spi: kirkwood: add orion-spi compatible string
[oweals/u-boot.git] / fs / jffs2 / mini_inflate.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*-------------------------------------------------------------------------
3  * Filename:      mini_inflate.c
4  * Version:       $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
5  * Copyright:     Copyright (C) 2001, Russ Dill
6  * Author:        Russ Dill <Russ.Dill@asu.edu>
7  * Description:   Mini inflate implementation (RFC 1951)
8  *-----------------------------------------------------------------------*/
9
10 #include <config.h>
11 #include <jffs2/mini_inflate.h>
12
13 /* The order that the code lengths in section 3.2.7 are in */
14 static unsigned char huffman_order[] = {16, 17, 18,  0,  8,  7,  9,  6, 10,  5,
15                                         11,  4, 12,  3, 13,  2, 14,  1, 15};
16
17 static inline void cramfs_memset(int *s, const int c, size n)
18 {
19         n--;
20         for (;n > 0; n--) s[n] = c;
21         s[0] = c;
22 }
23
24 /* associate a stream with a block of data and reset the stream */
25 static void init_stream(struct bitstream *stream, unsigned char *data,
26                         void *(*inflate_memcpy)(void *, const void *, size))
27 {
28         stream->error = NO_ERROR;
29         stream->memcpy = inflate_memcpy;
30         stream->decoded = 0;
31         stream->data = data;
32         stream->bit = 0;        /* The first bit of the stream is the lsb of the
33                                  * first byte */
34
35         /* really sorry about all this initialization, think of a better way,
36          * let me know and it will get cleaned up */
37         stream->codes.bits = 8;
38         stream->codes.num_symbols = 19;
39         stream->codes.lengths = stream->code_lengths;
40         stream->codes.symbols = stream->code_symbols;
41         stream->codes.count = stream->code_count;
42         stream->codes.first = stream->code_first;
43         stream->codes.pos = stream->code_pos;
44
45         stream->lengths.bits = 16;
46         stream->lengths.num_symbols = 288;
47         stream->lengths.lengths = stream->length_lengths;
48         stream->lengths.symbols = stream->length_symbols;
49         stream->lengths.count = stream->length_count;
50         stream->lengths.first = stream->length_first;
51         stream->lengths.pos = stream->length_pos;
52
53         stream->distance.bits = 16;
54         stream->distance.num_symbols = 32;
55         stream->distance.lengths = stream->distance_lengths;
56         stream->distance.symbols = stream->distance_symbols;
57         stream->distance.count = stream->distance_count;
58         stream->distance.first = stream->distance_first;
59         stream->distance.pos = stream->distance_pos;
60
61 }
62
63 /* pull 'bits' bits out of the stream. The last bit pulled it returned as the
64  * msb. (section 3.1.1)
65  */
66 static inline unsigned long pull_bits(struct bitstream *stream,
67                                       const unsigned int bits)
68 {
69         unsigned long ret;
70         int i;
71
72         ret = 0;
73         for (i = 0; i < bits; i++) {
74                 ret += ((*(stream->data) >> stream->bit) & 1) << i;
75
76                 /* if, before incrementing, we are on bit 7,
77                  * go to the lsb of the next byte */
78                 if (stream->bit++ == 7) {
79                         stream->bit = 0;
80                         stream->data++;
81                 }
82         }
83         return ret;
84 }
85
86 static inline int pull_bit(struct bitstream *stream)
87 {
88         int ret = ((*(stream->data) >> stream->bit) & 1);
89         if (stream->bit++ == 7) {
90                 stream->bit = 0;
91                 stream->data++;
92         }
93         return ret;
94 }
95
96 /* discard bits up to the next whole byte */
97 static void discard_bits(struct bitstream *stream)
98 {
99         if (stream->bit != 0) {
100                 stream->bit = 0;
101                 stream->data++;
102         }
103 }
104
105 /* No decompression, the data is all literals (section 3.2.4) */
106 static void decompress_none(struct bitstream *stream, unsigned char *dest)
107 {
108         unsigned int length;
109
110         discard_bits(stream);
111         length = *(stream->data++);
112         length += *(stream->data++) << 8;
113         pull_bits(stream, 16);  /* throw away the inverse of the size */
114
115         stream->decoded += length;
116         stream->memcpy(dest, stream->data, length);
117         stream->data += length;
118 }
119
120 /* Read in a symbol from the stream (section 3.2.2) */
121 static int read_symbol(struct bitstream *stream, struct huffman_set *set)
122 {
123         int bits = 0;
124         int code = 0;
125         while (!(set->count[bits] && code < set->first[bits] +
126                                              set->count[bits])) {
127                 code = (code << 1) + pull_bit(stream);
128                 if (++bits > set->bits) {
129                         /* error decoding (corrupted data?) */
130                         stream->error = CODE_NOT_FOUND;
131                         return -1;
132                 }
133         }
134         return set->symbols[set->pos[bits] + code - set->first[bits]];
135 }
136
137 /* decompress a stream of data encoded with the passed length and distance
138  * huffman codes */
139 static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
140 {
141         struct huffman_set *lengths = &(stream->lengths);
142         struct huffman_set *distance = &(stream->distance);
143
144         int symbol, length, dist, i;
145
146         do {
147                 if ((symbol = read_symbol(stream, lengths)) < 0) return;
148                 if (symbol < 256) {
149                         *(dest++) = symbol; /* symbol is a literal */
150                         stream->decoded++;
151                 } else if (symbol > 256) {
152                         /* Determine the length of the repitition
153                          * (section 3.2.5) */
154                         if (symbol < 265) length = symbol - 254;
155                         else if (symbol == 285) length = 258;
156                         else {
157                                 length = pull_bits(stream, (symbol - 261) >> 2);
158                                 length += (4 << ((symbol - 261) >> 2)) + 3;
159                                 length += ((symbol - 1) % 4) <<
160                                           ((symbol - 261) >> 2);
161                         }
162
163                         /* Determine how far back to go */
164                         if ((symbol = read_symbol(stream, distance)) < 0)
165                                 return;
166                         if (symbol < 4) dist = symbol + 1;
167                         else {
168                                 dist = pull_bits(stream, (symbol - 2) >> 1);
169                                 dist += (2 << ((symbol - 2) >> 1)) + 1;
170                                 dist += (symbol % 2) << ((symbol - 2) >> 1);
171                         }
172                         stream->decoded += length;
173                         for (i = 0; i < length; i++) {
174                                 *dest = dest[-dist];
175                                 dest++;
176                         }
177                 }
178         } while (symbol != 256); /* 256 is the end of the data block */
179 }
180
181 /* Fill the lookup tables (section 3.2.2) */
182 static void fill_code_tables(struct huffman_set *set)
183 {
184         int code = 0, i, length;
185
186         /* fill in the first code of each bit length, and the pos pointer */
187         set->pos[0] = 0;
188         for (i = 1; i < set->bits; i++) {
189                 code = (code + set->count[i - 1]) << 1;
190                 set->first[i] = code;
191                 set->pos[i] = set->pos[i - 1] + set->count[i - 1];
192         }
193
194         /* Fill in the table of symbols in order of their huffman code */
195         for (i = 0; i < set->num_symbols; i++) {
196                 if ((length = set->lengths[i]))
197                         set->symbols[set->pos[length]++] = i;
198         }
199
200         /* reset the pos pointer */
201         for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
202 }
203
204 static void init_code_tables(struct huffman_set *set)
205 {
206         cramfs_memset(set->lengths, 0, set->num_symbols);
207         cramfs_memset(set->count, 0, set->bits);
208         cramfs_memset(set->first, 0, set->bits);
209 }
210
211 /* read in the huffman codes for dynamic decoding (section 3.2.7) */
212 static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
213 {
214         /* I tried my best to minimize the memory footprint here, while still
215          * keeping up performance. I really dislike the _lengths[] tables, but
216          * I see no way of eliminating them without a sizable performance
217          * impact. The first struct table keeps track of stats on each bit
218          * length. The _length table keeps a record of the bit length of each
219          * symbol. The _symbols table is for looking up symbols by the huffman
220          * code (the pos element points to the first place in the symbol table
221          * where that bit length occurs). I also hate the initization of these
222          * structs, if someone knows how to compact these, lemme know. */
223
224         struct huffman_set *codes = &(stream->codes);
225         struct huffman_set *lengths = &(stream->lengths);
226         struct huffman_set *distance = &(stream->distance);
227
228         int hlit = pull_bits(stream, 5) + 257;
229         int hdist = pull_bits(stream, 5) + 1;
230         int hclen = pull_bits(stream, 4) + 4;
231         int length, curr_code, symbol, i, last_code;
232
233         last_code = 0;
234
235         init_code_tables(codes);
236         init_code_tables(lengths);
237         init_code_tables(distance);
238
239         /* fill in the count of each bit length' as well as the lengths
240          * table */
241         for (i = 0; i < hclen; i++) {
242                 length = pull_bits(stream, 3);
243                 codes->lengths[huffman_order[i]] = length;
244                 if (length) codes->count[length]++;
245
246         }
247         fill_code_tables(codes);
248
249         /* Do the same for the length codes, being carefull of wrap through
250          * to the distance table */
251         curr_code = 0;
252         while (curr_code < hlit) {
253                 if ((symbol = read_symbol(stream, codes)) < 0) return;
254                 if (symbol == 0) {
255                         curr_code++;
256                         last_code = 0;
257                 } else if (symbol < 16) { /* Literal length */
258                         lengths->lengths[curr_code] =  last_code = symbol;
259                         lengths->count[symbol]++;
260                         curr_code++;
261                 } else if (symbol == 16) { /* repeat the last symbol 3 - 6
262                                             * times */
263                         length = 3 + pull_bits(stream, 2);
264                         for (;length; length--, curr_code++)
265                                 if (curr_code < hlit) {
266                                         lengths->lengths[curr_code] =
267                                                 last_code;
268                                         lengths->count[last_code]++;
269                                 } else { /* wrap to the distance table */
270                                         distance->lengths[curr_code - hlit] =
271                                                 last_code;
272                                         distance->count[last_code]++;
273                                 }
274                 } else if (symbol == 17) { /* repeat a bit length 0 */
275                         curr_code += 3 + pull_bits(stream, 3);
276                         last_code = 0;
277                 } else { /* same, but more times */
278                         curr_code += 11 + pull_bits(stream, 7);
279                         last_code = 0;
280                 }
281         }
282         fill_code_tables(lengths);
283
284         /* Fill the distance table, don't need to worry about wrapthrough
285          * here */
286         curr_code -= hlit;
287         while (curr_code < hdist) {
288                 if ((symbol = read_symbol(stream, codes)) < 0) return;
289                 if (symbol == 0) {
290                         curr_code++;
291                         last_code = 0;
292                 } else if (symbol < 16) {
293                         distance->lengths[curr_code] = last_code = symbol;
294                         distance->count[symbol]++;
295                         curr_code++;
296                 } else if (symbol == 16) {
297                         length = 3 + pull_bits(stream, 2);
298                         for (;length; length--, curr_code++) {
299                                 distance->lengths[curr_code] =
300                                         last_code;
301                                 distance->count[last_code]++;
302                         }
303                 } else if (symbol == 17) {
304                         curr_code += 3 + pull_bits(stream, 3);
305                         last_code = 0;
306                 } else {
307                         curr_code += 11 + pull_bits(stream, 7);
308                         last_code = 0;
309                 }
310         }
311         fill_code_tables(distance);
312
313         decompress_huffman(stream, dest);
314 }
315
316 /* fill in the length and distance huffman codes for fixed encoding
317  * (section 3.2.6) */
318 static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
319 {
320         /* let gcc fill in the initial values */
321         struct huffman_set *lengths = &(stream->lengths);
322         struct huffman_set *distance = &(stream->distance);
323
324         cramfs_memset(lengths->count, 0, 16);
325         cramfs_memset(lengths->first, 0, 16);
326         cramfs_memset(lengths->lengths, 8, 144);
327         cramfs_memset(lengths->lengths + 144, 9, 112);
328         cramfs_memset(lengths->lengths + 256, 7, 24);
329         cramfs_memset(lengths->lengths + 280, 8, 8);
330         lengths->count[7] = 24;
331         lengths->count[8] = 152;
332         lengths->count[9] = 112;
333
334         cramfs_memset(distance->count, 0, 16);
335         cramfs_memset(distance->first, 0, 16);
336         cramfs_memset(distance->lengths, 5, 32);
337         distance->count[5] = 32;
338
339
340         fill_code_tables(lengths);
341         fill_code_tables(distance);
342
343
344         decompress_huffman(stream, dest);
345 }
346
347 /* returns the number of bytes decoded, < 0 if there was an error. Note that
348  * this function assumes that the block starts on a byte boundry
349  * (non-compliant, but I don't see where this would happen). section 3.2.3 */
350 long decompress_block(unsigned char *dest, unsigned char *source,
351                       void *(*inflate_memcpy)(void *, const void *, size))
352 {
353         int bfinal, btype;
354         struct bitstream stream;
355
356         init_stream(&stream, source, inflate_memcpy);
357         do {
358                 bfinal = pull_bit(&stream);
359                 btype = pull_bits(&stream, 2);
360                 if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
361                 else if (btype == DYNAMIC_COMP)
362                         decompress_dynamic(&stream, dest + stream.decoded);
363                 else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
364                 else stream.error = COMP_UNKNOWN;
365         } while (!bfinal && !stream.error);
366
367 #if 0
368         putstr("decompress_block start\r\n");
369         putLabeledWord("stream.error = ",stream.error);
370         putLabeledWord("stream.decoded = ",stream.decoded);
371         putLabeledWord("dest = ",dest);
372         putstr("decompress_block end\r\n");
373 #endif
374         return stream.error ? -stream.error : stream.decoded;
375 }