEAD(&bp->b_li_list);
228         sema_init(&bp->b_sema, 0); /* held, no waiters */
229         spin_lock_init(&bp->b_lock);
230         bp->b_target = target;
231         bp->b_mount = target->bt_mount;
232         bp->b_flags = flags;
233
234         /*
235          * Set length and io_length to the same value initially.
236          * I/O routines should use io_length, which will be the same in
237          * most cases but may be reset (e.g. XFS recovery).
238          */
239         error = xfs_buf_get_maps(bp, nmaps);
240         if (error)  {
241                 kmem_zone_free(xfs_buf_zone, bp);
242                 return NULL;
243         }
244
245         bp->b_bn = map[0].bm_bn;
246         bp->b_length = 0;
247         for (i = 0; i < nmaps; i++) {
248                 bp->b_maps[i].bm_bn = map[i].bm_bn;
249                 bp->b_maps[i].bm_len = map[i].bm_len;
250                 bp->b_length += map[i].bm_len;
251         }
252
253         atomic_set(&bp->b_pin_count, 0);
254         init_waitqueue_head(&bp->b_waiters);
255
256         XFS_STATS_INC(bp->b_mount, xb_create);
257         trace_xfs_buf_init(bp, _RET_IP_);
258
259         return bp;
260 }
261
262 /*
263  *      Allocate a page array capable of holding a specified number
264  *      of pages, and point the page buf at it.
265  */
266 STATIC int
267 _xfs_buf_get_pages(
268         xfs_buf_t               *bp,
269         int                     page_count)
270 {
271         /* Make sure that we have a page list */
272         if (bp->b_pages == NULL) {
273                 bp->b_page_count = page_count;
274                 if (page_count <= XB_PAGES) {
275                         bp->b_pages = bp->b_page_array;
276                 } else {
277                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
278                                                  page_count, KM_NOFS);
279                         if (bp->b_pages == NULL)
280                                 return -ENOMEM;
281                 }
282                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283         }
284         return 0;
285 }
286
287 /*
288  *      Frees b_pages if it was allocated.
289  */
290 STATIC void
291 _xfs_buf_free_pages(
292         xfs_buf_t       *bp)
293 {
294         if (bp->b_pages != bp->b_page_array) {
295                 kmem_free(bp->b_pages);
296                 bp->b_pages = NULL;
297         }
298 }
299
300 /*
301  *      Releases the specified buffer.
302  *
303  *      The modification state of any associated pages is left unchanged.
304  *      The buffer must not be on any hash - use xfs_buf_rele instead for
305  *      hashed and refcounted buffers
306  */
307 void
308 xfs_buf_free(
309         xfs_buf_t               *bp)
310 {
311         trace_xfs_buf_free(bp, _RET_IP_);
312
313         ASSERT(list_empty(&bp->b_lru));
314
315         if (bp->b_flags & _XBF_PAGES) {
316                 uint            i;
317
318                 if (xfs_buf_is_vmapped(bp))
319                         vm_unmap_ram(bp->b_addr - bp->b_offset,
320                                         bp->b_page_count);
321
322                 for (i = 0; i < bp->b_page_count; i++) {
323                         struct page     *page = bp->b_pages[i];
324
325                         __free_page(page);
326                 }
327         } else if (bp->b_flags & _XBF_KMEM)
328                 kmem_free(bp->b_addr);
329         _xfs_buf_free_pages(bp);
330         xfs_buf_free_maps(bp);
331         kmem_zone_free(xfs_buf_zone, bp);
332 }
333
334 /*
335  * Allocates all the pages for buffer in question and builds it's page list.
336  */
337 STATIC int
338 xfs_buf_allocate_memory(
339         xfs_buf_t               *bp,
340         uint                    flags)
341 {
342         size_t                  size;
343         size_t                  nbytes, offset;
344         gfp_t                   gfp_mask = xb_to_gfp(flags);
345         unsigned short          page_count, i;
346         xfs_off_t               start, end;
347         int                     error;
348
349         /*
350          * for buffers that are contained within a single page, just allocate
351          * the memory from the heap - there's no need for the complexity of
352          * page arrays to keep allocation down to order 0.
353          */
354         size = BBTOB(bp->b_length);
355         if (size < PAGE_SIZE) {
356                 bp->b_addr = kmem_alloc(size, KM_NOFS);
357                 if (!bp->b_addr) {
358                         /* low memory - use alloc_page loop instead */
359                         goto use_alloc_page;
360                 }
361
362                 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
363                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
364                         /* b_addr spans two pages - use alloc_page instead */
365                         kmem_free(bp->b_addr);
366                         bp->b_addr = NULL;
367                         goto use_alloc_page;
368                 }
369                 bp->b_offset = offset_in_page(bp->b_addr);
370                 bp->b_pages = bp->b_page_array;
371                 bp->b_pages[0] = virt_to_page(bp->b_addr);
372                 bp->b_page_count = 1;
373                 bp->b_flags |= _XBF_KMEM;
374                 return 0;
375         }
376
377 use_alloc_page:
378         start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
379         end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
380                                                                 >> PAGE_SHIFT;
381         page_count = end - start;
382         error = _xfs_buf_get_pages(bp, page_count);
383         if (unlikely(error))
384                 return error;
385
386         offset = bp->b_offset;
387         bp->b_flags |= _XBF_PAGES;
388
389         for (i = 0; i < bp->b_page_count; i++) {
390                 struct page     *page;
391                 uint            retries = 0;
392 retry:
393                 page = alloc_page(gfp_mask);
394                 if (unlikely(page == NULL)) {
395                         if (flags & XBF_READ_AHEAD) {
396                                 bp->b_page_count = i;
397                                 error = -ENOMEM;
398                                 goto out_free_pages;
399                         }
400
401                         /*
402                          * This could deadlock.
403                          *
404                          * But until all the XFS lowlevel code is revamped to
405                          * handle buffer allocation failures we can't do much.
406                          */
407                         if (!(++retries % 100))
408                                 xfs_err(NULL,
409                 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
410                                         current->comm, current->pid,
411                                         __func__, gfp_mask);
412
413                         XFS_STATS_INC(bp->b_mount, xb_page_retries);
414                         congestion_wait(BLK_RW_ASYNC, HZ/50);
415                         goto retry;
416                 }
417
418                 XFS_STATS_INC(bp->b_mount, xb_page_found);
419
420                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
421                 size -= nbytes;
422                 bp->b_pages[i] = page;
423                 offset = 0;
424         }
425         return 0;
426
427 out_free_pages:
428         for (i = 0; i < bp->b_page_count; i++)
429                 __free_page(bp->b_pages[i]);
430         bp->b_flags &= ~_XBF_PAGES;
431         return error;
432 }
433
434 /*
435  *      Map buffer into kernel address-space if necessary.
436  */
437 STATIC int
438 _xfs_buf_map_pages(
439         xfs_buf_t               *bp,
440         uint                    flags)
441 {
442         ASSERT(bp->b_flags & _XBF_PAGES);
443         if (bp->b_page_count == 1) {
444                 /* A single page buffer is always mappable */
445                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446         } else if (flags & XBF_UNMAPPED) {
447                 bp->b_addr = NULL;
448         } else {
449                 int retried = 0;
450                 unsigned nofs_flag;
451
452                 /*
453                  * vm_map_ram() will allocate auxillary structures (e.g.
454                  * pagetables) with GFP_KERNEL, yet we are likely to be under
455                  * GFP_NOFS context here. Hence we need to tell memory reclaim
456                  * that we are in such a context via PF_MEMALLOC_NOFS to prevent
457                  * memory reclaim re-entering the filesystem here and
458                  * potentially deadlocking.
459                  */
460                 nofs_flag = memalloc_nofs_save();
461                 do {
462                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
463                                                 -1, PAGE_KERNEL);
464                         if (bp->b_addr)
465                                 break;
466                         vm_unmap_aliases();
467                 } while (retried++ <= 1);
468                 memalloc_nofs_restore(nofs_flag);
469
470                 if (!bp->b_addr)
471                         return -ENOMEM;
472                 bp->b_addr += bp->b_offset;
473         }
474
475         return 0;
476 }
477
478 /*
479  *      Finding and Reading Buffers
480  */
481 static int
482 _xfs_buf_obj_cmp(
483         struct rhashtable_compare_arg   *arg,
484         const void                      *obj)
485 {
486         const struct xfs_buf_map        *map = arg->key;
487         const struct xfs_buf            *bp = obj;
488
489         /*
490          * The key hashing in the lookup path depends on the key being the
491          * first element of the compare_arg, make sure to assert this.
492          */
493         BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
494
495         if (bp->b_bn != map->bm_bn)
496                 return 1;
497
498         if (unlikely(bp->b_length != map->bm_len)) {
499                 /*
500                  * found a block number match. If the range doesn't
501                  * match, the only way this is allowed is if the buffer
502                  * in the cache is stale and the transaction that made
503                  * it stale has not yet committed. i.e. we are
504                  * reallocating a busy extent. Skip this buffer and
505                  * continue searching for an exact match.
506                  */
507                 ASSERT(bp->b_flags & XBF_STALE);
508                 return 1;
509         }
510         return 0;
511 }
512
513 static const struct rhashtable_params xfs_buf_hash_params = {
514         .min_size               = 32,   /* empty AGs have minimal footprint */
515         .nelem_hint             = 16,
516         .key_len                = sizeof(xfs_daddr_t),
517         .key_offset             = offsetof(struct xfs_buf, b_bn),
518         .head_offset            = offsetof(struct xfs_buf, b_rhash_head),
519         .automatic_shrinking    = true,
520         .obj_cmpfn              = _xfs_buf_obj_cmp,
521 };
522
523 int
524 xfs_buf_hash_init(
525         struct xfs_perag        *pag)
526 {
527         spin_lock_init(&pag->pag_buf_lock);
528         return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
529 }
530
531 void
532 xfs_buf_hash_destroy(
533         struct xfs_perag        *pag)
534 {
535         rhashtable_destroy(&pag->pag_buf_hash);
536 }
537
538 /*
539  * Look up a buffer in the buffer cache and return it referenced and locked
540  * in @found_bp.
541  *
542  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
543  * cache.
544  *
545  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
546  * -EAGAIN if we fail to lock it.
547  *
548  * Return values are:
549  *      -EFSCORRUPTED if have been supplied with an invalid address
550  *      -EAGAIN on trylock failure
551  *      -ENOENT if we fail to find a match and @new_bp was NULL
552  *      0, with @found_bp:
553  *              - @new_bp if we inserted it into the cache
554  *              - the buffer we found and locked.
555  */
556 static int
557 xfs_buf_find(
558         struct xfs_buftarg      *btp,
559         struct xfs_buf_map      *map,
560         int                     nmaps,
561         xfs_buf_flags_t         flags,
562         struct xfs_buf          *new_bp,
563         struct xfs_buf          **found_bp)
564 {
565         struct xfs_perag        *pag;
566         xfs_buf_t               *bp;
567         struct xfs_buf_map      cmap = { .bm_bn = map[0].bm_bn };
568         xfs_daddr_t             eofs;
569         int                     i;
570
571         *found_bp = NULL;
572
573         for (i = 0; i < nmaps; i++)
574                 cmap.bm_len += map[i].bm_len;
575
576         /* Check for IOs smaller than the sector size / not sector aligned */
577         ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
578         ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
579
580         /*
581          * Corrupted block numbers can get through to here, unfortunately, so we
582          * have to check that the buffer falls within the filesystem bounds.
583          */
584         eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
585         if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
586                 xfs_alert(btp->bt_mount,
587                           "%s: daddr 0x%llx out of range, EOFS 0x%llx",
588                           __func__, cmap.bm_bn, eofs);
589                 WARN_ON(1);
590                 return -EFSCORRUPTED;
591         }
592
593         pag = xfs_perag_get(btp->bt_mount,
594                             xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
595
596         spin_lock(&pag->pag_buf_lock);
597         bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
598                                     xfs_buf_hash_params);
599         if (bp) {
600                 atomic_inc(&bp->b_hold);
601                 goto found;
602         }
603
604         /* No match found */
605         if (!new_bp) {
606                 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
607                 spin_unlock(&pag->pag_buf_lock);
608                 xfs_perag_put(pag);
609                 return -ENOENT;
610         }
611
612         /* the buffer keeps the perag reference until it is freed */
613         new_bp->b_pag = pag;
614         rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
615                                xfs_buf_hash_params);
616         spin_unlock(&pag->pag_buf_lock);
617         *found_bp = new_bp;
618         return 0;
619
620 found:
621         spin_unlock(&pag->pag_buf_lock);
622         xfs_perag_put(pag);
623
624         if (!xfs_buf_trylock(bp)) {
625                 if (flags & XBF_TRYLOCK) {
626                         xfs_buf_rele(bp);
627                         XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
628                         return -EAGAIN;
629                 }
630                 xfs_buf_lock(bp);
631                 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
632         }
633
634         /*
635          * if the buffer is stale, clear all the external state associated with
636          * it. We need to keep flags such as how we allocated the buffer memory
637          * intact here.
638          */
639         if (bp->b_flags & XBF_STALE) {
640                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
641                 ASSERT(bp->b_iodone == NULL);
642                 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
643                 bp->b_ops = NULL;
644         }
645
646         trace_xfs_buf_find(bp, flags, _RET_IP_);
647         XFS_STATS_INC(btp->bt_mount, xb_get_locked);
648         *found_bp = bp;
649         return 0;
650 }
651
652 struct xfs_buf *
653 xfs_buf_incore(
654         struct xfs_buftarg      *target,
655         xfs_daddr_t             blkno,
656         size_t                  numblks,
657         xfs_buf_flags_t         flags)
658 {
659         struct xfs_buf          *bp;
660         int                     error;
661         DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
662
663         error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
664         if (error)
665                 return NULL;
666         return bp;
667 }
668
669 /*
670  * Assembles a buffer covering the specified range. The code is optimised for
671  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
672  * more hits than misses.
673  */
674 struct xfs_buf *
675 xfs_buf_get_map(
676         struct xfs_buftarg      *target,
677         struct xfs_buf_map      *map,
678         int                     nmaps,
679         xfs_buf_flags_t         flags)
680 {
681         struct xfs_buf          *bp;
682         struct xfs_buf          *new_bp;
683         int                     error = 0;
684
685         error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
686
687         switch (error) {
688         case 0:
689                 /* cache hit */
690                 goto found;
691         case -EAGAIN:
692                 /* cache hit, trylock failure, caller handles failure */
693                 ASSERT(flags & XBF_TRYLOCK);
694                 return NULL;
695         case -ENOENT:
696                 /* cache miss, go for insert */
697                 break;
698         case -EFSCORRUPTED:
699         default:
700                 /*
701                  * None of the higher layers understand failure types
702                  * yet, so return NULL to signal a fatal lookup error.
703                  */
704                 return NULL;
705         }
706
707         new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
708         if (unlikely(!new_bp))
709                 return NULL;
710
711         error = xfs_buf_allocate_memory(new_bp, flags);
712         if (error) {
713                 xfs_buf_free(new_bp);
714                 return NULL;
715         }
716
717         error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718         if (error) {
719                 xfs_buf_free(new_bp);
720                 return NULL;
721         }
722
723         if (bp != new_bp)
724                 xfs_buf_free(new_bp);
725
726 found:
727         if (!bp->b_addr) {
728                 error = _xfs_buf_map_pages(bp, flags);
729                 if (unlikely(error)) {
730                         xfs_warn(target->bt_mount,
731                                 "%s: failed to map pagesn", __func__);
732                         xfs_buf_relse(bp);
733                         return NULL;
734                 }
735         }
736
737         /*
738          * Clear b_error if this is a lookup from a caller that doesn't expect
739          * valid data to be found in the buffer.
740          */
741         if (!(flags & XBF_READ))
742                 xfs_buf_ioerror(bp, 0);
743
744         XFS_STATS_INC(target->bt_mount, xb_get);
745         trace_xfs_buf_get(bp, flags, _RET_IP_);
746         return bp;
747 }
748
749 STATIC int
750 _xfs_buf_read(
751         xfs_buf_t               *bp,
752         xfs_buf_flags_t         flags)
753 {
754         ASSERT(!(flags & XBF_WRITE));
755         ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
756
757         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
758         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
759
760         return xfs_buf_submit(bp);
761 }
762
763 /*
764  * Reverify a buffer found in cache without an attached ->b_ops.
765  *
766  * If the caller passed an ops structure and the buffer doesn't have ops
767  * assigned, set the ops and use it to verify the contents. If verification
768  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
769  * already in XBF_DONE state on entry.
770  *
771  * Under normal operations, every in-core buffer is verified on read I/O
772  * completion. There are two scenarios that can lead to in-core buffers without
773  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
774  * filesystem, though these buffers are purged at the end of recovery. The
775  * other is online repair, which intentionally reads with a NULL buffer ops to
776  * run several verifiers across an in-core buffer in order to establish buffer
777  * type.  If repair can't establish that, the buffer will be left in memory
778  * with NULL buffer ops.
779  */
780 int
781 xfs_buf_reverify(
782         struct xfs_buf          *bp,
783         const struct xfs_buf_ops *ops)
784 {
785         ASSERT(bp->b_flags & XBF_DONE);
786         ASSERT(bp->b_error == 0);
787
788         if (!ops || bp->b_ops)
789                 return 0;
790
791         bp->b_ops = ops;
792         bp->b_ops->verify_read(bp);
793         if (bp->b_error)
794                 bp->b_flags &= ~XBF_DONE;
795         return bp->b_error;
796 }
797
798 xfs_buf_t *
799 xfs_buf_read_map(
800         struct xfs_buftarg      *target,
801         struct xfs_buf_map      *map,
802         int                     nmaps,
803         xfs_buf_flags_t         flags,
804         const struct xfs_buf_ops *ops)
805 {
806         struct xfs_buf          *bp;
807
808         flags |= XBF_READ;
809
810         bp = xfs_buf_get_map(target, map, nmaps, flags);
811         if (!bp)
812                 return NULL;
813
814         trace_xfs_buf_read(bp, flags, _RET_IP_);
815
816         if (!(bp->b_flags & XBF_DONE)) {
817                 XFS_STATS_INC(target->bt_mount, xb_get_read);
818                 bp->b_ops = ops;
819                 _xfs_buf_read(bp, flags);
820                 return bp;
821         }
822
823         xfs_buf_reverify(bp, ops);
824
825         if (flags & XBF_ASYNC) {
826                 /*
827                  * Read ahead call which is already satisfied,
828                  * drop the buffer
829                  */
830                 xfs_buf_relse(bp);
831                 return NULL;
832         }
833
834         /* We do not want read in the flags */
835         bp->b_flags &= ~XBF_READ;
836         ASSERT(bp->b_ops != NULL || ops == NULL);
837         return bp;
838 }
839
840 /*
841  *      If we are not low on memory then do the readahead in a deadlock
842  *      safe manner.
843  */
844 void
845 xfs_buf_readahead_map(
846         struct xfs_buftarg      *target,
847         struct xfs_buf_map      *map,
848         int                     nmaps,
849         const struct xfs_buf_ops *ops)
850 {
851         if (bdi_read_congested(target->bt_bdev->bd_bdi))
852                 return;
853
854         xfs_buf_read_map(target, map, nmaps,
855                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
856 }
857
858 /*
859  * Read an uncached buffer from disk. Allocates and returns a locked
860  * buffer containing the disk contents or nothing.
861  */
862 int
863 xfs_buf_read_uncached(
864         struct xfs_buftarg      *target,
865         xfs_daddr_t             daddr,
866         size_t                  numblks,
867         int                     flags,
868         struct xfs_buf          **bpp,
869         const struct xfs_buf_ops *ops)
870 {
871         struct xfs_buf          *bp;
872
873         *bpp = NULL;
874
875         bp = xfs_buf_get_uncached(target, numblks, flags);
876         if (!bp)
877                 return -ENOMEM;
878
879         /* set up the buffer for a read IO */
880         ASSERT(bp->b_map_count == 1);
881         bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
882         bp->b_maps[0].bm_bn = daddr;
883         bp->b_flags |= XBF_READ;
884         bp->b_ops = ops;
885
886         xfs_buf_submit(bp);
887         if (bp->b_error) {
888                 int     error = bp->b_error;
889                 xfs_buf_relse(bp);
890                 return error;
891         }
892
893         *bpp = bp;
894         return 0;
895 }
896
897 xfs_buf_t *
898 xfs_buf_get_uncached(
899         struct xfs_buftarg      *target,
900         size_t                  numblks,
901         int                     flags)
902 {
903         unsigned long           page_count;
904         int                     error, i;
905         struct xfs_buf          *bp;
906         DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
907
908         /* flags might contain irrelevant bits, pass only what we care about */
909         bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
910         if (unlikely(bp == NULL))
911                 goto fail;
912
913         page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
914         error = _xfs_buf_get_pages(bp, page_count);
915         if (error)
916                 goto fail_free_buf;
917
918         for (i = 0; i < page_count; i++) {
919                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
920                 if (!bp->b_pages[i])
921                         goto fail_free_mem;
922         }
923         bp->b_flags |= _XBF_PAGES;
924
925         error = _xfs_buf_map_pages(bp, 0);
926         if (unlikely(error)) {
927                 xfs_warn(target->bt_mount,
928                         "%s: failed to map pages", __func__);
929                 goto fail_free_mem;
930         }
931
932         trace_xfs_buf_get_uncached(bp, _RET_IP_);
933         return bp;
934
935  fail_free_mem:
936         while (--i >= 0)
937                 __free_page(bp->b_pages[i]);
938         _xfs_buf_free_pages(bp);
939  fail_free_buf:
940         xfs_buf_free_maps(bp);
941         kmem_zone_free(xfs_buf_zone, bp);
942  fail:
943         return NULL;
944 }
945
946 /*
947  *      Increment reference count on buffer, to hold the buffer concurrently
948  *      with another thread which may release (free) the buffer asynchronously.
949  *      Must hold the buffer already to call this function.
950  */
951 void
952 xfs_buf_hold(
953         xfs_buf_t               *bp)
954 {
955         trace_xfs_buf_hold(bp, _RET_IP_);
956         atomic_inc(&bp->b_hold);
957 }
958
959 /*
960  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
961  * placed on LRU or freed (depending on b_lru_ref).
962  */
963 void
964 xfs_buf_rele(
965         xfs_buf_t               *bp)
966 {
967         struct xfs_perag        *pag = bp->b_pag;
968         bool                    release;
969         bool                    freebuf = false;
970
971         trace_xfs_buf_rele(bp, _RET_IP_);
972
973         if (!pag) {
974                 ASSERT(list_empty(&bp->b_lru));
975                 if (atomic_dec_and_test(&bp->b_hold)) {
976                         xfs_buf_ioacct_dec(bp);
977                         xfs_buf_free(bp);
978                 }
979                 return;
980         }
981
982         ASSERT(atomic_read(&bp->b_hold) > 0);
983
984         /*
985          * We grab the b_lock here first to serialise racing xfs_buf_rele()
986          * calls. The pag_buf_lock being taken on the last reference only
987          * serialises against racing lookups in xfs_buf_find(). IOWs, the second
988          * to last reference we drop here is not serialised against the last
989          * reference until we take bp->b_lock. Hence if we don't grab b_lock
990          * first, the last "release" reference can win the race to the lock and
991          * free the buffer before the second-to-last reference is processed,
992          * leading to a use-after-free scenario.
993          */
994         spin_lock(&bp->b_lock);
995         release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
996         if (!release) {
997                 /*
998                  * Drop the in-flight state if the buffer is already on the LRU
999                  * and it holds the only reference. This is racy because we
1000                  * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1001                  * ensures the decrement occurs only once per-buf.
1002                  */
1003                 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1004                         __xfs_buf_ioacct_dec(bp);
1005                 goto out_unlock;
1006         }
1007
1008         /* the last reference has been dropped ... */
1009         __xfs_buf_ioacct_dec(bp);
1010         if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1011                 /*
1012                  * If the buffer is added to the LRU take a new reference to the
1013                  * buffer for the LRU and clear the (now stale) dispose list
1014                  * state flag
1015                  */
1016                 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1017                         bp->b_state &= ~XFS_BSTATE_DISPOSE;
1018                         atomic_inc(&bp->b_hold);
1019                 }
1020                 spin_unlock(&pag->pag_buf_lock);
1021         } else {
1022                 /*
1023                  * most of the time buffers will already be removed from the
1024                  * LRU, so optimise that case by checking for the
1025                  * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1026                  * was on was the disposal list
1027                  */
1028                 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1029                         list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1030                 } else {
1031                         ASSERT(list_empty(&bp->b_lru));
1032                 }
1033
1034                 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1035                 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1036                                        xfs_buf_hash_params);
1037                 spin_unlock(&pag->pag_buf_lock);
1038                 xfs_perag_put(pag);
1039                 freebuf = true;
1040         }
1041
1042 out_unlock:
1043         spin_unlock(&bp->b_lock);
1044
1045         if (freebuf)
1046                 xfs_buf_free(bp);
1047 }
1048
1049
1050 /*
1051  *      Lock a buffer object, if it is not already locked.
1052  *
1053  *      If we come across a stale, pinned, locked buffer, we know that we are
1054  *      being asked to lock a buffer that has been reallocated. Because it is
1055  *      pinned, we know that the log has not been pushed to disk and hence it
1056  *      will still be locked.  Rather than continuing to have trylock attempts
1057  *      fail until someone else pushes the log, push it ourselves before
1058  *      returning.  This means that the xfsaild will not get stuck trying
1059  *      to push on stale inode buffers.
1060  */
1061 int
1062 xfs_buf_trylock(
1063         struct xfs_buf          *bp)
1064 {
1065         int                     locked;
1066
1067         locked = down_trylock(&bp->b_sema) == 0;
1068         if (locked)
1069                 trace_xfs_buf_trylock(bp, _RET_IP_);
1070         else
1071                 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1072         return locked;
1073 }
1074
1075 /*
1076  *      Lock a buffer object.
1077  *
1078  *      If we come across a stale, pinned, locked buffer, we know that we
1079  *      are being asked to lock a buffer that has been reallocated. Because
1080  *      it is pinned, we know that the log has not been pushed to disk and
1081  *      hence it will still be locked. Rather than sleeping until someone
1082  *      else pushes the log, push it ourselves before trying to get the lock.
1083  */
1084 void
1085 xfs_buf_lock(
1086         struct xfs_buf          *bp)
1087 {
1088         trace_xfs_buf_lock(bp, _RET_IP_);
1089
1090         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1091                 xfs_log_force(bp->b_mount, 0);
1092         down(&bp->b_sema);
1093
1094         trace_xfs_buf_lock_done(bp, _RET_IP_);
1095 }
1096
1097 void
1098 xfs_buf_unlock(
1099         struct xfs_buf          *bp)
1100 {
1101         ASSERT(xfs_buf_islocked(bp));
1102
1103         up(&bp->b_sema);
1104         trace_xfs_buf_unlock(bp, _RET_IP_);
1105 }
1106
1107 STATIC void
1108 xfs_buf_wait_unpin(
1109         xfs_buf_t               *bp)
1110 {
1111         DECLARE_WAITQUEUE       (wait, current);
1112
1113         if (atomic_read(&bp->b_pin_count) == 0)
1114                 return;
1115
1116         add_wait_queue(&bp->b_waiters, &wait);
1117         for (;;) {
1118                 set_current_state(TASK_UNINTERRUPTIBLE);
1119                 if (atomic_read(&bp->b_pin_count) == 0)
1120                         break;
1121                 io_schedule();
1122         }
1123         remove_wait_queue(&bp->b_waiters, &wait);
1124         set_current_state(TASK_RUNNING);
1125 }
1126
1127 /*
1128  *      Buffer Utility Routines
1129  */
1130
1131 void
1132 xfs_buf_ioend(
1133         struct xfs_buf  *bp)
1134 {
1135         bool            read = bp->b_flags & XBF_READ;
1136
1137         trace_xfs_buf_iodone(bp, _RET_IP_);
1138
1139         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1140
1141         /*
1142          * Pull in IO completion errors now. We are guaranteed to be running
1143          * single threaded, so we don't need the lock to read b_io_error.
1144          */
1145         if (!bp->b_error && bp->b_io_error)
1146                 xfs_buf_ioerror(bp, bp->b_io_error);
1147
1148         /* Only validate buffers that were read without errors */
1149         if (read && !bp->b_error && bp->b_ops) {
1150                 ASSERT(!bp->b_iodone);
1151                 bp->b_ops->verify_read(bp);
1152         }
1153
1154         if (!bp->b_error)
1155                 bp->b_flags |= XBF_DONE;
1156
1157         if (bp->b_iodone)
1158                 (*(bp->b_iodone))(bp);
1159         else if (bp->b_flags & XBF_ASYNC)
1160                 xfs_buf_relse(bp);
1161         else
1162                 complete(&bp->b_iowait);
1163 }
1164
1165 static void
1166 xfs_buf_ioend_work(
1167         struct work_struct      *work)
1168 {
1169         struct xfs_buf          *bp =
1170                 container_of(work, xfs_buf_t, b_ioend_work);
1171
1172         xfs_buf_ioend(bp);
1173 }
1174
1175 static void
1176 xfs_buf_ioend_async(
1177         struct xfs_buf  *bp)
1178 {
1179         INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180         queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1181 }
1182
1183 void
1184 __xfs_buf_ioerror(
1185         xfs_buf_t               *bp,
1186         int                     error,
1187         xfs_failaddr_t          failaddr)
1188 {
1189         ASSERT(error <= 0 && error >= -1000);
1190         bp->b_error = error;
1191         trace_xfs_buf_ioerror(bp, error, failaddr);
1192 }
1193
1194 void
1195 xfs_buf_ioerror_alert(
1196         struct xfs_buf          *bp,
1197         const char              *func)
1198 {
1199         xfs_alert(bp->b_mount,
1200 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201                         func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202                         -bp->b_error);
1203 }
1204
1205 int
1206 xfs_bwrite(
1207         struct xfs_buf          *bp)
1208 {
1209         int                     error;
1210
1211         ASSERT(xfs_buf_islocked(bp));
1212
1213         bp->b_flags |= XBF_WRITE;
1214         bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215                          XBF_WRITE_FAIL | XBF_DONE);
1216
1217         error = xfs_buf_submit(bp);
1218         if (error)
1219                 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1220         return error;
1221 }
1222
1223 static void
1224 xfs_buf_bio_end_io(
1225         struct bio              *bio)
1226 {
1227         struct xfs_buf          *bp = (struct xfs_buf *)bio->bi_private;
1228
1229         /*
1230          * don't overwrite existing errors - otherwise we can lose errors on
1231          * buffers that require multiple bios to complete.
1232          */
1233         if (bio->bi_status) {
1234                 int error = blk_status_to_errno(bio->bi_status);
1235
1236                 cmpxchg(&bp->b_io_error, 0, error);
1237         }
1238
1239         if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1240                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1241
1242         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1243                 xfs_buf_ioend_async(bp);
1244         bio_put(bio);
1245 }
1246
1247 static void
1248 xfs_buf_ioapply_map(
1249         struct xfs_buf  *bp,
1250         int             map,
1251         int             *buf_offset,
1252         int             *count,
1253         int             op,
1254         int             op_flags)
1255 {
1256         int             page_index;
1257         int             total_nr_pages = bp->b_page_count;
1258         int             nr_pages;
1259         struct bio      *bio;
1260         sector_t        sector =  bp->b_maps[map].bm_bn;
1261         int             size;
1262         int             offset;
1263
1264         /* skip the pages in the buffer before the start offset */
1265         page_index = 0;
1266         offset = *buf_offset;
1267         while (offset >= PAGE_SIZE) {
1268                 page_index++;
1269                 offset -= PAGE_SIZE;
1270         }
1271
1272         /*
1273          * Limit the IO size to the length of the current vector, and update the
1274          * remaining IO count for the next time around.
1275          */
1276         size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277         *count -= size;
1278         *buf_offset += size;
1279
1280 next_chunk:
1281         atomic_inc(&bp->b_io_remaining);
1282         nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1283
1284         bio = bio_alloc(GFP_NOIO, nr_pages);
1285         bio_set_dev(bio, bp->b_target->bt_bdev);
1286         bio->bi_iter.bi_sector = sector;
1287         bio->bi_end_io = xfs_buf_bio_end_io;
1288         bio->bi_private = bp;
1289         bio_set_op_attrs(bio, op, op_flags);
1290
1291         for (; size && nr_pages; nr_pages--, page_index++) {
1292                 int     rbytes, nbytes = PAGE_SIZE - offset;
1293
1294                 if (nbytes > size)
1295                         nbytes = size;
1296
1297                 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1298                                       offset);
1299                 if (rbytes < nbytes)
1300                         break;
1301
1302                 offset = 0;
1303                 sector += BTOBB(nbytes);
1304                 size -= nbytes;
1305                 total_nr_pages--;
1306         }
1307
1308         if (likely(bio->bi_iter.bi_size)) {
1309                 if (xfs_buf_is_vmapped(bp)) {
1310                         flush_kernel_vmap_range(bp->b_addr,
1311                                                 xfs_buf_vmap_len(bp));
1312                 }
1313                 submit_bio(bio);
1314                 if (size)
1315                         goto next_chunk;
1316         } else {
1317                 /*
1318                  * This is guaranteed not to be the last io reference count
1319                  * because the caller (xfs_buf_submit) holds a count itself.
1320                  */
1321                 atomic_dec(&bp->b_io_remaining);
1322                 xfs_buf_ioerror(bp, -EIO);
1323                 bio_put(bio);
1324         }
1325
1326 }
1327
1328 STATIC void
1329 _xfs_buf_ioapply(
1330         struct xfs_buf  *bp)
1331 {
1332         struct blk_plug plug;
1333         int             op;
1334         int             op_flags = 0;
1335         int             offset;
1336         int             size;
1337         int             i;
1338
1339         /*
1340          * Make sure we capture only current IO errors rather than stale errors
1341          * left over from previous use of the buffer (e.g. failed readahead).
1342          */
1343         bp->b_error = 0;
1344
1345         if (bp->b_flags & XBF_WRITE) {
1346                 op = REQ_OP_WRITE;
1347
1348                 /*
1349                  * Run the write verifier callback function if it exists. If
1350                  * this function fails it will mark the buffer with an error and
1351                  * the IO should not be dispatched.
1352                  */
1353                 if (bp->b_ops) {
1354                         bp->b_ops->verify_write(bp);
1355                         if (bp->b_error) {
1356                                 xfs_force_shutdown(bp->b_mount,
1357                                                    SHUTDOWN_CORRUPT_INCORE);
1358                                 return;
1359                         }
1360                 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1361                         struct xfs_mount *mp = bp->b_mount;
1362
1363                         /*
1364                          * non-crc filesystems don't attach verifiers during
1365                          * log recovery, so don't warn for such filesystems.
1366                          */
1367                         if (xfs_sb_version_hascrc(&mp->m_sb)) {
1368                                 xfs_warn(mp,
1369                                         "%s: no buf ops on daddr 0x%llx len %d",
1370                                         __func__, bp->b_bn, bp->b_length);
1371                                 xfs_hex_dump(bp->b_addr,
1372                                                 XFS_CORRUPTION_DUMP_LEN);
1373                                 dump_stack();
1374                         }
1375                 }
1376         } else if (bp->b_flags & XBF_READ_AHEAD) {
1377                 op = REQ_OP_READ;
1378                 op_flags = REQ_RAHEAD;
1379         } else {
1380                 op = REQ_OP_READ;
1381         }
1382
1383         /* we only use the buffer cache for meta-data */
1384         op_flags |= REQ_META;
1385
1386         /*
1387          * Walk all the vectors issuing IO on them. Set up the initial offset
1388          * into the buffer and the desired IO size before we start -
1389          * _xfs_buf_ioapply_vec() will modify them appropriately for each
1390          * subsequent call.
1391          */
1392         offset = bp->b_offset;
1393         size = BBTOB(bp->b_length);
1394         blk_start_plug(&plug);
1395         for (i = 0; i < bp->b_map_count; i++) {
1396                 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1397                 if (bp->b_error)
1398                         break;
1399                 if (size <= 0)
1400                         break;  /* all done */
1401         }
1402         blk_finish_plug(&plug);
1403 }
1404
1405 /*
1406  * Wait for I/O completion of a sync buffer and return the I/O error code.
1407  */
1408 static int
1409 xfs_buf_iowait(
1410         struct xfs_buf  *bp)
1411 {
1412         ASSERT(!(bp->b_flags & XBF_ASYNC));
1413
1414         trace_xfs_buf_iowait(bp, _RET_IP_);
1415         wait_for_completion(&bp->b_iowait);
1416         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1417
1418         return bp->b_error;
1419 }
1420
1421 /*
1422  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1423  * the buffer lock ownership and the current reference to the IO. It is not
1424  * safe to reference the buffer after a call to this function unless the caller
1425  * holds an additional reference itself.
1426  */
1427 int
1428 __xfs_buf_submit(
1429         struct xfs_buf  *bp,
1430         bool            wait)
1431 {
1432         int             error = 0;
1433
1434         trace_xfs_buf_submit(bp, _RET_IP_);
1435
1436         ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1437
1438         /* on shutdown we stale and complete the buffer immediately */
1439         if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1440                 xfs_buf_ioerror(bp, -EIO);
1441                 bp->b_flags &= ~XBF_DONE;
1442                 xfs_buf_stale(bp);
1443                 xfs_buf_ioend(bp);
1444                 return -EIO;
1445         }
1446
1447         /*
1448          * Grab a reference so the buffer does not go away underneath us. For
1449          * async buffers, I/O completion drops the callers reference, which
1450          * could occur before submission returns.
1451          */
1452         xfs_buf_hold(bp);
1453
1454         if (bp->b_flags & XBF_WRITE)
1455                 xfs_buf_wait_unpin(bp);
1456
1457         /* clear the internal error state to avoid spurious errors */
1458         bp->b_io_error = 0;
1459
1460         /*
1461          * Set the count to 1 initially, this will stop an I/O completion
1462          * callout which happens before we have started all the I/O from calling
1463          * xfs_buf_ioend too early.
1464          */
1465         atomic_set(&bp->b_io_remaining, 1);
1466         if (bp->b_flags & XBF_ASYNC)
1467                 xfs_buf_ioacct_inc(bp);
1468         _xfs_buf_ioapply(bp);
1469
1470         /*
1471          * If _xfs_buf_ioapply failed, we can get back here with only the IO
1472          * reference we took above. If we drop it to zero, run completion so
1473          * that we don't return to the caller with completion still pending.
1474          */
1475         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1476                 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1477                         xfs_buf_ioend(bp);
1478                 else
1479                         xfs_buf_ioend_async(bp);
1480         }
1481
1482         if (wait)
1483                 error = xfs_buf_iowait(bp);
1484
1485         /*
1486          * Release the hold that keeps the buffer referenced for the entire
1487          * I/O. Note that if the buffer is async, it is not safe to reference
1488          * after this release.
1489          */
1490         xfs_buf_rele(bp);
1491         return error;
1492 }
1493
1494 void *
1495 xfs_buf_offset(
1496         struct xfs_buf          *bp,
1497         size_t                  offset)
1498 {
1499         struct page             *page;
1500
1501         if (bp->b_addr)
1502                 return bp->b_addr + offset;
1503
1504         offset += bp->b_offset;
1505         page = bp->b_pages[offset >> PAGE_SHIFT];
1506         return page_address(page) + (offset & (PAGE_SIZE-1));
1507 }
1508
1509 void
1510 xfs_buf_zero(
1511         struct xfs_buf          *bp,
1512         size_t                  boff,
1513         size_t                  bsize)
1514 {
1515         size_t                  bend;
1516
1517         bend = boff + bsize;
1518         while (boff < bend) {
1519                 struct page     *page;
1520                 int             page_index, page_offset, csize;
1521
1522                 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1523                 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1524                 page = bp->b_pages[page_index];
1525                 csize = min_t(size_t, PAGE_SIZE - page_offset,
1526                                       BBTOB(bp->b_length) - boff);
1527
1528                 ASSERT((csize + page_offset) <= PAGE_SIZE);
1529
1530                 memset(page_address(page) + page_offset, 0, csize);
1531
1532                 boff += csize;
1533         }
1534 }
1535
1536 /*
1537  *      Handling of buffer targets (buftargs).
1538  */
1539
1540 /*
1541  * Wait for any bufs with callbacks that have been submitted but have not yet
1542  * returned. These buffers will have an elevated hold count, so wait on those
1543  * while freeing all the buffers only held by the LRU.
1544  */
1545 static enum lru_status
1546 xfs_buftarg_wait_rele(
1547         struct list_head        *item,
1548         struct list_lru_one     *lru,
1549         spinlock_t              *lru_lock,
1550         void                    *arg)
1551
1552 {
1553         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1554         struct list_head        *dispose = arg;
1555
1556         if (atomic_read(&bp->b_hold) > 1) {
1557                 /* need to wait, so skip it this pass */
1558                 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1559                 return LRU_SKIP;
1560         }
1561         if (!spin_trylock(&bp->b_lock))
1562                 return LRU_SKIP;
1563
1564         /*
1565          * clear the LRU reference count so the buffer doesn't get
1566          * ignored in xfs_buf_rele().
1567          */
1568         atomic_set(&bp->b_lru_ref, 0);
1569         bp->b_state |= XFS_BSTATE_DISPOSE;
1570         list_lru_isolate_move(lru, item, dispose);
1571         spin_unlock(&bp->b_lock);
1572         return LRU_REMOVED;
1573 }
1574
1575 void
1576 xfs_wait_buftarg(
1577         struct xfs_buftarg      *btp)
1578 {
1579         LIST_HEAD(dispose);
1580         int loop = 0;
1581
1582         /*
1583          * First wait on the buftarg I/O count for all in-flight buffers to be
1584          * released. This is critical as new buffers do not make the LRU until
1585          * they are released.
1586          *
1587          * Next, flush the buffer workqueue to ensure all completion processing
1588          * has finished. Just waiting on buffer locks is not sufficient for
1589          * async IO as the reference count held over IO is not released until
1590          * after the buffer lock is dropped. Hence we need to ensure here that
1591          * all reference counts have been dropped before we start walking the
1592          * LRU list.
1593          */
1594         while (percpu_counter_sum(&btp->bt_io_count))
1595                 delay(100);
1596         flush_workqueue(btp->bt_mount->m_buf_workqueue);
1597
1598         /* loop until there is nothing left on the lru list. */
1599         while (list_lru_count(&btp->bt_lru)) {
1600                 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1601                               &dispose, LONG_MAX);
1602
1603                 while (!list_empty(&dispose)) {
1604                         struct xfs_buf *bp;
1605                         bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1606                         list_del_init(&bp->b_lru);
1607                         if (bp->b_flags & XBF_WRITE_FAIL) {
1608                                 xfs_alert(btp->bt_mount,
1609 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1610                                         (long long)bp->b_bn);
1611                                 xfs_alert(btp->bt_mount,
1612 "Please run xfs_repair to determine the extent of the problem.");
1613                         }
1614                         xfs_buf_rele(bp);
1615                 }
1616                 if (loop++ != 0)
1617                         delay(100);
1618         }
1619 }
1620
1621 static enum lru_status
1622 xfs_buftarg_isolate(
1623         struct list_head        *item,
1624         struct list_lru_one     *lru,
1625         spinlock_t              *lru_lock,
1626         void                    *arg)
1627 {
1628         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1629         struct list_head        *dispose = arg;
1630
1631         /*
1632          * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1633          * If we fail to get the lock, just skip it.
1634          */
1635         if (!spin_trylock(&bp->b_lock))
1636                 return LRU_SKIP;
1637         /*
1638          * Decrement the b_lru_ref count unless the value is already
1639          * zero. If the value is already zero, we need to reclaim the
1640          * buffer, otherwise it gets another trip through the LRU.
1641          */
1642         if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1643                 spin_unlock(&bp->b_lock);
1644                 return LRU_ROTATE;
1645         }
1646
1647         bp->b_state |= XFS_BSTATE_DISPOSE;
1648         list_lru_isolate_move(lru, item, dispose);
1649         spin_unlock(&bp->b_lock);
1650         return LRU_REMOVED;
1651 }
1652
1653 static unsigned long
1654 xfs_buftarg_shrink_scan(
1655         struct shrinker         *shrink,
1656         struct shrink_control   *sc)
1657 {
1658         struct xfs_buftarg      *btp = container_of(shrink,
1659                                         struct xfs_buftarg, bt_shrinker);
1660         LIST_HEAD(dispose);
1661         unsigned long           freed;
1662
1663         freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1664                                      xfs_buftarg_isolate, &dispose);
1665
1666         while (!list_empty(&dispose)) {
1667                 struct xfs_buf *bp;
1668                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1669                 list_del_init(&bp->b_lru);
1670                 xfs_buf_rele(bp);
1671         }
1672
1673         return freed;
1674 }
1675
1676 static unsigned long
1677 xfs_buftarg_shrink_count(
1678         struct shrinker         *shrink,
1679         struct shrink_control   *sc)
1680 {
1681         struct xfs_buftarg      *btp = container_of(shrink,
1682                                         struct xfs_buftarg, bt_shrinker);
1683         return list_lru_shrink_count(&btp->bt_lru, sc);
1684 }
1685
1686 void
1687 xfs_free_buftarg(
1688         struct xfs_buftarg      *btp)
1689 {
1690         unregister_shrinker(&btp->bt_shrinker);
1691         ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1692         percpu_counter_destroy(&btp->bt_io_count);
1693         list_lru_destroy(&btp->bt_lru);
1694
1695         xfs_blkdev_issue_flush(btp);
1696
1697         kmem_free(btp);
1698 }
1699
1700 int
1701 xfs_setsize_buftarg(
1702         xfs_buftarg_t           *btp,
1703         unsigned int            sectorsize)
1704 {
1705         /* Set up metadata sector size info */
1706         btp->bt_meta_sectorsize = sectorsize;
1707         btp->bt_meta_sectormask = sectorsize - 1;
1708
1709         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1710                 xfs_warn(btp->bt_mount,
1711                         "Cannot set_blocksize to %u on device %pg",
1712                         sectorsize, btp->bt_bdev);
1713                 return -EINVAL;
1714         }
1715
1716         /* Set up device logical sector size mask */
1717         btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1718         btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1719
1720         return 0;
1721 }
1722
1723 /*
1724  * When allocating the initial buffer target we have not yet
1725  * read in the superblock, so don't know what sized sectors
1726  * are being used at this early stage.  Play safe.
1727  */
1728 STATIC int
1729 xfs_setsize_buftarg_early(
1730         xfs_buftarg_t           *btp,
1731         struct block_device     *bdev)
1732 {
1733         return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1734 }
1735
1736 xfs_buftarg_t *
1737 xfs_alloc_buftarg(
1738         struct xfs_mount        *mp,
1739         struct block_device     *bdev,
1740         struct dax_device       *dax_dev)
1741 {
1742         xfs_buftarg_t           *btp;
1743
1744         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1745
1746         btp->bt_mount = mp;
1747         btp->bt_dev =  bdev->bd_dev;
1748         btp->bt_bdev = bdev;
1749         btp->bt_daxdev = dax_dev;
1750
1751         if (xfs_setsize_buftarg_early(btp, bdev))
1752                 goto error_free;
1753
1754         if (list_lru_init(&btp->bt_lru))
1755                 goto error_free;
1756
1757         if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1758                 goto error_lru;
1759
1760         btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1761         btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1762         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1763         btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1764         if (register_shrinker(&btp->bt_shrinker))
1765                 goto error_pcpu;
1766         return btp;
1767
1768 error_pcpu:
1769         percpu_counter_destroy(&btp->bt_io_count);
1770 error_lru:
1771         list_lru_destroy(&btp->bt_lru);
1772 error_free:
1773         kmem_free(btp);
1774         return NULL;
1775 }
1776
1777 /*
1778  * Cancel a delayed write list.
1779  *
1780  * Remove each buffer from the list, clear the delwri queue flag and drop the
1781  * associated buffer reference.
1782  */
1783 void
1784 xfs_buf_delwri_cancel(
1785         struct list_head        *list)
1786 {
1787         struct xfs_buf          *bp;
1788
1789         while (!list_empty(list)) {
1790                 bp = list_first_entry(list, struct xfs_buf, b_list);
1791
1792                 xfs_buf_lock(bp);
1793                 bp->b_flags &= ~_XBF_DELWRI_Q;
1794                 list_del_init(&bp->b_list);
1795                 xfs_buf_relse(bp);
1796         }
1797 }
1798
1799 /*
1800  * Add a buffer to the delayed write list.
1801  *
1802  * This queues a buffer for writeout if it hasn't already been.  Note that
1803  * neither this routine nor the buffer list submission functions perform
1804  * any internal synchronization.  It is expected that the lists are thread-local
1805  * to the callers.
1806  *
1807  * Returns true if we queued up the buffer, or false if it already had
1808  * been on the buffer list.
1809  */
1810 bool
1811 xfs_buf_delwri_queue(
1812         struct xfs_buf          *bp,
1813         struct list_head        *list)
1814 {
1815         ASSERT(xfs_buf_islocked(bp));
1816         ASSERT(!(bp->b_flags & XBF_READ));
1817
1818         /*
1819          * If the buffer is already marked delwri it already is queued up
1820          * by someone else for imediate writeout.  Just ignore it in that
1821          * case.
1822          */
1823         if (bp->b_flags & _XBF_DELWRI_Q) {
1824                 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1825                 return false;
1826         }
1827
1828         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1829
1830         /*
1831          * If a buffer gets written out synchronously or marked stale while it
1832          * is on a delwri list we lazily remove it. To do this, the other party
1833          * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1834          * It remains referenced and on the list.  In a rare corner case it
1835          * might get readded to a delwri list after the synchronous writeout, in
1836          * which case we need just need to re-add the flag here.
1837          */
1838         bp->b_flags |= _XBF_DELWRI_Q;
1839         if (list_empty(&bp->b_list)) {
1840                 atomic_inc(&bp->b_hold);
1841                 list_add_tail(&bp->b_list, list);
1842         }
1843
1844         return true;
1845 }
1846
1847 /*
1848  * Compare function is more complex than it needs to be because
1849  * the return value is only 32 bits and we are doing comparisons
1850  * on 64 bit values
1851  */
1852 static int
1853 xfs_buf_cmp(
1854         void            *priv,
1855         struct list_head *a,
1856         struct list_head *b)
1857 {
1858         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1859         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1860         xfs_daddr_t             diff;
1861
1862         diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1863         if (diff < 0)
1864                 return -1;
1865         if (diff > 0)
1866                 return 1;
1867         return 0;
1868 }
1869
1870 /*
1871  * Submit buffers for write. If wait_list is specified, the buffers are
1872  * submitted using sync I/O and placed on the wait list such that the caller can
1873  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1874  * at I/O completion time. In either case, buffers remain locked until I/O
1875  * completes and the buffer is released from the queue.
1876  */
1877 static int
1878 xfs_buf_delwri_submit_buffers(
1879         struct list_head        *buffer_list,
1880         struct list_head        *wait_list)
1881 {
1882         struct xfs_buf          *bp, *n;
1883         int                     pinned = 0;
1884         struct blk_plug         plug;
1885
1886         list_sort(NULL, buffer_list, xfs_buf_cmp);
1887
1888         blk_start_plug(&plug);
1889         list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1890                 if (!wait_list) {
1891                         if (xfs_buf_ispinned(bp)) {
1892                                 pinned++;
1893                                 continue;
1894                         }
1895                         if (!xfs_buf_trylock(bp))
1896                                 continue;
1897                 } else {
1898                         xfs_buf_lock(bp);
1899                 }
1900
1901                 /*
1902                  * Someone else might have written the buffer synchronously or
1903                  * marked it stale in the meantime.  In that case only the
1904                  * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1905                  * reference and remove it from the list here.
1906                  */
1907                 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1908                         list_del_init(&bp->b_list);
1909                         xfs_buf_relse(bp);
1910                         continue;
1911                 }
1912
1913                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1914
1915                 /*
1916                  * If we have a wait list, each buffer (and associated delwri
1917                  * queue reference) transfers to it and is submitted
1918                  * synchronously. Otherwise, drop the buffer from the delwri
1919                  * queue and submit async.
1920                  */
1921                 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1922                 bp->b_flags |= XBF_WRITE;
1923                 if (wait_list) {
1924                         bp->b_flags &= ~XBF_ASYNC;
1925                         list_move_tail(&bp->b_list, wait_list);
1926                 } else {
1927                         bp->b_flags |= XBF_ASYNC;
1928                         list_del_init(&bp->b_list);
1929                 }
1930                 __xfs_buf_submit(bp, false);
1931         }
1932         blk_finish_plug(&plug);
1933
1934         return pinned;
1935 }
1936
1937 /*
1938  * Write out a buffer list asynchronously.
1939  *
1940  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1941  * out and not wait for I/O completion on any of the buffers.  This interface
1942  * is only safely useable for callers that can track I/O completion by higher
1943  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1944  * function.
1945  *
1946  * Note: this function will skip buffers it would block on, and in doing so
1947  * leaves them on @buffer_list so they can be retried on a later pass. As such,
1948  * it is up to the caller to ensure that the buffer list is fully submitted or
1949  * cancelled appropriately when they are finished with the list. Failure to
1950  * cancel or resubmit the list until it is empty will result in leaked buffers
1951  * at unmount time.
1952  */
1953 int
1954 xfs_buf_delwri_submit_nowait(
1955         struct list_head        *buffer_list)
1956 {
1957         return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1958 }
1959
1960 /*
1961  * Write out a buffer list synchronously.
1962  *
1963  * This will take the @buffer_list, write all buffers out and wait for I/O
1964  * completion on all of the buffers. @buffer_list is consumed by the function,
1965  * so callers must have some other way of tracking buffers if they require such
1966  * functionality.
1967  */
1968 int
1969 xfs_buf_delwri_submit(
1970         struct list_head        *buffer_list)
1971 {
1972         LIST_HEAD               (wait_list);
1973         int                     error = 0, error2;
1974         struct xfs_buf          *bp;
1975
1976         xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1977
1978         /* Wait for IO to complete. */
1979         while (!list_empty(&wait_list)) {
1980                 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1981
1982                 list_del_init(&bp->b_list);
1983
1984                 /*
1985                  * Wait on the locked buffer, check for errors and unlock and
1986                  * release the delwri queue reference.
1987                  */
1988                 error2 = xfs_buf_iowait(bp);
1989                 xfs_buf_relse(bp);
1990                 if (!error)
1991                         error = error2;
1992         }
1993
1994         return error;
1995 }
1996
1997 /*
1998  * Push a single buffer on a delwri queue.
1999  *
2000  * The purpose of this function is to submit a single buffer of a delwri queue
2001  * and return with the buffer still on the original queue. The waiting delwri
2002  * buffer submission infrastructure guarantees transfer of the delwri queue
2003  * buffer reference to a temporary wait list. We reuse this infrastructure to
2004  * transfer the buffer back to the original queue.
2005  *
2006  * Note the buffer transitions from the queued state, to the submitted and wait
2007  * listed state and back to the queued state during this call. The buffer
2008  * locking and queue management logic between _delwri_pushbuf() and
2009  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2010  * before returning.
2011  */
2012 int
2013 xfs_buf_delwri_pushbuf(
2014         struct xfs_buf          *bp,
2015         struct list_head        *buffer_list)
2016 {
2017         LIST_HEAD               (submit_list);
2018         int                     error;
2019
2020         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2021
2022         trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2023
2024         /*
2025          * Isolate the buffer to a new local list so we can submit it for I/O
2026          * independently from the rest of the original list.
2027          */
2028         xfs_buf_lock(bp);
2029         list_move(&bp->b_list, &submit_list);
2030         xfs_buf_unlock(bp);
2031
2032         /*
2033          * Delwri submission clears the DELWRI_Q buffer flag and returns with
2034          * the buffer on the wait list with the original reference. Rather than
2035          * bounce the buffer from a local wait list back to the original list
2036          * after I/O completion, reuse the original list as the wait list.
2037          */
2038         xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2039
2040         /*
2041          * The buffer is now locked, under I/O and wait listed on the original
2042          * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2043          * return with the buffer unlocked and on the original queue.
2044          */
2045         error = xfs_buf_iowait(bp);
2046         bp->b_flags |= _XBF_DELWRI_Q;
2047         xfs_buf_unlock(bp);
2048
2049         return error;
2050 }
2051
2052 int __init
2053 xfs_buf_init(void)
2054 {
2055         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2056                                                 KM_ZONE_HWALIGN, NULL);
2057         if (!xfs_buf_zone)
2058                 goto out;
2059
2060         return 0;
2061
2062  out:
2063         return -ENOMEM;
2064 }
2065
2066 void
2067 xfs_buf_terminate(void)
2068 {
2069         kmem_zone_destroy(xfs_buf_zone);
2070 }
2071
2072 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2073 {
2074         /*
2075          * Set the lru reference count to 0 based on the error injection tag.
2076          * This allows userspace to disrupt buffer caching for debug/testing
2077          * purposes.
2078          */
2079         if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2080                 lru_ref = 0;
2081
2082         atomic_set(&bp->b_lru_ref, lru_ref);
2083 }
2084
2085 /*
2086  * Verify an on-disk magic value against the magic value specified in the
2087  * verifier structure. The verifier magic is in disk byte order so the caller is
2088  * expected to pass the value directly from disk.
2089  */
2090 bool
2091 xfs_verify_magic(
2092         struct xfs_buf          *bp,
2093         __be32                  dmagic)
2094 {
2095         struct xfs_mount        *mp = bp->b_mount;
2096         int                     idx;
2097
2098         idx = xfs_sb_version_hascrc(&mp->m_sb);
2099         if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])))
2100                 return false;
2101         return dmagic == bp->b_ops->magic[idx];
2102 }
2103 /*
2104  * Verify an on-disk magic value against the magic value specified in the
2105  * verifier structure. The verifier magic is in disk byte order so the caller is
2106  * expected to pass the value directly from disk.
2107  */
2108 bool
2109 xfs_verify_magic16(
2110         struct xfs_buf          *bp,
2111         __be16                  dmagic)
2112 {
2113         struct xfs_mount        *mp = bp->b_mount;
2114         int                     idx;
2115
2116         idx = xfs_sb_version_hascrc(&mp->m_sb);
2117         if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])))
2118                 return false;
2119         return dmagic == bp->b_ops->magic16[idx];
2120 }