ubi,ubifs: sync with linux v4.2
[oweals/u-boot.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:     GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11
12 /*
13  * This file implements most of the debugging stuff which is compiled in only
14  * when it is enabled. But some debugging check functions are implemented in
15  * corresponding subsystem, just because they are closely related and utilize
16  * various local functions of those subsystems.
17  */
18
19 #ifndef __UBOOT__
20 #include <linux/module.h>
21 #include <linux/debugfs.h>
22 #include <linux/math64.h>
23 #include <linux/uaccess.h>
24 #include <linux/random.h>
25 #else
26 #include <linux/compat.h>
27 #include <linux/err.h>
28 #endif
29 #include "ubifs.h"
30
31 #ifndef __UBOOT__
32 static DEFINE_SPINLOCK(dbg_lock);
33 #endif
34
35 static const char *get_key_fmt(int fmt)
36 {
37         switch (fmt) {
38         case UBIFS_SIMPLE_KEY_FMT:
39                 return "simple";
40         default:
41                 return "unknown/invalid format";
42         }
43 }
44
45 static const char *get_key_hash(int hash)
46 {
47         switch (hash) {
48         case UBIFS_KEY_HASH_R5:
49                 return "R5";
50         case UBIFS_KEY_HASH_TEST:
51                 return "test";
52         default:
53                 return "unknown/invalid name hash";
54         }
55 }
56
57 static const char *get_key_type(int type)
58 {
59         switch (type) {
60         case UBIFS_INO_KEY:
61                 return "inode";
62         case UBIFS_DENT_KEY:
63                 return "direntry";
64         case UBIFS_XENT_KEY:
65                 return "xentry";
66         case UBIFS_DATA_KEY:
67                 return "data";
68         case UBIFS_TRUN_KEY:
69                 return "truncate";
70         default:
71                 return "unknown/invalid key";
72         }
73 }
74
75 #ifndef __UBOOT__
76 static const char *get_dent_type(int type)
77 {
78         switch (type) {
79         case UBIFS_ITYPE_REG:
80                 return "file";
81         case UBIFS_ITYPE_DIR:
82                 return "dir";
83         case UBIFS_ITYPE_LNK:
84                 return "symlink";
85         case UBIFS_ITYPE_BLK:
86                 return "blkdev";
87         case UBIFS_ITYPE_CHR:
88                 return "char dev";
89         case UBIFS_ITYPE_FIFO:
90                 return "fifo";
91         case UBIFS_ITYPE_SOCK:
92                 return "socket";
93         default:
94                 return "unknown/invalid type";
95         }
96 }
97 #endif
98
99 const char *dbg_snprintf_key(const struct ubifs_info *c,
100                              const union ubifs_key *key, char *buffer, int len)
101 {
102         char *p = buffer;
103         int type = key_type(c, key);
104
105         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
106                 switch (type) {
107                 case UBIFS_INO_KEY:
108                         len -= snprintf(p, len, "(%lu, %s)",
109                                         (unsigned long)key_inum(c, key),
110                                         get_key_type(type));
111                         break;
112                 case UBIFS_DENT_KEY:
113                 case UBIFS_XENT_KEY:
114                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
115                                         (unsigned long)key_inum(c, key),
116                                         get_key_type(type), key_hash(c, key));
117                         break;
118                 case UBIFS_DATA_KEY:
119                         len -= snprintf(p, len, "(%lu, %s, %u)",
120                                         (unsigned long)key_inum(c, key),
121                                         get_key_type(type), key_block(c, key));
122                         break;
123                 case UBIFS_TRUN_KEY:
124                         len -= snprintf(p, len, "(%lu, %s)",
125                                         (unsigned long)key_inum(c, key),
126                                         get_key_type(type));
127                         break;
128                 default:
129                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
130                                         key->u32[0], key->u32[1]);
131                 }
132         } else
133                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
134         ubifs_assert(len > 0);
135         return p;
136 }
137
138 const char *dbg_ntype(int type)
139 {
140         switch (type) {
141         case UBIFS_PAD_NODE:
142                 return "padding node";
143         case UBIFS_SB_NODE:
144                 return "superblock node";
145         case UBIFS_MST_NODE:
146                 return "master node";
147         case UBIFS_REF_NODE:
148                 return "reference node";
149         case UBIFS_INO_NODE:
150                 return "inode node";
151         case UBIFS_DENT_NODE:
152                 return "direntry node";
153         case UBIFS_XENT_NODE:
154                 return "xentry node";
155         case UBIFS_DATA_NODE:
156                 return "data node";
157         case UBIFS_TRUN_NODE:
158                 return "truncate node";
159         case UBIFS_IDX_NODE:
160                 return "indexing node";
161         case UBIFS_CS_NODE:
162                 return "commit start node";
163         case UBIFS_ORPH_NODE:
164                 return "orphan node";
165         default:
166                 return "unknown node";
167         }
168 }
169
170 static const char *dbg_gtype(int type)
171 {
172         switch (type) {
173         case UBIFS_NO_NODE_GROUP:
174                 return "no node group";
175         case UBIFS_IN_NODE_GROUP:
176                 return "in node group";
177         case UBIFS_LAST_OF_NODE_GROUP:
178                 return "last of node group";
179         default:
180                 return "unknown";
181         }
182 }
183
184 const char *dbg_cstate(int cmt_state)
185 {
186         switch (cmt_state) {
187         case COMMIT_RESTING:
188                 return "commit resting";
189         case COMMIT_BACKGROUND:
190                 return "background commit requested";
191         case COMMIT_REQUIRED:
192                 return "commit required";
193         case COMMIT_RUNNING_BACKGROUND:
194                 return "BACKGROUND commit running";
195         case COMMIT_RUNNING_REQUIRED:
196                 return "commit running and required";
197         case COMMIT_BROKEN:
198                 return "broken commit";
199         default:
200                 return "unknown commit state";
201         }
202 }
203
204 const char *dbg_jhead(int jhead)
205 {
206         switch (jhead) {
207         case GCHD:
208                 return "0 (GC)";
209         case BASEHD:
210                 return "1 (base)";
211         case DATAHD:
212                 return "2 (data)";
213         default:
214                 return "unknown journal head";
215         }
216 }
217
218 static void dump_ch(const struct ubifs_ch *ch)
219 {
220         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
221         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
222         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
223                dbg_ntype(ch->node_type));
224         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
225                dbg_gtype(ch->group_type));
226         pr_err("\tsqnum          %llu\n",
227                (unsigned long long)le64_to_cpu(ch->sqnum));
228         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
229 }
230
231 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
232 {
233 #ifndef __UBOOT__
234         const struct ubifs_inode *ui = ubifs_inode(inode);
235         struct qstr nm = { .name = NULL };
236         union ubifs_key key;
237         struct ubifs_dent_node *dent, *pdent = NULL;
238         int count = 2;
239
240         pr_err("Dump in-memory inode:");
241         pr_err("\tinode          %lu\n", inode->i_ino);
242         pr_err("\tsize           %llu\n",
243                (unsigned long long)i_size_read(inode));
244         pr_err("\tnlink          %u\n", inode->i_nlink);
245         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
246         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
247         pr_err("\tatime          %u.%u\n",
248                (unsigned int)inode->i_atime.tv_sec,
249                (unsigned int)inode->i_atime.tv_nsec);
250         pr_err("\tmtime          %u.%u\n",
251                (unsigned int)inode->i_mtime.tv_sec,
252                (unsigned int)inode->i_mtime.tv_nsec);
253         pr_err("\tctime          %u.%u\n",
254                (unsigned int)inode->i_ctime.tv_sec,
255                (unsigned int)inode->i_ctime.tv_nsec);
256         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
257         pr_err("\txattr_size     %u\n", ui->xattr_size);
258         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
259         pr_err("\txattr_names    %u\n", ui->xattr_names);
260         pr_err("\tdirty          %u\n", ui->dirty);
261         pr_err("\txattr          %u\n", ui->xattr);
262         pr_err("\tbulk_read      %u\n", ui->xattr);
263         pr_err("\tsynced_i_size  %llu\n",
264                (unsigned long long)ui->synced_i_size);
265         pr_err("\tui_size        %llu\n",
266                (unsigned long long)ui->ui_size);
267         pr_err("\tflags          %d\n", ui->flags);
268         pr_err("\tcompr_type     %d\n", ui->compr_type);
269         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
270         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
271         pr_err("\tdata_len       %d\n", ui->data_len);
272
273         if (!S_ISDIR(inode->i_mode))
274                 return;
275
276         pr_err("List of directory entries:\n");
277         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
278
279         lowest_dent_key(c, &key, inode->i_ino);
280         while (1) {
281                 dent = ubifs_tnc_next_ent(c, &key, &nm);
282                 if (IS_ERR(dent)) {
283                         if (PTR_ERR(dent) != -ENOENT)
284                                 pr_err("error %ld\n", PTR_ERR(dent));
285                         break;
286                 }
287
288                 pr_err("\t%d: %s (%s)\n",
289                        count++, dent->name, get_dent_type(dent->type));
290
291                 nm.name = dent->name;
292                 nm.len = le16_to_cpu(dent->nlen);
293                 kfree(pdent);
294                 pdent = dent;
295                 key_read(c, &dent->key, &key);
296         }
297         kfree(pdent);
298 #endif
299 }
300
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303         int i, n;
304         union ubifs_key key;
305         const struct ubifs_ch *ch = node;
306         char key_buf[DBG_KEY_BUF_LEN];
307
308         /* If the magic is incorrect, just hexdump the first bytes */
309         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312                                (void *)node, UBIFS_CH_SZ, 1);
313                 return;
314         }
315
316         spin_lock(&dbg_lock);
317         dump_ch(node);
318
319         switch (ch->node_type) {
320         case UBIFS_PAD_NODE:
321         {
322                 const struct ubifs_pad_node *pad = node;
323
324                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325                 break;
326         }
327         case UBIFS_SB_NODE:
328         {
329                 const struct ubifs_sb_node *sup = node;
330                 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332                 pr_err("\tkey_hash       %d (%s)\n",
333                        (int)sup->key_hash, get_key_hash(sup->key_hash));
334                 pr_err("\tkey_fmt        %d (%s)\n",
335                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336                 pr_err("\tflags          %#x\n", sup_flags);
337                 pr_err("\tbig_lpt        %u\n",
338                        !!(sup_flags & UBIFS_FLG_BIGLPT));
339                 pr_err("\tspace_fixup    %u\n",
340                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
342                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
343                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
344                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
345                 pr_err("\tmax_bud_bytes  %llu\n",
346                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
348                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
349                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
350                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
351                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
352                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
353                 pr_err("\tdefault_compr  %u\n",
354                        (int)le16_to_cpu(sup->default_compr));
355                 pr_err("\trp_size        %llu\n",
356                        (unsigned long long)le64_to_cpu(sup->rp_size));
357                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
358                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
359                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
360                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
361                 pr_err("\tUUID           %pUB\n", sup->uuid);
362                 break;
363         }
364         case UBIFS_MST_NODE:
365         {
366                 const struct ubifs_mst_node *mst = node;
367
368                 pr_err("\thighest_inum   %llu\n",
369                        (unsigned long long)le64_to_cpu(mst->highest_inum));
370                 pr_err("\tcommit number  %llu\n",
371                        (unsigned long long)le64_to_cpu(mst->cmt_no));
372                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
373                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
374                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
375                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
376                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
377                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
378                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
379                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
380                 pr_err("\tindex_size     %llu\n",
381                        (unsigned long long)le64_to_cpu(mst->index_size));
382                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
383                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
384                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
385                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
386                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
387                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
388                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
389                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
390                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
391                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
392                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
393                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
394                 pr_err("\ttotal_free     %llu\n",
395                        (unsigned long long)le64_to_cpu(mst->total_free));
396                 pr_err("\ttotal_dirty    %llu\n",
397                        (unsigned long long)le64_to_cpu(mst->total_dirty));
398                 pr_err("\ttotal_used     %llu\n",
399                        (unsigned long long)le64_to_cpu(mst->total_used));
400                 pr_err("\ttotal_dead     %llu\n",
401                        (unsigned long long)le64_to_cpu(mst->total_dead));
402                 pr_err("\ttotal_dark     %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->total_dark));
404                 break;
405         }
406         case UBIFS_REF_NODE:
407         {
408                 const struct ubifs_ref_node *ref = node;
409
410                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
411                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
412                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413                 break;
414         }
415         case UBIFS_INO_NODE:
416         {
417                 const struct ubifs_ino_node *ino = node;
418
419                 key_read(c, &ino->key, &key);
420                 pr_err("\tkey            %s\n",
421                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422                 pr_err("\tcreat_sqnum    %llu\n",
423                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424                 pr_err("\tsize           %llu\n",
425                        (unsigned long long)le64_to_cpu(ino->size));
426                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
427                 pr_err("\tatime          %lld.%u\n",
428                        (long long)le64_to_cpu(ino->atime_sec),
429                        le32_to_cpu(ino->atime_nsec));
430                 pr_err("\tmtime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->mtime_sec),
432                        le32_to_cpu(ino->mtime_nsec));
433                 pr_err("\tctime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->ctime_sec),
435                        le32_to_cpu(ino->ctime_nsec));
436                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
437                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
438                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
439                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
440                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
441                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
442                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
443                 pr_err("\tcompr_type     %#x\n",
444                        (int)le16_to_cpu(ino->compr_type));
445                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446                 break;
447         }
448         case UBIFS_DENT_NODE:
449         case UBIFS_XENT_NODE:
450         {
451                 const struct ubifs_dent_node *dent = node;
452                 int nlen = le16_to_cpu(dent->nlen);
453
454                 key_read(c, &dent->key, &key);
455                 pr_err("\tkey            %s\n",
456                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457                 pr_err("\tinum           %llu\n",
458                        (unsigned long long)le64_to_cpu(dent->inum));
459                 pr_err("\ttype           %d\n", (int)dent->type);
460                 pr_err("\tnlen           %d\n", nlen);
461                 pr_err("\tname           ");
462
463                 if (nlen > UBIFS_MAX_NLEN)
464                         pr_err("(bad name length, not printing, bad or corrupted node)");
465                 else {
466                         for (i = 0; i < nlen && dent->name[i]; i++)
467                                 pr_cont("%c", dent->name[i]);
468                 }
469                 pr_cont("\n");
470
471                 break;
472         }
473         case UBIFS_DATA_NODE:
474         {
475                 const struct ubifs_data_node *dn = node;
476                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478                 key_read(c, &dn->key, &key);
479                 pr_err("\tkey            %s\n",
480                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
482                 pr_err("\tcompr_typ      %d\n",
483                        (int)le16_to_cpu(dn->compr_type));
484                 pr_err("\tdata size      %d\n", dlen);
485                 pr_err("\tdata:\n");
486                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487                                (void *)&dn->data, dlen, 0);
488                 break;
489         }
490         case UBIFS_TRUN_NODE:
491         {
492                 const struct ubifs_trun_node *trun = node;
493
494                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
495                 pr_err("\told_size       %llu\n",
496                        (unsigned long long)le64_to_cpu(trun->old_size));
497                 pr_err("\tnew_size       %llu\n",
498                        (unsigned long long)le64_to_cpu(trun->new_size));
499                 break;
500         }
501         case UBIFS_IDX_NODE:
502         {
503                 const struct ubifs_idx_node *idx = node;
504
505                 n = le16_to_cpu(idx->child_cnt);
506                 pr_err("\tchild_cnt      %d\n", n);
507                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
508                 pr_err("\tBranches:\n");
509
510                 for (i = 0; i < n && i < c->fanout - 1; i++) {
511                         const struct ubifs_branch *br;
512
513                         br = ubifs_idx_branch(c, idx, i);
514                         key_read(c, &br->key, &key);
515                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
516                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517                                le32_to_cpu(br->len),
518                                dbg_snprintf_key(c, &key, key_buf,
519                                                 DBG_KEY_BUF_LEN));
520                 }
521                 break;
522         }
523         case UBIFS_CS_NODE:
524                 break;
525         case UBIFS_ORPH_NODE:
526         {
527                 const struct ubifs_orph_node *orph = node;
528
529                 pr_err("\tcommit number  %llu\n",
530                        (unsigned long long)
531                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532                 pr_err("\tlast node flag %llu\n",
533                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535                 pr_err("\t%d orphan inode numbers:\n", n);
536                 for (i = 0; i < n; i++)
537                         pr_err("\t  ino %llu\n",
538                                (unsigned long long)le64_to_cpu(orph->inos[i]));
539                 break;
540         }
541         default:
542                 pr_err("node type %d was not recognized\n",
543                        (int)ch->node_type);
544         }
545         spin_unlock(&dbg_lock);
546 }
547
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549 {
550         spin_lock(&dbg_lock);
551         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552                req->new_ino, req->dirtied_ino);
553         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554                req->new_ino_d, req->dirtied_ino_d);
555         pr_err("\tnew_page    %d, dirtied_page %d\n",
556                req->new_page, req->dirtied_page);
557         pr_err("\tnew_dent    %d, mod_dent     %d\n",
558                req->new_dent, req->mod_dent);
559         pr_err("\tidx_growth  %d\n", req->idx_growth);
560         pr_err("\tdata_growth %d dd_growth     %d\n",
561                req->data_growth, req->dd_growth);
562         spin_unlock(&dbg_lock);
563 }
564
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566 {
567         spin_lock(&dbg_lock);
568         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569                current->pid, lst->empty_lebs, lst->idx_lebs);
570         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573                lst->total_used, lst->total_dark, lst->total_dead);
574         spin_unlock(&dbg_lock);
575 }
576
577 #ifndef __UBOOT__
578 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
579 {
580         int i;
581         struct rb_node *rb;
582         struct ubifs_bud *bud;
583         struct ubifs_gced_idx_leb *idx_gc;
584         long long available, outstanding, free;
585
586         spin_lock(&c->space_lock);
587         spin_lock(&dbg_lock);
588         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
589                current->pid, bi->data_growth + bi->dd_growth,
590                bi->data_growth + bi->dd_growth + bi->idx_growth);
591         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
592                bi->data_growth, bi->dd_growth, bi->idx_growth);
593         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
594                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
595         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
596                bi->page_budget, bi->inode_budget, bi->dent_budget);
597         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
598         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
599                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
600
601         if (bi != &c->bi)
602                 /*
603                  * If we are dumping saved budgeting data, do not print
604                  * additional information which is about the current state, not
605                  * the old one which corresponded to the saved budgeting data.
606                  */
607                 goto out_unlock;
608
609         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
610                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
611         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
612                atomic_long_read(&c->dirty_pg_cnt),
613                atomic_long_read(&c->dirty_zn_cnt),
614                atomic_long_read(&c->clean_zn_cnt));
615         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
616
617         /* If we are in R/O mode, journal heads do not exist */
618         if (c->jheads)
619                 for (i = 0; i < c->jhead_cnt; i++)
620                         pr_err("\tjhead %s\t LEB %d\n",
621                                dbg_jhead(c->jheads[i].wbuf.jhead),
622                                c->jheads[i].wbuf.lnum);
623         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624                 bud = rb_entry(rb, struct ubifs_bud, rb);
625                 pr_err("\tbud LEB %d\n", bud->lnum);
626         }
627         list_for_each_entry(bud, &c->old_buds, list)
628                 pr_err("\told bud LEB %d\n", bud->lnum);
629         list_for_each_entry(idx_gc, &c->idx_gc, list)
630                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
631                        idx_gc->lnum, idx_gc->unmap);
632         pr_err("\tcommit state %d\n", c->cmt_state);
633
634         /* Print budgeting predictions */
635         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
636         outstanding = c->bi.data_growth + c->bi.dd_growth;
637         free = ubifs_get_free_space_nolock(c);
638         pr_err("Budgeting predictions:\n");
639         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
640                available, outstanding, free);
641 out_unlock:
642         spin_unlock(&dbg_lock);
643         spin_unlock(&c->space_lock);
644 }
645 #else
646 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
647 {
648 }
649 #endif
650
651 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
652 {
653         int i, spc, dark = 0, dead = 0;
654         struct rb_node *rb;
655         struct ubifs_bud *bud;
656
657         spc = lp->free + lp->dirty;
658         if (spc < c->dead_wm)
659                 dead = spc;
660         else
661                 dark = ubifs_calc_dark(c, spc);
662
663         if (lp->flags & LPROPS_INDEX)
664                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
665                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
666                        lp->flags);
667         else
668                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
669                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
670                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
671
672         if (lp->flags & LPROPS_TAKEN) {
673                 if (lp->flags & LPROPS_INDEX)
674                         pr_cont("index, taken");
675                 else
676                         pr_cont("taken");
677         } else {
678                 const char *s;
679
680                 if (lp->flags & LPROPS_INDEX) {
681                         switch (lp->flags & LPROPS_CAT_MASK) {
682                         case LPROPS_DIRTY_IDX:
683                                 s = "dirty index";
684                                 break;
685                         case LPROPS_FRDI_IDX:
686                                 s = "freeable index";
687                                 break;
688                         default:
689                                 s = "index";
690                         }
691                 } else {
692                         switch (lp->flags & LPROPS_CAT_MASK) {
693                         case LPROPS_UNCAT:
694                                 s = "not categorized";
695                                 break;
696                         case LPROPS_DIRTY:
697                                 s = "dirty";
698                                 break;
699                         case LPROPS_FREE:
700                                 s = "free";
701                                 break;
702                         case LPROPS_EMPTY:
703                                 s = "empty";
704                                 break;
705                         case LPROPS_FREEABLE:
706                                 s = "freeable";
707                                 break;
708                         default:
709                                 s = NULL;
710                                 break;
711                         }
712                 }
713                 pr_cont("%s", s);
714         }
715
716         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
717                 bud = rb_entry(rb, struct ubifs_bud, rb);
718                 if (bud->lnum == lp->lnum) {
719                         int head = 0;
720                         for (i = 0; i < c->jhead_cnt; i++) {
721                                 /*
722                                  * Note, if we are in R/O mode or in the middle
723                                  * of mounting/re-mounting, the write-buffers do
724                                  * not exist.
725                                  */
726                                 if (c->jheads &&
727                                     lp->lnum == c->jheads[i].wbuf.lnum) {
728                                         pr_cont(", jhead %s", dbg_jhead(i));
729                                         head = 1;
730                                 }
731                         }
732                         if (!head)
733                                 pr_cont(", bud of jhead %s",
734                                        dbg_jhead(bud->jhead));
735                 }
736         }
737         if (lp->lnum == c->gc_lnum)
738                 pr_cont(", GC LEB");
739         pr_cont(")\n");
740 }
741
742 void ubifs_dump_lprops(struct ubifs_info *c)
743 {
744         int lnum, err;
745         struct ubifs_lprops lp;
746         struct ubifs_lp_stats lst;
747
748         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
749         ubifs_get_lp_stats(c, &lst);
750         ubifs_dump_lstats(&lst);
751
752         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
753                 err = ubifs_read_one_lp(c, lnum, &lp);
754                 if (err) {
755                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
756                         continue;
757                 }
758
759                 ubifs_dump_lprop(c, &lp);
760         }
761         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
762 }
763
764 void ubifs_dump_lpt_info(struct ubifs_info *c)
765 {
766         int i;
767
768         spin_lock(&dbg_lock);
769         pr_err("(pid %d) dumping LPT information\n", current->pid);
770         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
771         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
772         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
773         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
774         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
775         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
776         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
777         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
778         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
779         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
780         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
781         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
782         pr_err("\tspace_bits:    %d\n", c->space_bits);
783         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
784         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
785         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
786         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
787         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
788         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
789         pr_err("\tLPT head is at %d:%d\n",
790                c->nhead_lnum, c->nhead_offs);
791         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
792         if (c->big_lpt)
793                 pr_err("\tLPT lsave is at %d:%d\n",
794                        c->lsave_lnum, c->lsave_offs);
795         for (i = 0; i < c->lpt_lebs; i++)
796                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
797                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
798                        c->ltab[i].tgc, c->ltab[i].cmt);
799         spin_unlock(&dbg_lock);
800 }
801
802 void ubifs_dump_sleb(const struct ubifs_info *c,
803                      const struct ubifs_scan_leb *sleb, int offs)
804 {
805         struct ubifs_scan_node *snod;
806
807         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
808                current->pid, sleb->lnum, offs);
809
810         list_for_each_entry(snod, &sleb->nodes, list) {
811                 cond_resched();
812                 pr_err("Dumping node at LEB %d:%d len %d\n",
813                        sleb->lnum, snod->offs, snod->len);
814                 ubifs_dump_node(c, snod->node);
815         }
816 }
817
818 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
819 {
820         struct ubifs_scan_leb *sleb;
821         struct ubifs_scan_node *snod;
822         void *buf;
823
824         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
825
826         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
827         if (!buf) {
828                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
829                 return;
830         }
831
832         sleb = ubifs_scan(c, lnum, 0, buf, 0);
833         if (IS_ERR(sleb)) {
834                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
835                 goto out;
836         }
837
838         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
839                sleb->nodes_cnt, sleb->endpt);
840
841         list_for_each_entry(snod, &sleb->nodes, list) {
842                 cond_resched();
843                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
844                        snod->offs, snod->len);
845                 ubifs_dump_node(c, snod->node);
846         }
847
848         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
849         ubifs_scan_destroy(sleb);
850
851 out:
852         vfree(buf);
853         return;
854 }
855
856 void ubifs_dump_znode(const struct ubifs_info *c,
857                       const struct ubifs_znode *znode)
858 {
859         int n;
860         const struct ubifs_zbranch *zbr;
861         char key_buf[DBG_KEY_BUF_LEN];
862
863         spin_lock(&dbg_lock);
864         if (znode->parent)
865                 zbr = &znode->parent->zbranch[znode->iip];
866         else
867                 zbr = &c->zroot;
868
869         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
870                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
871                znode->level, znode->child_cnt, znode->flags);
872
873         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
874                 spin_unlock(&dbg_lock);
875                 return;
876         }
877
878         pr_err("zbranches:\n");
879         for (n = 0; n < znode->child_cnt; n++) {
880                 zbr = &znode->zbranch[n];
881                 if (znode->level > 0)
882                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
883                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
884                                dbg_snprintf_key(c, &zbr->key, key_buf,
885                                                 DBG_KEY_BUF_LEN));
886                 else
887                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
888                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
889                                dbg_snprintf_key(c, &zbr->key, key_buf,
890                                                 DBG_KEY_BUF_LEN));
891         }
892         spin_unlock(&dbg_lock);
893 }
894
895 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
896 {
897         int i;
898
899         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
900                current->pid, cat, heap->cnt);
901         for (i = 0; i < heap->cnt; i++) {
902                 struct ubifs_lprops *lprops = heap->arr[i];
903
904                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
905                        i, lprops->lnum, lprops->hpos, lprops->free,
906                        lprops->dirty, lprops->flags);
907         }
908         pr_err("(pid %d) finish dumping heap\n", current->pid);
909 }
910
911 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
912                       struct ubifs_nnode *parent, int iip)
913 {
914         int i;
915
916         pr_err("(pid %d) dumping pnode:\n", current->pid);
917         pr_err("\taddress %zx parent %zx cnext %zx\n",
918                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
919         pr_err("\tflags %lu iip %d level %d num %d\n",
920                pnode->flags, iip, pnode->level, pnode->num);
921         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
922                 struct ubifs_lprops *lp = &pnode->lprops[i];
923
924                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
925                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
926         }
927 }
928
929 void ubifs_dump_tnc(struct ubifs_info *c)
930 {
931         struct ubifs_znode *znode;
932         int level;
933
934         pr_err("\n");
935         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
936         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
937         level = znode->level;
938         pr_err("== Level %d ==\n", level);
939         while (znode) {
940                 if (level != znode->level) {
941                         level = znode->level;
942                         pr_err("== Level %d ==\n", level);
943                 }
944                 ubifs_dump_znode(c, znode);
945                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
946         }
947         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
948 }
949
950 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
951                       void *priv)
952 {
953         ubifs_dump_znode(c, znode);
954         return 0;
955 }
956
957 /**
958  * ubifs_dump_index - dump the on-flash index.
959  * @c: UBIFS file-system description object
960  *
961  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
962  * which dumps only in-memory znodes and does not read znodes which from flash.
963  */
964 void ubifs_dump_index(struct ubifs_info *c)
965 {
966         dbg_walk_index(c, NULL, dump_znode, NULL);
967 }
968
969 #ifndef __UBOOT__
970 /**
971  * dbg_save_space_info - save information about flash space.
972  * @c: UBIFS file-system description object
973  *
974  * This function saves information about UBIFS free space, dirty space, etc, in
975  * order to check it later.
976  */
977 void dbg_save_space_info(struct ubifs_info *c)
978 {
979         struct ubifs_debug_info *d = c->dbg;
980         int freeable_cnt;
981
982         spin_lock(&c->space_lock);
983         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
984         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
985         d->saved_idx_gc_cnt = c->idx_gc_cnt;
986
987         /*
988          * We use a dirty hack here and zero out @c->freeable_cnt, because it
989          * affects the free space calculations, and UBIFS might not know about
990          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
991          * only when we read their lprops, and we do this only lazily, upon the
992          * need. So at any given point of time @c->freeable_cnt might be not
993          * exactly accurate.
994          *
995          * Just one example about the issue we hit when we did not zero
996          * @c->freeable_cnt.
997          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
998          *    amount of free space in @d->saved_free
999          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1000          *    information from flash, where we cache LEBs from various
1001          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1002          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1003          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1004          *    -> 'ubifs_add_to_cat()').
1005          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1006          *    becomes %1.
1007          * 4. We calculate the amount of free space when the re-mount is
1008          *    finished in 'dbg_check_space_info()' and it does not match
1009          *    @d->saved_free.
1010          */
1011         freeable_cnt = c->freeable_cnt;
1012         c->freeable_cnt = 0;
1013         d->saved_free = ubifs_get_free_space_nolock(c);
1014         c->freeable_cnt = freeable_cnt;
1015         spin_unlock(&c->space_lock);
1016 }
1017
1018 /**
1019  * dbg_check_space_info - check flash space information.
1020  * @c: UBIFS file-system description object
1021  *
1022  * This function compares current flash space information with the information
1023  * which was saved when the 'dbg_save_space_info()' function was called.
1024  * Returns zero if the information has not changed, and %-EINVAL it it has
1025  * changed.
1026  */
1027 int dbg_check_space_info(struct ubifs_info *c)
1028 {
1029         struct ubifs_debug_info *d = c->dbg;
1030         struct ubifs_lp_stats lst;
1031         long long free;
1032         int freeable_cnt;
1033
1034         spin_lock(&c->space_lock);
1035         freeable_cnt = c->freeable_cnt;
1036         c->freeable_cnt = 0;
1037         free = ubifs_get_free_space_nolock(c);
1038         c->freeable_cnt = freeable_cnt;
1039         spin_unlock(&c->space_lock);
1040
1041         if (free != d->saved_free) {
1042                 ubifs_err(c, "free space changed from %lld to %lld",
1043                           d->saved_free, free);
1044                 goto out;
1045         }
1046
1047         return 0;
1048
1049 out:
1050         ubifs_msg(c, "saved lprops statistics dump");
1051         ubifs_dump_lstats(&d->saved_lst);
1052         ubifs_msg(c, "saved budgeting info dump");
1053         ubifs_dump_budg(c, &d->saved_bi);
1054         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1055         ubifs_msg(c, "current lprops statistics dump");
1056         ubifs_get_lp_stats(c, &lst);
1057         ubifs_dump_lstats(&lst);
1058         ubifs_msg(c, "current budgeting info dump");
1059         ubifs_dump_budg(c, &c->bi);
1060         dump_stack();
1061         return -EINVAL;
1062 }
1063
1064 /**
1065  * dbg_check_synced_i_size - check synchronized inode size.
1066  * @c: UBIFS file-system description object
1067  * @inode: inode to check
1068  *
1069  * If inode is clean, synchronized inode size has to be equivalent to current
1070  * inode size. This function has to be called only for locked inodes (@i_mutex
1071  * has to be locked). Returns %0 if synchronized inode size if correct, and
1072  * %-EINVAL if not.
1073  */
1074 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1075 {
1076         int err = 0;
1077         struct ubifs_inode *ui = ubifs_inode(inode);
1078
1079         if (!dbg_is_chk_gen(c))
1080                 return 0;
1081         if (!S_ISREG(inode->i_mode))
1082                 return 0;
1083
1084         mutex_lock(&ui->ui_mutex);
1085         spin_lock(&ui->ui_lock);
1086         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1087                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1088                           ui->ui_size, ui->synced_i_size);
1089                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1090                           inode->i_mode, i_size_read(inode));
1091                 dump_stack();
1092                 err = -EINVAL;
1093         }
1094         spin_unlock(&ui->ui_lock);
1095         mutex_unlock(&ui->ui_mutex);
1096         return err;
1097 }
1098
1099 /*
1100  * dbg_check_dir - check directory inode size and link count.
1101  * @c: UBIFS file-system description object
1102  * @dir: the directory to calculate size for
1103  * @size: the result is returned here
1104  *
1105  * This function makes sure that directory size and link count are correct.
1106  * Returns zero in case of success and a negative error code in case of
1107  * failure.
1108  *
1109  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1110  * calling this function.
1111  */
1112 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1113 {
1114         unsigned int nlink = 2;
1115         union ubifs_key key;
1116         struct ubifs_dent_node *dent, *pdent = NULL;
1117         struct qstr nm = { .name = NULL };
1118         loff_t size = UBIFS_INO_NODE_SZ;
1119
1120         if (!dbg_is_chk_gen(c))
1121                 return 0;
1122
1123         if (!S_ISDIR(dir->i_mode))
1124                 return 0;
1125
1126         lowest_dent_key(c, &key, dir->i_ino);
1127         while (1) {
1128                 int err;
1129
1130                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1131                 if (IS_ERR(dent)) {
1132                         err = PTR_ERR(dent);
1133                         if (err == -ENOENT)
1134                                 break;
1135                         return err;
1136                 }
1137
1138                 nm.name = dent->name;
1139                 nm.len = le16_to_cpu(dent->nlen);
1140                 size += CALC_DENT_SIZE(nm.len);
1141                 if (dent->type == UBIFS_ITYPE_DIR)
1142                         nlink += 1;
1143                 kfree(pdent);
1144                 pdent = dent;
1145                 key_read(c, &dent->key, &key);
1146         }
1147         kfree(pdent);
1148
1149         if (i_size_read(dir) != size) {
1150                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1151                           dir->i_ino, (unsigned long long)i_size_read(dir),
1152                           (unsigned long long)size);
1153                 ubifs_dump_inode(c, dir);
1154                 dump_stack();
1155                 return -EINVAL;
1156         }
1157         if (dir->i_nlink != nlink) {
1158                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1159                           dir->i_ino, dir->i_nlink, nlink);
1160                 ubifs_dump_inode(c, dir);
1161                 dump_stack();
1162                 return -EINVAL;
1163         }
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1170  * @c: UBIFS file-system description object
1171  * @zbr1: first zbranch
1172  * @zbr2: following zbranch
1173  *
1174  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1175  * names of the direntries/xentries which are referred by the keys. This
1176  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1177  * sure the name of direntry/xentry referred by @zbr1 is less than
1178  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1179  * and a negative error code in case of failure.
1180  */
1181 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1182                                struct ubifs_zbranch *zbr2)
1183 {
1184         int err, nlen1, nlen2, cmp;
1185         struct ubifs_dent_node *dent1, *dent2;
1186         union ubifs_key key;
1187         char key_buf[DBG_KEY_BUF_LEN];
1188
1189         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1190         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1191         if (!dent1)
1192                 return -ENOMEM;
1193         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1194         if (!dent2) {
1195                 err = -ENOMEM;
1196                 goto out_free;
1197         }
1198
1199         err = ubifs_tnc_read_node(c, zbr1, dent1);
1200         if (err)
1201                 goto out_free;
1202         err = ubifs_validate_entry(c, dent1);
1203         if (err)
1204                 goto out_free;
1205
1206         err = ubifs_tnc_read_node(c, zbr2, dent2);
1207         if (err)
1208                 goto out_free;
1209         err = ubifs_validate_entry(c, dent2);
1210         if (err)
1211                 goto out_free;
1212
1213         /* Make sure node keys are the same as in zbranch */
1214         err = 1;
1215         key_read(c, &dent1->key, &key);
1216         if (keys_cmp(c, &zbr1->key, &key)) {
1217                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1218                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1219                                                        DBG_KEY_BUF_LEN));
1220                 ubifs_err(c, "but it should have key %s according to tnc",
1221                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1222                                            DBG_KEY_BUF_LEN));
1223                 ubifs_dump_node(c, dent1);
1224                 goto out_free;
1225         }
1226
1227         key_read(c, &dent2->key, &key);
1228         if (keys_cmp(c, &zbr2->key, &key)) {
1229                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1230                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1231                                                        DBG_KEY_BUF_LEN));
1232                 ubifs_err(c, "but it should have key %s according to tnc",
1233                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1234                                            DBG_KEY_BUF_LEN));
1235                 ubifs_dump_node(c, dent2);
1236                 goto out_free;
1237         }
1238
1239         nlen1 = le16_to_cpu(dent1->nlen);
1240         nlen2 = le16_to_cpu(dent2->nlen);
1241
1242         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1243         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1244                 err = 0;
1245                 goto out_free;
1246         }
1247         if (cmp == 0 && nlen1 == nlen2)
1248                 ubifs_err(c, "2 xent/dent nodes with the same name");
1249         else
1250                 ubifs_err(c, "bad order of colliding key %s",
1251                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1252
1253         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1254         ubifs_dump_node(c, dent1);
1255         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1256         ubifs_dump_node(c, dent2);
1257
1258 out_free:
1259         kfree(dent2);
1260         kfree(dent1);
1261         return err;
1262 }
1263
1264 /**
1265  * dbg_check_znode - check if znode is all right.
1266  * @c: UBIFS file-system description object
1267  * @zbr: zbranch which points to this znode
1268  *
1269  * This function makes sure that znode referred to by @zbr is all right.
1270  * Returns zero if it is, and %-EINVAL if it is not.
1271  */
1272 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1273 {
1274         struct ubifs_znode *znode = zbr->znode;
1275         struct ubifs_znode *zp = znode->parent;
1276         int n, err, cmp;
1277
1278         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1279                 err = 1;
1280                 goto out;
1281         }
1282         if (znode->level < 0) {
1283                 err = 2;
1284                 goto out;
1285         }
1286         if (znode->iip < 0 || znode->iip >= c->fanout) {
1287                 err = 3;
1288                 goto out;
1289         }
1290
1291         if (zbr->len == 0)
1292                 /* Only dirty zbranch may have no on-flash nodes */
1293                 if (!ubifs_zn_dirty(znode)) {
1294                         err = 4;
1295                         goto out;
1296                 }
1297
1298         if (ubifs_zn_dirty(znode)) {
1299                 /*
1300                  * If znode is dirty, its parent has to be dirty as well. The
1301                  * order of the operation is important, so we have to have
1302                  * memory barriers.
1303                  */
1304                 smp_mb();
1305                 if (zp && !ubifs_zn_dirty(zp)) {
1306                         /*
1307                          * The dirty flag is atomic and is cleared outside the
1308                          * TNC mutex, so znode's dirty flag may now have
1309                          * been cleared. The child is always cleared before the
1310                          * parent, so we just need to check again.
1311                          */
1312                         smp_mb();
1313                         if (ubifs_zn_dirty(znode)) {
1314                                 err = 5;
1315                                 goto out;
1316                         }
1317                 }
1318         }
1319
1320         if (zp) {
1321                 const union ubifs_key *min, *max;
1322
1323                 if (znode->level != zp->level - 1) {
1324                         err = 6;
1325                         goto out;
1326                 }
1327
1328                 /* Make sure the 'parent' pointer in our znode is correct */
1329                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1330                 if (!err) {
1331                         /* This zbranch does not exist in the parent */
1332                         err = 7;
1333                         goto out;
1334                 }
1335
1336                 if (znode->iip >= zp->child_cnt) {
1337                         err = 8;
1338                         goto out;
1339                 }
1340
1341                 if (znode->iip != n) {
1342                         /* This may happen only in case of collisions */
1343                         if (keys_cmp(c, &zp->zbranch[n].key,
1344                                      &zp->zbranch[znode->iip].key)) {
1345                                 err = 9;
1346                                 goto out;
1347                         }
1348                         n = znode->iip;
1349                 }
1350
1351                 /*
1352                  * Make sure that the first key in our znode is greater than or
1353                  * equal to the key in the pointing zbranch.
1354                  */
1355                 min = &zbr->key;
1356                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1357                 if (cmp == 1) {
1358                         err = 10;
1359                         goto out;
1360                 }
1361
1362                 if (n + 1 < zp->child_cnt) {
1363                         max = &zp->zbranch[n + 1].key;
1364
1365                         /*
1366                          * Make sure the last key in our znode is less or
1367                          * equivalent than the key in the zbranch which goes
1368                          * after our pointing zbranch.
1369                          */
1370                         cmp = keys_cmp(c, max,
1371                                 &znode->zbranch[znode->child_cnt - 1].key);
1372                         if (cmp == -1) {
1373                                 err = 11;
1374                                 goto out;
1375                         }
1376                 }
1377         } else {
1378                 /* This may only be root znode */
1379                 if (zbr != &c->zroot) {
1380                         err = 12;
1381                         goto out;
1382                 }
1383         }
1384
1385         /*
1386          * Make sure that next key is greater or equivalent then the previous
1387          * one.
1388          */
1389         for (n = 1; n < znode->child_cnt; n++) {
1390                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1391                                &znode->zbranch[n].key);
1392                 if (cmp > 0) {
1393                         err = 13;
1394                         goto out;
1395                 }
1396                 if (cmp == 0) {
1397                         /* This can only be keys with colliding hash */
1398                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1399                                 err = 14;
1400                                 goto out;
1401                         }
1402
1403                         if (znode->level != 0 || c->replaying)
1404                                 continue;
1405
1406                         /*
1407                          * Colliding keys should follow binary order of
1408                          * corresponding xentry/dentry names.
1409                          */
1410                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1411                                                   &znode->zbranch[n]);
1412                         if (err < 0)
1413                                 return err;
1414                         if (err) {
1415                                 err = 15;
1416                                 goto out;
1417                         }
1418                 }
1419         }
1420
1421         for (n = 0; n < znode->child_cnt; n++) {
1422                 if (!znode->zbranch[n].znode &&
1423                     (znode->zbranch[n].lnum == 0 ||
1424                      znode->zbranch[n].len == 0)) {
1425                         err = 16;
1426                         goto out;
1427                 }
1428
1429                 if (znode->zbranch[n].lnum != 0 &&
1430                     znode->zbranch[n].len == 0) {
1431                         err = 17;
1432                         goto out;
1433                 }
1434
1435                 if (znode->zbranch[n].lnum == 0 &&
1436                     znode->zbranch[n].len != 0) {
1437                         err = 18;
1438                         goto out;
1439                 }
1440
1441                 if (znode->zbranch[n].lnum == 0 &&
1442                     znode->zbranch[n].offs != 0) {
1443                         err = 19;
1444                         goto out;
1445                 }
1446
1447                 if (znode->level != 0 && znode->zbranch[n].znode)
1448                         if (znode->zbranch[n].znode->parent != znode) {
1449                                 err = 20;
1450                                 goto out;
1451                         }
1452         }
1453
1454         return 0;
1455
1456 out:
1457         ubifs_err(c, "failed, error %d", err);
1458         ubifs_msg(c, "dump of the znode");
1459         ubifs_dump_znode(c, znode);
1460         if (zp) {
1461                 ubifs_msg(c, "dump of the parent znode");
1462                 ubifs_dump_znode(c, zp);
1463         }
1464         dump_stack();
1465         return -EINVAL;
1466 }
1467 #else
1468
1469 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1470 {
1471         return 0;
1472 }
1473
1474 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1475 {
1476         return;
1477 }
1478
1479 int ubifs_debugging_init(struct ubifs_info *c)
1480 {
1481         return 0;
1482 }
1483 void ubifs_debugging_exit(struct ubifs_info *c)
1484 {
1485 }
1486 int dbg_check_filesystem(struct ubifs_info *c)
1487 {
1488         return 0;
1489 }
1490 int dbg_debugfs_init_fs(struct ubifs_info *c)
1491 {
1492         return 0;
1493 }
1494 #endif
1495
1496 #ifndef __UBOOT__
1497 /**
1498  * dbg_check_tnc - check TNC tree.
1499  * @c: UBIFS file-system description object
1500  * @extra: do extra checks that are possible at start commit
1501  *
1502  * This function traverses whole TNC tree and checks every znode. Returns zero
1503  * if everything is all right and %-EINVAL if something is wrong with TNC.
1504  */
1505 int dbg_check_tnc(struct ubifs_info *c, int extra)
1506 {
1507         struct ubifs_znode *znode;
1508         long clean_cnt = 0, dirty_cnt = 0;
1509         int err, last;
1510
1511         if (!dbg_is_chk_index(c))
1512                 return 0;
1513
1514         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1515         if (!c->zroot.znode)
1516                 return 0;
1517
1518         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1519         while (1) {
1520                 struct ubifs_znode *prev;
1521                 struct ubifs_zbranch *zbr;
1522
1523                 if (!znode->parent)
1524                         zbr = &c->zroot;
1525                 else
1526                         zbr = &znode->parent->zbranch[znode->iip];
1527
1528                 err = dbg_check_znode(c, zbr);
1529                 if (err)
1530                         return err;
1531
1532                 if (extra) {
1533                         if (ubifs_zn_dirty(znode))
1534                                 dirty_cnt += 1;
1535                         else
1536                                 clean_cnt += 1;
1537                 }
1538
1539                 prev = znode;
1540                 znode = ubifs_tnc_postorder_next(znode);
1541                 if (!znode)
1542                         break;
1543
1544                 /*
1545                  * If the last key of this znode is equivalent to the first key
1546                  * of the next znode (collision), then check order of the keys.
1547                  */
1548                 last = prev->child_cnt - 1;
1549                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1550                     !keys_cmp(c, &prev->zbranch[last].key,
1551                               &znode->zbranch[0].key)) {
1552                         err = dbg_check_key_order(c, &prev->zbranch[last],
1553                                                   &znode->zbranch[0]);
1554                         if (err < 0)
1555                                 return err;
1556                         if (err) {
1557                                 ubifs_msg(c, "first znode");
1558                                 ubifs_dump_znode(c, prev);
1559                                 ubifs_msg(c, "second znode");
1560                                 ubifs_dump_znode(c, znode);
1561                                 return -EINVAL;
1562                         }
1563                 }
1564         }
1565
1566         if (extra) {
1567                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1568                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1569                                   atomic_long_read(&c->clean_zn_cnt),
1570                                   clean_cnt);
1571                         return -EINVAL;
1572                 }
1573                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1574                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1575                                   atomic_long_read(&c->dirty_zn_cnt),
1576                                   dirty_cnt);
1577                         return -EINVAL;
1578                 }
1579         }
1580
1581         return 0;
1582 }
1583 #else
1584 int dbg_check_tnc(struct ubifs_info *c, int extra)
1585 {
1586         return 0;
1587 }
1588 #endif
1589
1590 /**
1591  * dbg_walk_index - walk the on-flash index.
1592  * @c: UBIFS file-system description object
1593  * @leaf_cb: called for each leaf node
1594  * @znode_cb: called for each indexing node
1595  * @priv: private data which is passed to callbacks
1596  *
1597  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1598  * node and @znode_cb for each indexing node. Returns zero in case of success
1599  * and a negative error code in case of failure.
1600  *
1601  * It would be better if this function removed every znode it pulled to into
1602  * the TNC, so that the behavior more closely matched the non-debugging
1603  * behavior.
1604  */
1605 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1606                    dbg_znode_callback znode_cb, void *priv)
1607 {
1608         int err;
1609         struct ubifs_zbranch *zbr;
1610         struct ubifs_znode *znode, *child;
1611
1612         mutex_lock(&c->tnc_mutex);
1613         /* If the root indexing node is not in TNC - pull it */
1614         if (!c->zroot.znode) {
1615                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1616                 if (IS_ERR(c->zroot.znode)) {
1617                         err = PTR_ERR(c->zroot.znode);
1618                         c->zroot.znode = NULL;
1619                         goto out_unlock;
1620                 }
1621         }
1622
1623         /*
1624          * We are going to traverse the indexing tree in the postorder manner.
1625          * Go down and find the leftmost indexing node where we are going to
1626          * start from.
1627          */
1628         znode = c->zroot.znode;
1629         while (znode->level > 0) {
1630                 zbr = &znode->zbranch[0];
1631                 child = zbr->znode;
1632                 if (!child) {
1633                         child = ubifs_load_znode(c, zbr, znode, 0);
1634                         if (IS_ERR(child)) {
1635                                 err = PTR_ERR(child);
1636                                 goto out_unlock;
1637                         }
1638                         zbr->znode = child;
1639                 }
1640
1641                 znode = child;
1642         }
1643
1644         /* Iterate over all indexing nodes */
1645         while (1) {
1646                 int idx;
1647
1648                 cond_resched();
1649
1650                 if (znode_cb) {
1651                         err = znode_cb(c, znode, priv);
1652                         if (err) {
1653                                 ubifs_err(c, "znode checking function returned error %d",
1654                                           err);
1655                                 ubifs_dump_znode(c, znode);
1656                                 goto out_dump;
1657                         }
1658                 }
1659                 if (leaf_cb && znode->level == 0) {
1660                         for (idx = 0; idx < znode->child_cnt; idx++) {
1661                                 zbr = &znode->zbranch[idx];
1662                                 err = leaf_cb(c, zbr, priv);
1663                                 if (err) {
1664                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1665                                                   err, zbr->lnum, zbr->offs);
1666                                         goto out_dump;
1667                                 }
1668                         }
1669                 }
1670
1671                 if (!znode->parent)
1672                         break;
1673
1674                 idx = znode->iip + 1;
1675                 znode = znode->parent;
1676                 if (idx < znode->child_cnt) {
1677                         /* Switch to the next index in the parent */
1678                         zbr = &znode->zbranch[idx];
1679                         child = zbr->znode;
1680                         if (!child) {
1681                                 child = ubifs_load_znode(c, zbr, znode, idx);
1682                                 if (IS_ERR(child)) {
1683                                         err = PTR_ERR(child);
1684                                         goto out_unlock;
1685                                 }
1686                                 zbr->znode = child;
1687                         }
1688                         znode = child;
1689                 } else
1690                         /*
1691                          * This is the last child, switch to the parent and
1692                          * continue.
1693                          */
1694                         continue;
1695
1696                 /* Go to the lowest leftmost znode in the new sub-tree */
1697                 while (znode->level > 0) {
1698                         zbr = &znode->zbranch[0];
1699                         child = zbr->znode;
1700                         if (!child) {
1701                                 child = ubifs_load_znode(c, zbr, znode, 0);
1702                                 if (IS_ERR(child)) {
1703                                         err = PTR_ERR(child);
1704                                         goto out_unlock;
1705                                 }
1706                                 zbr->znode = child;
1707                         }
1708                         znode = child;
1709                 }
1710         }
1711
1712         mutex_unlock(&c->tnc_mutex);
1713         return 0;
1714
1715 out_dump:
1716         if (znode->parent)
1717                 zbr = &znode->parent->zbranch[znode->iip];
1718         else
1719                 zbr = &c->zroot;
1720         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1721         ubifs_dump_znode(c, znode);
1722 out_unlock:
1723         mutex_unlock(&c->tnc_mutex);
1724         return err;
1725 }
1726
1727 /**
1728  * add_size - add znode size to partially calculated index size.
1729  * @c: UBIFS file-system description object
1730  * @znode: znode to add size for
1731  * @priv: partially calculated index size
1732  *
1733  * This is a helper function for 'dbg_check_idx_size()' which is called for
1734  * every indexing node and adds its size to the 'long long' variable pointed to
1735  * by @priv.
1736  */
1737 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1738 {
1739         long long *idx_size = priv;
1740         int add;
1741
1742         add = ubifs_idx_node_sz(c, znode->child_cnt);
1743         add = ALIGN(add, 8);
1744         *idx_size += add;
1745         return 0;
1746 }
1747
1748 /**
1749  * dbg_check_idx_size - check index size.
1750  * @c: UBIFS file-system description object
1751  * @idx_size: size to check
1752  *
1753  * This function walks the UBIFS index, calculates its size and checks that the
1754  * size is equivalent to @idx_size. Returns zero in case of success and a
1755  * negative error code in case of failure.
1756  */
1757 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1758 {
1759         int err;
1760         long long calc = 0;
1761
1762         if (!dbg_is_chk_index(c))
1763                 return 0;
1764
1765         err = dbg_walk_index(c, NULL, add_size, &calc);
1766         if (err) {
1767                 ubifs_err(c, "error %d while walking the index", err);
1768                 return err;
1769         }
1770
1771         if (calc != idx_size) {
1772                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1773                           calc, idx_size);
1774                 dump_stack();
1775                 return -EINVAL;
1776         }
1777
1778         return 0;
1779 }
1780
1781 #ifndef __UBOOT__
1782 /**
1783  * struct fsck_inode - information about an inode used when checking the file-system.
1784  * @rb: link in the RB-tree of inodes
1785  * @inum: inode number
1786  * @mode: inode type, permissions, etc
1787  * @nlink: inode link count
1788  * @xattr_cnt: count of extended attributes
1789  * @references: how many directory/xattr entries refer this inode (calculated
1790  *              while walking the index)
1791  * @calc_cnt: for directory inode count of child directories
1792  * @size: inode size (read from on-flash inode)
1793  * @xattr_sz: summary size of all extended attributes (read from on-flash
1794  *            inode)
1795  * @calc_sz: for directories calculated directory size
1796  * @calc_xcnt: count of extended attributes
1797  * @calc_xsz: calculated summary size of all extended attributes
1798  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1799  *             inode (read from on-flash inode)
1800  * @calc_xnms: calculated sum of lengths of all extended attribute names
1801  */
1802 struct fsck_inode {
1803         struct rb_node rb;
1804         ino_t inum;
1805         umode_t mode;
1806         unsigned int nlink;
1807         unsigned int xattr_cnt;
1808         int references;
1809         int calc_cnt;
1810         long long size;
1811         unsigned int xattr_sz;
1812         long long calc_sz;
1813         long long calc_xcnt;
1814         long long calc_xsz;
1815         unsigned int xattr_nms;
1816         long long calc_xnms;
1817 };
1818
1819 /**
1820  * struct fsck_data - private FS checking information.
1821  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1822  */
1823 struct fsck_data {
1824         struct rb_root inodes;
1825 };
1826
1827 /**
1828  * add_inode - add inode information to RB-tree of inodes.
1829  * @c: UBIFS file-system description object
1830  * @fsckd: FS checking information
1831  * @ino: raw UBIFS inode to add
1832  *
1833  * This is a helper function for 'check_leaf()' which adds information about
1834  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1835  * case of success and a negative error code in case of failure.
1836  */
1837 static struct fsck_inode *add_inode(struct ubifs_info *c,
1838                                     struct fsck_data *fsckd,
1839                                     struct ubifs_ino_node *ino)
1840 {
1841         struct rb_node **p, *parent = NULL;
1842         struct fsck_inode *fscki;
1843         ino_t inum = key_inum_flash(c, &ino->key);
1844         struct inode *inode;
1845         struct ubifs_inode *ui;
1846
1847         p = &fsckd->inodes.rb_node;
1848         while (*p) {
1849                 parent = *p;
1850                 fscki = rb_entry(parent, struct fsck_inode, rb);
1851                 if (inum < fscki->inum)
1852                         p = &(*p)->rb_left;
1853                 else if (inum > fscki->inum)
1854                         p = &(*p)->rb_right;
1855                 else
1856                         return fscki;
1857         }
1858
1859         if (inum > c->highest_inum) {
1860                 ubifs_err(c, "too high inode number, max. is %lu",
1861                           (unsigned long)c->highest_inum);
1862                 return ERR_PTR(-EINVAL);
1863         }
1864
1865         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1866         if (!fscki)
1867                 return ERR_PTR(-ENOMEM);
1868
1869         inode = ilookup(c->vfs_sb, inum);
1870
1871         fscki->inum = inum;
1872         /*
1873          * If the inode is present in the VFS inode cache, use it instead of
1874          * the on-flash inode which might be out-of-date. E.g., the size might
1875          * be out-of-date. If we do not do this, the following may happen, for
1876          * example:
1877          *   1. A power cut happens
1878          *   2. We mount the file-system R/O, the replay process fixes up the
1879          *      inode size in the VFS cache, but on on-flash.
1880          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1881          *      size.
1882          */
1883         if (!inode) {
1884                 fscki->nlink = le32_to_cpu(ino->nlink);
1885                 fscki->size = le64_to_cpu(ino->size);
1886                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1887                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1888                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1889                 fscki->mode = le32_to_cpu(ino->mode);
1890         } else {
1891                 ui = ubifs_inode(inode);
1892                 fscki->nlink = inode->i_nlink;
1893                 fscki->size = inode->i_size;
1894                 fscki->xattr_cnt = ui->xattr_cnt;
1895                 fscki->xattr_sz = ui->xattr_size;
1896                 fscki->xattr_nms = ui->xattr_names;
1897                 fscki->mode = inode->i_mode;
1898                 iput(inode);
1899         }
1900
1901         if (S_ISDIR(fscki->mode)) {
1902                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1903                 fscki->calc_cnt = 2;
1904         }
1905
1906         rb_link_node(&fscki->rb, parent, p);
1907         rb_insert_color(&fscki->rb, &fsckd->inodes);
1908
1909         return fscki;
1910 }
1911
1912 /**
1913  * search_inode - search inode in the RB-tree of inodes.
1914  * @fsckd: FS checking information
1915  * @inum: inode number to search
1916  *
1917  * This is a helper function for 'check_leaf()' which searches inode @inum in
1918  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1919  * the inode was not found.
1920  */
1921 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1922 {
1923         struct rb_node *p;
1924         struct fsck_inode *fscki;
1925
1926         p = fsckd->inodes.rb_node;
1927         while (p) {
1928                 fscki = rb_entry(p, struct fsck_inode, rb);
1929                 if (inum < fscki->inum)
1930                         p = p->rb_left;
1931                 else if (inum > fscki->inum)
1932                         p = p->rb_right;
1933                 else
1934                         return fscki;
1935         }
1936         return NULL;
1937 }
1938
1939 /**
1940  * read_add_inode - read inode node and add it to RB-tree of inodes.
1941  * @c: UBIFS file-system description object
1942  * @fsckd: FS checking information
1943  * @inum: inode number to read
1944  *
1945  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1946  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1947  * information pointer in case of success and a negative error code in case of
1948  * failure.
1949  */
1950 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1951                                          struct fsck_data *fsckd, ino_t inum)
1952 {
1953         int n, err;
1954         union ubifs_key key;
1955         struct ubifs_znode *znode;
1956         struct ubifs_zbranch *zbr;
1957         struct ubifs_ino_node *ino;
1958         struct fsck_inode *fscki;
1959
1960         fscki = search_inode(fsckd, inum);
1961         if (fscki)
1962                 return fscki;
1963
1964         ino_key_init(c, &key, inum);
1965         err = ubifs_lookup_level0(c, &key, &znode, &n);
1966         if (!err) {
1967                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1968                 return ERR_PTR(-ENOENT);
1969         } else if (err < 0) {
1970                 ubifs_err(c, "error %d while looking up inode %lu",
1971                           err, (unsigned long)inum);
1972                 return ERR_PTR(err);
1973         }
1974
1975         zbr = &znode->zbranch[n];
1976         if (zbr->len < UBIFS_INO_NODE_SZ) {
1977                 ubifs_err(c, "bad node %lu node length %d",
1978                           (unsigned long)inum, zbr->len);
1979                 return ERR_PTR(-EINVAL);
1980         }
1981
1982         ino = kmalloc(zbr->len, GFP_NOFS);
1983         if (!ino)
1984                 return ERR_PTR(-ENOMEM);
1985
1986         err = ubifs_tnc_read_node(c, zbr, ino);
1987         if (err) {
1988                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1989                           zbr->lnum, zbr->offs, err);
1990                 kfree(ino);
1991                 return ERR_PTR(err);
1992         }
1993
1994         fscki = add_inode(c, fsckd, ino);
1995         kfree(ino);
1996         if (IS_ERR(fscki)) {
1997                 ubifs_err(c, "error %ld while adding inode %lu node",
1998                           PTR_ERR(fscki), (unsigned long)inum);
1999                 return fscki;
2000         }
2001
2002         return fscki;
2003 }
2004
2005 /**
2006  * check_leaf - check leaf node.
2007  * @c: UBIFS file-system description object
2008  * @zbr: zbranch of the leaf node to check
2009  * @priv: FS checking information
2010  *
2011  * This is a helper function for 'dbg_check_filesystem()' which is called for
2012  * every single leaf node while walking the indexing tree. It checks that the
2013  * leaf node referred from the indexing tree exists, has correct CRC, and does
2014  * some other basic validation. This function is also responsible for building
2015  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2016  * calculates reference count, size, etc for each inode in order to later
2017  * compare them to the information stored inside the inodes and detect possible
2018  * inconsistencies. Returns zero in case of success and a negative error code
2019  * in case of failure.
2020  */
2021 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2022                       void *priv)
2023 {
2024         ino_t inum;
2025         void *node;
2026         struct ubifs_ch *ch;
2027         int err, type = key_type(c, &zbr->key);
2028         struct fsck_inode *fscki;
2029
2030         if (zbr->len < UBIFS_CH_SZ) {
2031                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2032                           zbr->len, zbr->lnum, zbr->offs);
2033                 return -EINVAL;
2034         }
2035
2036         node = kmalloc(zbr->len, GFP_NOFS);
2037         if (!node)
2038                 return -ENOMEM;
2039
2040         err = ubifs_tnc_read_node(c, zbr, node);
2041         if (err) {
2042                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2043                           zbr->lnum, zbr->offs, err);
2044                 goto out_free;
2045         }
2046
2047         /* If this is an inode node, add it to RB-tree of inodes */
2048         if (type == UBIFS_INO_KEY) {
2049                 fscki = add_inode(c, priv, node);
2050                 if (IS_ERR(fscki)) {
2051                         err = PTR_ERR(fscki);
2052                         ubifs_err(c, "error %d while adding inode node", err);
2053                         goto out_dump;
2054                 }
2055                 goto out;
2056         }
2057
2058         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2059             type != UBIFS_DATA_KEY) {
2060                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2061                           type, zbr->lnum, zbr->offs);
2062                 err = -EINVAL;
2063                 goto out_free;
2064         }
2065
2066         ch = node;
2067         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2068                 ubifs_err(c, "too high sequence number, max. is %llu",
2069                           c->max_sqnum);
2070                 err = -EINVAL;
2071                 goto out_dump;
2072         }
2073
2074         if (type == UBIFS_DATA_KEY) {
2075                 long long blk_offs;
2076                 struct ubifs_data_node *dn = node;
2077
2078                 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2079
2080                 /*
2081                  * Search the inode node this data node belongs to and insert
2082                  * it to the RB-tree of inodes.
2083                  */
2084                 inum = key_inum_flash(c, &dn->key);
2085                 fscki = read_add_inode(c, priv, inum);
2086                 if (IS_ERR(fscki)) {
2087                         err = PTR_ERR(fscki);
2088                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2089                                   err, (unsigned long)inum);
2090                         goto out_dump;
2091                 }
2092
2093                 /* Make sure the data node is within inode size */
2094                 blk_offs = key_block_flash(c, &dn->key);
2095                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2096                 blk_offs += le32_to_cpu(dn->size);
2097                 if (blk_offs > fscki->size) {
2098                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2099                                   zbr->lnum, zbr->offs, fscki->size);
2100                         err = -EINVAL;
2101                         goto out_dump;
2102                 }
2103         } else {
2104                 int nlen;
2105                 struct ubifs_dent_node *dent = node;
2106                 struct fsck_inode *fscki1;
2107
2108                 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2109
2110                 err = ubifs_validate_entry(c, dent);
2111                 if (err)
2112                         goto out_dump;
2113
2114                 /*
2115                  * Search the inode node this entry refers to and the parent
2116                  * inode node and insert them to the RB-tree of inodes.
2117                  */
2118                 inum = le64_to_cpu(dent->inum);
2119                 fscki = read_add_inode(c, priv, inum);
2120                 if (IS_ERR(fscki)) {
2121                         err = PTR_ERR(fscki);
2122                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2123                                   err, (unsigned long)inum);
2124                         goto out_dump;
2125                 }
2126
2127                 /* Count how many direntries or xentries refers this inode */
2128                 fscki->references += 1;
2129
2130                 inum = key_inum_flash(c, &dent->key);
2131                 fscki1 = read_add_inode(c, priv, inum);
2132                 if (IS_ERR(fscki1)) {
2133                         err = PTR_ERR(fscki1);
2134                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2135                                   err, (unsigned long)inum);
2136                         goto out_dump;
2137                 }
2138
2139                 nlen = le16_to_cpu(dent->nlen);
2140                 if (type == UBIFS_XENT_KEY) {
2141                         fscki1->calc_xcnt += 1;
2142                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2143                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2144                         fscki1->calc_xnms += nlen;
2145                 } else {
2146                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2147                         if (dent->type == UBIFS_ITYPE_DIR)
2148                                 fscki1->calc_cnt += 1;
2149                 }
2150         }
2151
2152 out:
2153         kfree(node);
2154         return 0;
2155
2156 out_dump:
2157         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2158         ubifs_dump_node(c, node);
2159 out_free:
2160         kfree(node);
2161         return err;
2162 }
2163
2164 /**
2165  * free_inodes - free RB-tree of inodes.
2166  * @fsckd: FS checking information
2167  */
2168 static void free_inodes(struct fsck_data *fsckd)
2169 {
2170         struct fsck_inode *fscki, *n;
2171
2172         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2173                 kfree(fscki);
2174 }
2175
2176 /**
2177  * check_inodes - checks all inodes.
2178  * @c: UBIFS file-system description object
2179  * @fsckd: FS checking information
2180  *
2181  * This is a helper function for 'dbg_check_filesystem()' which walks the
2182  * RB-tree of inodes after the index scan has been finished, and checks that
2183  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2184  * %-EINVAL if not, and a negative error code in case of failure.
2185  */
2186 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2187 {
2188         int n, err;
2189         union ubifs_key key;
2190         struct ubifs_znode *znode;
2191         struct ubifs_zbranch *zbr;
2192         struct ubifs_ino_node *ino;
2193         struct fsck_inode *fscki;
2194         struct rb_node *this = rb_first(&fsckd->inodes);
2195
2196         while (this) {
2197                 fscki = rb_entry(this, struct fsck_inode, rb);
2198                 this = rb_next(this);
2199
2200                 if (S_ISDIR(fscki->mode)) {
2201                         /*
2202                          * Directories have to have exactly one reference (they
2203                          * cannot have hardlinks), although root inode is an
2204                          * exception.
2205                          */
2206                         if (fscki->inum != UBIFS_ROOT_INO &&
2207                             fscki->references != 1) {
2208                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2209                                           (unsigned long)fscki->inum,
2210                                           fscki->references);
2211                                 goto out_dump;
2212                         }
2213                         if (fscki->inum == UBIFS_ROOT_INO &&
2214                             fscki->references != 0) {
2215                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2216                                           (unsigned long)fscki->inum,
2217                                           fscki->references);
2218                                 goto out_dump;
2219                         }
2220                         if (fscki->calc_sz != fscki->size) {
2221                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2222                                           (unsigned long)fscki->inum,
2223                                           fscki->size, fscki->calc_sz);
2224                                 goto out_dump;
2225                         }
2226                         if (fscki->calc_cnt != fscki->nlink) {
2227                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2228                                           (unsigned long)fscki->inum,
2229                                           fscki->nlink, fscki->calc_cnt);
2230                                 goto out_dump;
2231                         }
2232                 } else {
2233                         if (fscki->references != fscki->nlink) {
2234                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2235                                           (unsigned long)fscki->inum,
2236                                           fscki->nlink, fscki->references);
2237                                 goto out_dump;
2238                         }
2239                 }
2240                 if (fscki->xattr_sz != fscki->calc_xsz) {
2241                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2242                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2243                                   fscki->calc_xsz);
2244                         goto out_dump;
2245                 }
2246                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2247                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2248                                   (unsigned long)fscki->inum,
2249                                   fscki->xattr_cnt, fscki->calc_xcnt);
2250                         goto out_dump;
2251                 }
2252                 if (fscki->xattr_nms != fscki->calc_xnms) {
2253                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2254                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2255                                   fscki->calc_xnms);
2256                         goto out_dump;
2257                 }
2258         }
2259
2260         return 0;
2261
2262 out_dump:
2263         /* Read the bad inode and dump it */
2264         ino_key_init(c, &key, fscki->inum);
2265         err = ubifs_lookup_level0(c, &key, &znode, &n);
2266         if (!err) {
2267                 ubifs_err(c, "inode %lu not found in index",
2268                           (unsigned long)fscki->inum);
2269                 return -ENOENT;
2270         } else if (err < 0) {
2271                 ubifs_err(c, "error %d while looking up inode %lu",
2272                           err, (unsigned long)fscki->inum);
2273                 return err;
2274         }
2275
2276         zbr = &znode->zbranch[n];
2277         ino = kmalloc(zbr->len, GFP_NOFS);
2278         if (!ino)
2279                 return -ENOMEM;
2280
2281         err = ubifs_tnc_read_node(c, zbr, ino);
2282         if (err) {
2283                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2284                           zbr->lnum, zbr->offs, err);
2285                 kfree(ino);
2286                 return err;
2287         }
2288
2289         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2290                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2291         ubifs_dump_node(c, ino);
2292         kfree(ino);
2293         return -EINVAL;
2294 }
2295
2296 /**
2297  * dbg_check_filesystem - check the file-system.
2298  * @c: UBIFS file-system description object
2299  *
2300  * This function checks the file system, namely:
2301  * o makes sure that all leaf nodes exist and their CRCs are correct;
2302  * o makes sure inode nlink, size, xattr size/count are correct (for all
2303  *   inodes).
2304  *
2305  * The function reads whole indexing tree and all nodes, so it is pretty
2306  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2307  * not, and a negative error code in case of failure.
2308  */
2309 int dbg_check_filesystem(struct ubifs_info *c)
2310 {
2311         int err;
2312         struct fsck_data fsckd;
2313
2314         if (!dbg_is_chk_fs(c))
2315                 return 0;
2316
2317         fsckd.inodes = RB_ROOT;
2318         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2319         if (err)
2320                 goto out_free;
2321
2322         err = check_inodes(c, &fsckd);
2323         if (err)
2324                 goto out_free;
2325
2326         free_inodes(&fsckd);
2327         return 0;
2328
2329 out_free:
2330         ubifs_err(c, "file-system check failed with error %d", err);
2331         dump_stack();
2332         free_inodes(&fsckd);
2333         return err;
2334 }
2335
2336 /**
2337  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2338  * @c: UBIFS file-system description object
2339  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2340  *
2341  * This function returns zero if the list of data nodes is sorted correctly,
2342  * and %-EINVAL if not.
2343  */
2344 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2345 {
2346         struct list_head *cur;
2347         struct ubifs_scan_node *sa, *sb;
2348
2349         if (!dbg_is_chk_gen(c))
2350                 return 0;
2351
2352         for (cur = head->next; cur->next != head; cur = cur->next) {
2353                 ino_t inuma, inumb;
2354                 uint32_t blka, blkb;
2355
2356                 cond_resched();
2357                 sa = container_of(cur, struct ubifs_scan_node, list);
2358                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2359
2360                 if (sa->type != UBIFS_DATA_NODE) {
2361                         ubifs_err(c, "bad node type %d", sa->type);
2362                         ubifs_dump_node(c, sa->node);
2363                         return -EINVAL;
2364                 }
2365                 if (sb->type != UBIFS_DATA_NODE) {
2366                         ubifs_err(c, "bad node type %d", sb->type);
2367                         ubifs_dump_node(c, sb->node);
2368                         return -EINVAL;
2369                 }
2370
2371                 inuma = key_inum(c, &sa->key);
2372                 inumb = key_inum(c, &sb->key);
2373
2374                 if (inuma < inumb)
2375                         continue;
2376                 if (inuma > inumb) {
2377                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2378                                   (unsigned long)inuma, (unsigned long)inumb);
2379                         goto error_dump;
2380                 }
2381
2382                 blka = key_block(c, &sa->key);
2383                 blkb = key_block(c, &sb->key);
2384
2385                 if (blka > blkb) {
2386                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2387                         goto error_dump;
2388                 }
2389                 if (blka == blkb) {
2390                         ubifs_err(c, "two data nodes for the same block");
2391                         goto error_dump;
2392                 }
2393         }
2394
2395         return 0;
2396
2397 error_dump:
2398         ubifs_dump_node(c, sa->node);
2399         ubifs_dump_node(c, sb->node);
2400         return -EINVAL;
2401 }
2402
2403 /**
2404  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2405  * @c: UBIFS file-system description object
2406  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2407  *
2408  * This function returns zero if the list of non-data nodes is sorted correctly,
2409  * and %-EINVAL if not.
2410  */
2411 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2412 {
2413         struct list_head *cur;
2414         struct ubifs_scan_node *sa, *sb;
2415
2416         if (!dbg_is_chk_gen(c))
2417                 return 0;
2418
2419         for (cur = head->next; cur->next != head; cur = cur->next) {
2420                 ino_t inuma, inumb;
2421                 uint32_t hasha, hashb;
2422
2423                 cond_resched();
2424                 sa = container_of(cur, struct ubifs_scan_node, list);
2425                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2426
2427                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2428                     sa->type != UBIFS_XENT_NODE) {
2429                         ubifs_err(c, "bad node type %d", sa->type);
2430                         ubifs_dump_node(c, sa->node);
2431                         return -EINVAL;
2432                 }
2433                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2434                     sa->type != UBIFS_XENT_NODE) {
2435                         ubifs_err(c, "bad node type %d", sb->type);
2436                         ubifs_dump_node(c, sb->node);
2437                         return -EINVAL;
2438                 }
2439
2440                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2441                         ubifs_err(c, "non-inode node goes before inode node");
2442                         goto error_dump;
2443                 }
2444
2445                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2446                         continue;
2447
2448                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2449                         /* Inode nodes are sorted in descending size order */
2450                         if (sa->len < sb->len) {
2451                                 ubifs_err(c, "smaller inode node goes first");
2452                                 goto error_dump;
2453                         }
2454                         continue;
2455                 }
2456
2457                 /*
2458                  * This is either a dentry or xentry, which should be sorted in
2459                  * ascending (parent ino, hash) order.
2460                  */
2461                 inuma = key_inum(c, &sa->key);
2462                 inumb = key_inum(c, &sb->key);
2463
2464                 if (inuma < inumb)
2465                         continue;
2466                 if (inuma > inumb) {
2467                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2468                                   (unsigned long)inuma, (unsigned long)inumb);
2469                         goto error_dump;
2470                 }
2471
2472                 hasha = key_block(c, &sa->key);
2473                 hashb = key_block(c, &sb->key);
2474
2475                 if (hasha > hashb) {
2476                         ubifs_err(c, "larger hash %u goes before %u",
2477                                   hasha, hashb);
2478                         goto error_dump;
2479                 }
2480         }
2481
2482         return 0;
2483
2484 error_dump:
2485         ubifs_msg(c, "dumping first node");
2486         ubifs_dump_node(c, sa->node);
2487         ubifs_msg(c, "dumping second node");
2488         ubifs_dump_node(c, sb->node);
2489         return -EINVAL;
2490         return 0;
2491 }
2492
2493 static inline int chance(unsigned int n, unsigned int out_of)
2494 {
2495         return !!((prandom_u32() % out_of) + 1 <= n);
2496
2497 }
2498
2499 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2500 {
2501         struct ubifs_debug_info *d = c->dbg;
2502
2503         ubifs_assert(dbg_is_tst_rcvry(c));
2504
2505         if (!d->pc_cnt) {
2506                 /* First call - decide delay to the power cut */
2507                 if (chance(1, 2)) {
2508                         unsigned long delay;
2509
2510                         if (chance(1, 2)) {
2511                                 d->pc_delay = 1;
2512                                 /* Fail within 1 minute */
2513                                 delay = prandom_u32() % 60000;
2514                                 d->pc_timeout = jiffies;
2515                                 d->pc_timeout += msecs_to_jiffies(delay);
2516                                 ubifs_warn(c, "failing after %lums", delay);
2517                         } else {
2518                                 d->pc_delay = 2;
2519                                 delay = prandom_u32() % 10000;
2520                                 /* Fail within 10000 operations */
2521                                 d->pc_cnt_max = delay;
2522                                 ubifs_warn(c, "failing after %lu calls", delay);
2523                         }
2524                 }
2525
2526                 d->pc_cnt += 1;
2527         }
2528
2529         /* Determine if failure delay has expired */
2530         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2531                         return 0;
2532         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2533                         return 0;
2534
2535         if (lnum == UBIFS_SB_LNUM) {
2536                 if (write && chance(1, 2))
2537                         return 0;
2538                 if (chance(19, 20))
2539                         return 0;
2540                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2541         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2542                 if (chance(19, 20))
2543                         return 0;
2544                 ubifs_warn(c, "failing in master LEB %d", lnum);
2545         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2546                 if (write && chance(99, 100))
2547                         return 0;
2548                 if (chance(399, 400))
2549                         return 0;
2550                 ubifs_warn(c, "failing in log LEB %d", lnum);
2551         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2552                 if (write && chance(7, 8))
2553                         return 0;
2554                 if (chance(19, 20))
2555                         return 0;
2556                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2557         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2558                 if (write && chance(1, 2))
2559                         return 0;
2560                 if (chance(9, 10))
2561                         return 0;
2562                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2563         } else if (lnum == c->ihead_lnum) {
2564                 if (chance(99, 100))
2565                         return 0;
2566                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2567         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2568                 if (chance(9, 10))
2569                         return 0;
2570                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2571         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2572                    !ubifs_search_bud(c, lnum)) {
2573                 if (chance(19, 20))
2574                         return 0;
2575                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2576         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2577                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2578                 if (chance(999, 1000))
2579                         return 0;
2580                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2581         } else {
2582                 if (chance(9999, 10000))
2583                         return 0;
2584                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2585         }
2586
2587         d->pc_happened = 1;
2588         ubifs_warn(c, "========== Power cut emulated ==========");
2589         dump_stack();
2590         return 1;
2591 }
2592
2593 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2594                         unsigned int len)
2595 {
2596         unsigned int from, to, ffs = chance(1, 2);
2597         unsigned char *p = (void *)buf;
2598
2599         from = prandom_u32() % len;
2600         /* Corruption span max to end of write unit */
2601         to = min(len, ALIGN(from + 1, c->max_write_size));
2602
2603         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2604                    ffs ? "0xFFs" : "random data");
2605
2606         if (ffs)
2607                 memset(p + from, 0xFF, to - from);
2608         else
2609                 prandom_bytes(p + from, to - from);
2610
2611         return to;
2612 }
2613
2614 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2615                   int offs, int len)
2616 {
2617         int err, failing;
2618
2619         if (c->dbg->pc_happened)
2620                 return -EROFS;
2621
2622         failing = power_cut_emulated(c, lnum, 1);
2623         if (failing) {
2624                 len = corrupt_data(c, buf, len);
2625                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2626                            len, lnum, offs);
2627         }
2628         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2629         if (err)
2630                 return err;
2631         if (failing)
2632                 return -EROFS;
2633         return 0;
2634 }
2635
2636 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2637                    int len)
2638 {
2639         int err;
2640
2641         if (c->dbg->pc_happened)
2642                 return -EROFS;
2643         if (power_cut_emulated(c, lnum, 1))
2644                 return -EROFS;
2645         err = ubi_leb_change(c->ubi, lnum, buf, len);
2646         if (err)
2647                 return err;
2648         if (power_cut_emulated(c, lnum, 1))
2649                 return -EROFS;
2650         return 0;
2651 }
2652
2653 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2654 {
2655         int err;
2656
2657         if (c->dbg->pc_happened)
2658                 return -EROFS;
2659         if (power_cut_emulated(c, lnum, 0))
2660                 return -EROFS;
2661         err = ubi_leb_unmap(c->ubi, lnum);
2662         if (err)
2663                 return err;
2664         if (power_cut_emulated(c, lnum, 0))
2665                 return -EROFS;
2666         return 0;
2667 }
2668
2669 int dbg_leb_map(struct ubifs_info *c, int lnum)
2670 {
2671         int err;
2672
2673         if (c->dbg->pc_happened)
2674                 return -EROFS;
2675         if (power_cut_emulated(c, lnum, 0))
2676                 return -EROFS;
2677         err = ubi_leb_map(c->ubi, lnum);
2678         if (err)
2679                 return err;
2680         if (power_cut_emulated(c, lnum, 0))
2681                 return -EROFS;
2682         return 0;
2683 }
2684
2685 /*
2686  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2687  * contain the stuff specific to particular file-system mounts.
2688  */
2689 static struct dentry *dfs_rootdir;
2690
2691 static int dfs_file_open(struct inode *inode, struct file *file)
2692 {
2693         file->private_data = inode->i_private;
2694         return nonseekable_open(inode, file);
2695 }
2696
2697 /**
2698  * provide_user_output - provide output to the user reading a debugfs file.
2699  * @val: boolean value for the answer
2700  * @u: the buffer to store the answer at
2701  * @count: size of the buffer
2702  * @ppos: position in the @u output buffer
2703  *
2704  * This is a simple helper function which stores @val boolean value in the user
2705  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2706  * bytes written to @u in case of success and a negative error code in case of
2707  * failure.
2708  */
2709 static int provide_user_output(int val, char __user *u, size_t count,
2710                                loff_t *ppos)
2711 {
2712         char buf[3];
2713
2714         if (val)
2715                 buf[0] = '1';
2716         else
2717                 buf[0] = '0';
2718         buf[1] = '\n';
2719         buf[2] = 0x00;
2720
2721         return simple_read_from_buffer(u, count, ppos, buf, 2);
2722 }
2723
2724 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2725                              loff_t *ppos)
2726 {
2727         struct dentry *dent = file->f_path.dentry;
2728         struct ubifs_info *c = file->private_data;
2729         struct ubifs_debug_info *d = c->dbg;
2730         int val;
2731
2732         if (dent == d->dfs_chk_gen)
2733                 val = d->chk_gen;
2734         else if (dent == d->dfs_chk_index)
2735                 val = d->chk_index;
2736         else if (dent == d->dfs_chk_orph)
2737                 val = d->chk_orph;
2738         else if (dent == d->dfs_chk_lprops)
2739                 val = d->chk_lprops;
2740         else if (dent == d->dfs_chk_fs)
2741                 val = d->chk_fs;
2742         else if (dent == d->dfs_tst_rcvry)
2743                 val = d->tst_rcvry;
2744         else if (dent == d->dfs_ro_error)
2745                 val = c->ro_error;
2746         else
2747                 return -EINVAL;
2748
2749         return provide_user_output(val, u, count, ppos);
2750 }
2751
2752 /**
2753  * interpret_user_input - interpret user debugfs file input.
2754  * @u: user-provided buffer with the input
2755  * @count: buffer size
2756  *
2757  * This is a helper function which interpret user input to a boolean UBIFS
2758  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2759  * in case of failure.
2760  */
2761 static int interpret_user_input(const char __user *u, size_t count)
2762 {
2763         size_t buf_size;
2764         char buf[8];
2765
2766         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2767         if (copy_from_user(buf, u, buf_size))
2768                 return -EFAULT;
2769
2770         if (buf[0] == '1')
2771                 return 1;
2772         else if (buf[0] == '0')
2773                 return 0;
2774
2775         return -EINVAL;
2776 }
2777
2778 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2779                               size_t count, loff_t *ppos)
2780 {
2781         struct ubifs_info *c = file->private_data;
2782         struct ubifs_debug_info *d = c->dbg;
2783         struct dentry *dent = file->f_path.dentry;
2784         int val;
2785
2786         /*
2787          * TODO: this is racy - the file-system might have already been
2788          * unmounted and we'd oops in this case. The plan is to fix it with
2789          * help of 'iterate_supers_type()' which we should have in v3.0: when
2790          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2791          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2792          * superblocks and fine the one with the same UUID, and take the
2793          * locking right.
2794          *
2795          * The other way to go suggested by Al Viro is to create a separate
2796          * 'ubifs-debug' file-system instead.
2797          */
2798         if (file->f_path.dentry == d->dfs_dump_lprops) {
2799                 ubifs_dump_lprops(c);
2800                 return count;
2801         }
2802         if (file->f_path.dentry == d->dfs_dump_budg) {
2803                 ubifs_dump_budg(c, &c->bi);
2804                 return count;
2805         }
2806         if (file->f_path.dentry == d->dfs_dump_tnc) {
2807                 mutex_lock(&c->tnc_mutex);
2808                 ubifs_dump_tnc(c);
2809                 mutex_unlock(&c->tnc_mutex);
2810                 return count;
2811         }
2812
2813         val = interpret_user_input(u, count);
2814         if (val < 0)
2815                 return val;
2816
2817         if (dent == d->dfs_chk_gen)
2818                 d->chk_gen = val;
2819         else if (dent == d->dfs_chk_index)
2820                 d->chk_index = val;
2821         else if (dent == d->dfs_chk_orph)
2822                 d->chk_orph = val;
2823         else if (dent == d->dfs_chk_lprops)
2824                 d->chk_lprops = val;
2825         else if (dent == d->dfs_chk_fs)
2826                 d->chk_fs = val;
2827         else if (dent == d->dfs_tst_rcvry)
2828                 d->tst_rcvry = val;
2829         else if (dent == d->dfs_ro_error)
2830                 c->ro_error = !!val;
2831         else
2832                 return -EINVAL;
2833
2834         return count;
2835 }
2836
2837 static const struct file_operations dfs_fops = {
2838         .open = dfs_file_open,
2839         .read = dfs_file_read,
2840         .write = dfs_file_write,
2841         .owner = THIS_MODULE,
2842         .llseek = no_llseek,
2843 };
2844
2845 /**
2846  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2847  * @c: UBIFS file-system description object
2848  *
2849  * This function creates all debugfs files for this instance of UBIFS. Returns
2850  * zero in case of success and a negative error code in case of failure.
2851  *
2852  * Note, the only reason we have not merged this function with the
2853  * 'ubifs_debugging_init()' function is because it is better to initialize
2854  * debugfs interfaces at the very end of the mount process, and remove them at
2855  * the very beginning of the mount process.
2856  */
2857 int dbg_debugfs_init_fs(struct ubifs_info *c)
2858 {
2859         int err, n;
2860         const char *fname;
2861         struct dentry *dent;
2862         struct ubifs_debug_info *d = c->dbg;
2863
2864         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2865                 return 0;
2866
2867         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2868                      c->vi.ubi_num, c->vi.vol_id);
2869         if (n == UBIFS_DFS_DIR_LEN) {
2870                 /* The array size is too small */
2871                 fname = UBIFS_DFS_DIR_NAME;
2872                 dent = ERR_PTR(-EINVAL);
2873                 goto out;
2874         }
2875
2876         fname = d->dfs_dir_name;
2877         dent = debugfs_create_dir(fname, dfs_rootdir);
2878         if (IS_ERR_OR_NULL(dent))
2879                 goto out;
2880         d->dfs_dir = dent;
2881
2882         fname = "dump_lprops";
2883         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2884         if (IS_ERR_OR_NULL(dent))
2885                 goto out_remove;
2886         d->dfs_dump_lprops = dent;
2887
2888         fname = "dump_budg";
2889         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2890         if (IS_ERR_OR_NULL(dent))
2891                 goto out_remove;
2892         d->dfs_dump_budg = dent;
2893
2894         fname = "dump_tnc";
2895         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2896         if (IS_ERR_OR_NULL(dent))
2897                 goto out_remove;
2898         d->dfs_dump_tnc = dent;
2899
2900         fname = "chk_general";
2901         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2902                                    &dfs_fops);
2903         if (IS_ERR_OR_NULL(dent))
2904                 goto out_remove;
2905         d->dfs_chk_gen = dent;
2906
2907         fname = "chk_index";
2908         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2909                                    &dfs_fops);
2910         if (IS_ERR_OR_NULL(dent))
2911                 goto out_remove;
2912         d->dfs_chk_index = dent;
2913
2914         fname = "chk_orphans";
2915         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2916                                    &dfs_fops);
2917         if (IS_ERR_OR_NULL(dent))
2918                 goto out_remove;
2919         d->dfs_chk_orph = dent;
2920
2921         fname = "chk_lprops";
2922         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2923                                    &dfs_fops);
2924         if (IS_ERR_OR_NULL(dent))
2925                 goto out_remove;
2926         d->dfs_chk_lprops = dent;
2927
2928         fname = "chk_fs";
2929         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2930                                    &dfs_fops);
2931         if (IS_ERR_OR_NULL(dent))
2932                 goto out_remove;
2933         d->dfs_chk_fs = dent;
2934
2935         fname = "tst_recovery";
2936         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2937                                    &dfs_fops);
2938         if (IS_ERR_OR_NULL(dent))
2939                 goto out_remove;
2940         d->dfs_tst_rcvry = dent;
2941
2942         fname = "ro_error";
2943         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2944                                    &dfs_fops);
2945         if (IS_ERR_OR_NULL(dent))
2946                 goto out_remove;
2947         d->dfs_ro_error = dent;
2948
2949         return 0;
2950
2951 out_remove:
2952         debugfs_remove_recursive(d->dfs_dir);
2953 out:
2954         err = dent ? PTR_ERR(dent) : -ENODEV;
2955         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2956                   fname, err);
2957         return err;
2958 }
2959
2960 /**
2961  * dbg_debugfs_exit_fs - remove all debugfs files.
2962  * @c: UBIFS file-system description object
2963  */
2964 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2965 {
2966         if (IS_ENABLED(CONFIG_DEBUG_FS))
2967                 debugfs_remove_recursive(c->dbg->dfs_dir);
2968 }
2969
2970 struct ubifs_global_debug_info ubifs_dbg;
2971
2972 static struct dentry *dfs_chk_gen;
2973 static struct dentry *dfs_chk_index;
2974 static struct dentry *dfs_chk_orph;
2975 static struct dentry *dfs_chk_lprops;
2976 static struct dentry *dfs_chk_fs;
2977 static struct dentry *dfs_tst_rcvry;
2978
2979 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2980                                     size_t count, loff_t *ppos)
2981 {
2982         struct dentry *dent = file->f_path.dentry;
2983         int val;
2984
2985         if (dent == dfs_chk_gen)
2986                 val = ubifs_dbg.chk_gen;
2987         else if (dent == dfs_chk_index)
2988                 val = ubifs_dbg.chk_index;
2989         else if (dent == dfs_chk_orph)
2990                 val = ubifs_dbg.chk_orph;
2991         else if (dent == dfs_chk_lprops)
2992                 val = ubifs_dbg.chk_lprops;
2993         else if (dent == dfs_chk_fs)
2994                 val = ubifs_dbg.chk_fs;
2995         else if (dent == dfs_tst_rcvry)
2996                 val = ubifs_dbg.tst_rcvry;
2997         else
2998                 return -EINVAL;
2999
3000         return provide_user_output(val, u, count, ppos);
3001 }
3002
3003 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3004                                      size_t count, loff_t *ppos)
3005 {
3006         struct dentry *dent = file->f_path.dentry;
3007         int val;
3008
3009         val = interpret_user_input(u, count);
3010         if (val < 0)
3011                 return val;
3012
3013         if (dent == dfs_chk_gen)
3014                 ubifs_dbg.chk_gen = val;
3015         else if (dent == dfs_chk_index)
3016                 ubifs_dbg.chk_index = val;
3017         else if (dent == dfs_chk_orph)
3018                 ubifs_dbg.chk_orph = val;
3019         else if (dent == dfs_chk_lprops)
3020                 ubifs_dbg.chk_lprops = val;
3021         else if (dent == dfs_chk_fs)
3022                 ubifs_dbg.chk_fs = val;
3023         else if (dent == dfs_tst_rcvry)
3024                 ubifs_dbg.tst_rcvry = val;
3025         else
3026                 return -EINVAL;
3027
3028         return count;
3029 }
3030
3031 static const struct file_operations dfs_global_fops = {
3032         .read = dfs_global_file_read,
3033         .write = dfs_global_file_write,
3034         .owner = THIS_MODULE,
3035         .llseek = no_llseek,
3036 };
3037
3038 /**
3039  * dbg_debugfs_init - initialize debugfs file-system.
3040  *
3041  * UBIFS uses debugfs file-system to expose various debugging knobs to
3042  * user-space. This function creates "ubifs" directory in the debugfs
3043  * file-system. Returns zero in case of success and a negative error code in
3044  * case of failure.
3045  */
3046 int dbg_debugfs_init(void)
3047 {
3048         int err;
3049         const char *fname;
3050         struct dentry *dent;
3051
3052         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3053                 return 0;
3054
3055         fname = "ubifs";
3056         dent = debugfs_create_dir(fname, NULL);
3057         if (IS_ERR_OR_NULL(dent))
3058                 goto out;
3059         dfs_rootdir = dent;
3060
3061         fname = "chk_general";
3062         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3063                                    &dfs_global_fops);
3064         if (IS_ERR_OR_NULL(dent))
3065                 goto out_remove;
3066         dfs_chk_gen = dent;
3067
3068         fname = "chk_index";
3069         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3070                                    &dfs_global_fops);
3071         if (IS_ERR_OR_NULL(dent))
3072                 goto out_remove;
3073         dfs_chk_index = dent;
3074
3075         fname = "chk_orphans";
3076         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3077                                    &dfs_global_fops);
3078         if (IS_ERR_OR_NULL(dent))
3079                 goto out_remove;
3080         dfs_chk_orph = dent;
3081
3082         fname = "chk_lprops";
3083         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3084                                    &dfs_global_fops);
3085         if (IS_ERR_OR_NULL(dent))
3086                 goto out_remove;
3087         dfs_chk_lprops = dent;
3088
3089         fname = "chk_fs";
3090         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3091                                    &dfs_global_fops);
3092         if (IS_ERR_OR_NULL(dent))
3093                 goto out_remove;
3094         dfs_chk_fs = dent;
3095
3096         fname = "tst_recovery";
3097         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3098                                    &dfs_global_fops);
3099         if (IS_ERR_OR_NULL(dent))
3100                 goto out_remove;
3101         dfs_tst_rcvry = dent;
3102
3103         return 0;
3104
3105 out_remove:
3106         debugfs_remove_recursive(dfs_rootdir);
3107 out:
3108         err = dent ? PTR_ERR(dent) : -ENODEV;
3109         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3110                current->pid, fname, err);
3111         return err;
3112 }
3113
3114 /**
3115  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3116  */
3117 void dbg_debugfs_exit(void)
3118 {
3119         if (IS_ENABLED(CONFIG_DEBUG_FS))
3120                 debugfs_remove_recursive(dfs_rootdir);
3121 }
3122
3123 /**
3124  * ubifs_debugging_init - initialize UBIFS debugging.
3125  * @c: UBIFS file-system description object
3126  *
3127  * This function initializes debugging-related data for the file system.
3128  * Returns zero in case of success and a negative error code in case of
3129  * failure.
3130  */
3131 int ubifs_debugging_init(struct ubifs_info *c)
3132 {
3133         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3134         if (!c->dbg)
3135                 return -ENOMEM;
3136
3137         return 0;
3138 }
3139
3140 /**
3141  * ubifs_debugging_exit - free debugging data.
3142  * @c: UBIFS file-system description object
3143  */
3144 void ubifs_debugging_exit(struct ubifs_info *c)
3145 {
3146         kfree(c->dbg);
3147 }
3148 #endif