Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / fs / gfs2 / rgrp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK   (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK   (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50  * These routines are used by the resource group routines (rgrp.c)
51  * to keep track of block allocation.  Each block is represented by two
52  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53  *
54  * 0 = Free
55  * 1 = Used (not metadata)
56  * 2 = Unlinked (still in use) inode
57  * 3 = Used (metadata)
58  */
59
60 struct gfs2_extent {
61         struct gfs2_rbm rbm;
62         u32 len;
63 };
64
65 static const char valid_change[16] = {
66                 /* current */
67         /* n */ 0, 1, 1, 1,
68         /* e */ 1, 0, 0, 0,
69         /* w */ 0, 0, 0, 1,
70                 1, 0, 0, 0
71 };
72
73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
74                          const struct gfs2_inode *ip, bool nowrap);
75
76
77 /**
78  * gfs2_setbit - Set a bit in the bitmaps
79  * @rbm: The position of the bit to set
80  * @do_clone: Also set the clone bitmap, if it exists
81  * @new_state: the new state of the block
82  *
83  */
84
85 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
86                                unsigned char new_state)
87 {
88         unsigned char *byte1, *byte2, *end, cur_state;
89         struct gfs2_bitmap *bi = rbm_bi(rbm);
90         unsigned int buflen = bi->bi_bytes;
91         const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
92
93         byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
94         end = bi->bi_bh->b_data + bi->bi_offset + buflen;
95
96         BUG_ON(byte1 >= end);
97
98         cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
99
100         if (unlikely(!valid_change[new_state * 4 + cur_state])) {
101                 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
102
103                 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
104                         rbm->offset, cur_state, new_state);
105                 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
106                         (unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
107                         (unsigned long long)bi->bi_bh->b_blocknr);
108                 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
109                         bi->bi_offset, bi->bi_bytes,
110                         (unsigned long long)gfs2_rbm_to_block(rbm));
111                 dump_stack();
112                 gfs2_consist_rgrpd(rbm->rgd);
113                 return;
114         }
115         *byte1 ^= (cur_state ^ new_state) << bit;
116
117         if (do_clone && bi->bi_clone) {
118                 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
119                 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
120                 *byte2 ^= (cur_state ^ new_state) << bit;
121         }
122 }
123
124 /**
125  * gfs2_testbit - test a bit in the bitmaps
126  * @rbm: The bit to test
127  * @use_clone: If true, test the clone bitmap, not the official bitmap.
128  *
129  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
130  * not the "real" bitmaps, to avoid allocating recently freed blocks.
131  *
132  * Returns: The two bit block state of the requested bit
133  */
134
135 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
136 {
137         struct gfs2_bitmap *bi = rbm_bi(rbm);
138         const u8 *buffer;
139         const u8 *byte;
140         unsigned int bit;
141
142         if (use_clone && bi->bi_clone)
143                 buffer = bi->bi_clone;
144         else
145                 buffer = bi->bi_bh->b_data;
146         buffer += bi->bi_offset;
147         byte = buffer + (rbm->offset / GFS2_NBBY);
148         bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
149
150         return (*byte >> bit) & GFS2_BIT_MASK;
151 }
152
153 /**
154  * gfs2_bit_search
155  * @ptr: Pointer to bitmap data
156  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
157  * @state: The state we are searching for
158  *
159  * We xor the bitmap data with a patter which is the bitwise opposite
160  * of what we are looking for, this gives rise to a pattern of ones
161  * wherever there is a match. Since we have two bits per entry, we
162  * take this pattern, shift it down by one place and then and it with
163  * the original. All the even bit positions (0,2,4, etc) then represent
164  * successful matches, so we mask with 0x55555..... to remove the unwanted
165  * odd bit positions.
166  *
167  * This allows searching of a whole u64 at once (32 blocks) with a
168  * single test (on 64 bit arches).
169  */
170
171 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
172 {
173         u64 tmp;
174         static const u64 search[] = {
175                 [0] = 0xffffffffffffffffULL,
176                 [1] = 0xaaaaaaaaaaaaaaaaULL,
177                 [2] = 0x5555555555555555ULL,
178                 [3] = 0x0000000000000000ULL,
179         };
180         tmp = le64_to_cpu(*ptr) ^ search[state];
181         tmp &= (tmp >> 1);
182         tmp &= mask;
183         return tmp;
184 }
185
186 /**
187  * rs_cmp - multi-block reservation range compare
188  * @blk: absolute file system block number of the new reservation
189  * @len: number of blocks in the new reservation
190  * @rs: existing reservation to compare against
191  *
192  * returns: 1 if the block range is beyond the reach of the reservation
193  *         -1 if the block range is before the start of the reservation
194  *          0 if the block range overlaps with the reservation
195  */
196 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
197 {
198         u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
199
200         if (blk >= startblk + rs->rs_free)
201                 return 1;
202         if (blk + len - 1 < startblk)
203                 return -1;
204         return 0;
205 }
206
207 /**
208  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
209  *       a block in a given allocation state.
210  * @buf: the buffer that holds the bitmaps
211  * @len: the length (in bytes) of the buffer
212  * @goal: start search at this block's bit-pair (within @buffer)
213  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
214  *
215  * Scope of @goal and returned block number is only within this bitmap buffer,
216  * not entire rgrp or filesystem.  @buffer will be offset from the actual
217  * beginning of a bitmap block buffer, skipping any header structures, but
218  * headers are always a multiple of 64 bits long so that the buffer is
219  * always aligned to a 64 bit boundary.
220  *
221  * The size of the buffer is in bytes, but is it assumed that it is
222  * always ok to read a complete multiple of 64 bits at the end
223  * of the block in case the end is no aligned to a natural boundary.
224  *
225  * Return: the block number (bitmap buffer scope) that was found
226  */
227
228 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
229                        u32 goal, u8 state)
230 {
231         u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
232         const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
233         const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
234         u64 tmp;
235         u64 mask = 0x5555555555555555ULL;
236         u32 bit;
237
238         /* Mask off bits we don't care about at the start of the search */
239         mask <<= spoint;
240         tmp = gfs2_bit_search(ptr, mask, state);
241         ptr++;
242         while(tmp == 0 && ptr < end) {
243                 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
244                 ptr++;
245         }
246         /* Mask off any bits which are more than len bytes from the start */
247         if (ptr == end && (len & (sizeof(u64) - 1)))
248                 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
249         /* Didn't find anything, so return */
250         if (tmp == 0)
251                 return BFITNOENT;
252         ptr--;
253         bit = __ffs64(tmp);
254         bit /= 2;       /* two bits per entry in the bitmap */
255         return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
256 }
257
258 /**
259  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
260  * @rbm: The rbm with rgd already set correctly
261  * @block: The block number (filesystem relative)
262  *
263  * This sets the bi and offset members of an rbm based on a
264  * resource group and a filesystem relative block number. The
265  * resource group must be set in the rbm on entry, the bi and
266  * offset members will be set by this function.
267  *
268  * Returns: 0 on success, or an error code
269  */
270
271 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
272 {
273         if (!rgrp_contains_block(rbm->rgd, block))
274                 return -E2BIG;
275         rbm->bii = 0;
276         rbm->offset = block - rbm->rgd->rd_data0;
277         /* Check if the block is within the first block */
278         if (rbm->offset < rbm_bi(rbm)->bi_blocks)
279                 return 0;
280
281         /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
282         rbm->offset += (sizeof(struct gfs2_rgrp) -
283                         sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
284         rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
285         rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
286         return 0;
287 }
288
289 /**
290  * gfs2_rbm_incr - increment an rbm structure
291  * @rbm: The rbm with rgd already set correctly
292  *
293  * This function takes an existing rbm structure and increments it to the next
294  * viable block offset.
295  *
296  * Returns: If incrementing the offset would cause the rbm to go past the
297  *          end of the rgrp, true is returned, otherwise false.
298  *
299  */
300
301 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
302 {
303         if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
304                 rbm->offset++;
305                 return false;
306         }
307         if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
308                 return true;
309
310         rbm->offset = 0;
311         rbm->bii++;
312         return false;
313 }
314
315 /**
316  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
317  * @rbm: Position to search (value/result)
318  * @n_unaligned: Number of unaligned blocks to check
319  * @len: Decremented for each block found (terminate on zero)
320  *
321  * Returns: true if a non-free block is encountered
322  */
323
324 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
325 {
326         u32 n;
327         u8 res;
328
329         for (n = 0; n < n_unaligned; n++) {
330                 res = gfs2_testbit(rbm, true);
331                 if (res != GFS2_BLKST_FREE)
332                         return true;
333                 (*len)--;
334                 if (*len == 0)
335                         return true;
336                 if (gfs2_rbm_incr(rbm))
337                         return true;
338         }
339
340         return false;
341 }
342
343 /**
344  * gfs2_free_extlen - Return extent length of free blocks
345  * @rrbm: Starting position
346  * @len: Max length to check
347  *
348  * Starting at the block specified by the rbm, see how many free blocks
349  * there are, not reading more than len blocks ahead. This can be done
350  * using memchr_inv when the blocks are byte aligned, but has to be done
351  * on a block by block basis in case of unaligned blocks. Also this
352  * function can cope with bitmap boundaries (although it must stop on
353  * a resource group boundary)
354  *
355  * Returns: Number of free blocks in the extent
356  */
357
358 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
359 {
360         struct gfs2_rbm rbm = *rrbm;
361         u32 n_unaligned = rbm.offset & 3;
362         u32 size = len;
363         u32 bytes;
364         u32 chunk_size;
365         u8 *ptr, *start, *end;
366         u64 block;
367         struct gfs2_bitmap *bi;
368
369         if (n_unaligned &&
370             gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
371                 goto out;
372
373         n_unaligned = len & 3;
374         /* Start is now byte aligned */
375         while (len > 3) {
376                 bi = rbm_bi(&rbm);
377                 start = bi->bi_bh->b_data;
378                 if (bi->bi_clone)
379                         start = bi->bi_clone;
380                 start += bi->bi_offset;
381                 end = start + bi->bi_bytes;
382                 BUG_ON(rbm.offset & 3);
383                 start += (rbm.offset / GFS2_NBBY);
384                 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
385                 ptr = memchr_inv(start, 0, bytes);
386                 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
387                 chunk_size *= GFS2_NBBY;
388                 BUG_ON(len < chunk_size);
389                 len -= chunk_size;
390                 block = gfs2_rbm_to_block(&rbm);
391                 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
392                         n_unaligned = 0;
393                         break;
394                 }
395                 if (ptr) {
396                         n_unaligned = 3;
397                         break;
398                 }
399                 n_unaligned = len & 3;
400         }
401
402         /* Deal with any bits left over at the end */
403         if (n_unaligned)
404                 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
405 out:
406         return size - len;
407 }
408
409 /**
410  * gfs2_bitcount - count the number of bits in a certain state
411  * @rgd: the resource group descriptor
412  * @buffer: the buffer that holds the bitmaps
413  * @buflen: the length (in bytes) of the buffer
414  * @state: the state of the block we're looking for
415  *
416  * Returns: The number of bits
417  */
418
419 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
420                          unsigned int buflen, u8 state)
421 {
422         const u8 *byte = buffer;
423         const u8 *end = buffer + buflen;
424         const u8 state1 = state << 2;
425         const u8 state2 = state << 4;
426         const u8 state3 = state << 6;
427         u32 count = 0;
428
429         for (; byte < end; byte++) {
430                 if (((*byte) & 0x03) == state)
431                         count++;
432                 if (((*byte) & 0x0C) == state1)
433                         count++;
434                 if (((*byte) & 0x30) == state2)
435                         count++;
436                 if (((*byte) & 0xC0) == state3)
437                         count++;
438         }
439
440         return count;
441 }
442
443 /**
444  * gfs2_rgrp_verify - Verify that a resource group is consistent
445  * @rgd: the rgrp
446  *
447  */
448
449 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
450 {
451         struct gfs2_sbd *sdp = rgd->rd_sbd;
452         struct gfs2_bitmap *bi = NULL;
453         u32 length = rgd->rd_length;
454         u32 count[4], tmp;
455         int buf, x;
456
457         memset(count, 0, 4 * sizeof(u32));
458
459         /* Count # blocks in each of 4 possible allocation states */
460         for (buf = 0; buf < length; buf++) {
461                 bi = rgd->rd_bits + buf;
462                 for (x = 0; x < 4; x++)
463                         count[x] += gfs2_bitcount(rgd,
464                                                   bi->bi_bh->b_data +
465                                                   bi->bi_offset,
466                                                   bi->bi_bytes, x);
467         }
468
469         if (count[0] != rgd->rd_free) {
470                 if (gfs2_consist_rgrpd(rgd))
471                         fs_err(sdp, "free data mismatch:  %u != %u\n",
472                                count[0], rgd->rd_free);
473                 return;
474         }
475
476         tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
477         if (count[1] != tmp) {
478                 if (gfs2_consist_rgrpd(rgd))
479                         fs_err(sdp, "used data mismatch:  %u != %u\n",
480                                count[1], tmp);
481                 return;
482         }
483
484         if (count[2] + count[3] != rgd->rd_dinodes) {
485                 if (gfs2_consist_rgrpd(rgd))
486                         fs_err(sdp, "used metadata mismatch:  %u != %u\n",
487                                count[2] + count[3], rgd->rd_dinodes);
488                 return;
489         }
490 }
491
492 /**
493  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
494  * @sdp: The GFS2 superblock
495  * @blk: The data block number
496  * @exact: True if this needs to be an exact match
497  *
498  * The @exact argument should be set to true by most callers. The exception
499  * is when we need to match blocks which are not represented by the rgrp
500  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
501  * there for alignment purposes. Another way of looking at it is that @exact
502  * matches only valid data/metadata blocks, but with @exact false, it will
503  * match any block within the extent of the rgrp.
504  *
505  * Returns: The resource group, or NULL if not found
506  */
507
508 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
509 {
510         struct rb_node *n, *next;
511         struct gfs2_rgrpd *cur;
512
513         spin_lock(&sdp->sd_rindex_spin);
514         n = sdp->sd_rindex_tree.rb_node;
515         while (n) {
516                 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
517                 next = NULL;
518                 if (blk < cur->rd_addr)
519                         next = n->rb_left;
520                 else if (blk >= cur->rd_data0 + cur->rd_data)
521                         next = n->rb_right;
522                 if (next == NULL) {
523                         spin_unlock(&sdp->sd_rindex_spin);
524                         if (exact) {
525                                 if (blk < cur->rd_addr)
526                                         return NULL;
527                                 if (blk >= cur->rd_data0 + cur->rd_data)
528                                         return NULL;
529                         }
530                         return cur;
531                 }
532                 n = next;
533         }
534         spin_unlock(&sdp->sd_rindex_spin);
535
536         return NULL;
537 }
538
539 /**
540  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
541  * @sdp: The GFS2 superblock
542  *
543  * Returns: The first rgrp in the filesystem
544  */
545
546 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
547 {
548         const struct rb_node *n;
549         struct gfs2_rgrpd *rgd;
550
551         spin_lock(&sdp->sd_rindex_spin);
552         n = rb_first(&sdp->sd_rindex_tree);
553         rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
554         spin_unlock(&sdp->sd_rindex_spin);
555
556         return rgd;
557 }
558
559 /**
560  * gfs2_rgrpd_get_next - get the next RG
561  * @rgd: the resource group descriptor
562  *
563  * Returns: The next rgrp
564  */
565
566 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
567 {
568         struct gfs2_sbd *sdp = rgd->rd_sbd;
569         const struct rb_node *n;
570
571         spin_lock(&sdp->sd_rindex_spin);
572         n = rb_next(&rgd->rd_node);
573         if (n == NULL)
574                 n = rb_first(&sdp->sd_rindex_tree);
575
576         if (unlikely(&rgd->rd_node == n)) {
577                 spin_unlock(&sdp->sd_rindex_spin);
578                 return NULL;
579         }
580         rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
581         spin_unlock(&sdp->sd_rindex_spin);
582         return rgd;
583 }
584
585 void check_and_update_goal(struct gfs2_inode *ip)
586 {
587         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
588         if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
589                 ip->i_goal = ip->i_no_addr;
590 }
591
592 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
593 {
594         int x;
595
596         for (x = 0; x < rgd->rd_length; x++) {
597                 struct gfs2_bitmap *bi = rgd->rd_bits + x;
598                 kfree(bi->bi_clone);
599                 bi->bi_clone = NULL;
600         }
601 }
602
603 /**
604  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
605  *                 plus a quota allocations data structure, if necessary
606  * @ip: the inode for this reservation
607  */
608 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
609 {
610         return gfs2_qa_alloc(ip);
611 }
612
613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
614                     const char *fs_id_buf)
615 {
616         struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
617
618         gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
619                        (unsigned long long)ip->i_no_addr,
620                        (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
621                        rs->rs_rbm.offset, rs->rs_free);
622 }
623
624 /**
625  * __rs_deltree - remove a multi-block reservation from the rgd tree
626  * @rs: The reservation to remove
627  *
628  */
629 static void __rs_deltree(struct gfs2_blkreserv *rs)
630 {
631         struct gfs2_rgrpd *rgd;
632
633         if (!gfs2_rs_active(rs))
634                 return;
635
636         rgd = rs->rs_rbm.rgd;
637         trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
638         rb_erase(&rs->rs_node, &rgd->rd_rstree);
639         RB_CLEAR_NODE(&rs->rs_node);
640
641         if (rs->rs_free) {
642                 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
643                                  rs->rs_free - 1;
644                 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
645                 struct gfs2_bitmap *start, *last;
646
647                 /* return reserved blocks to the rgrp */
648                 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
649                 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
650                 /* The rgrp extent failure point is likely not to increase;
651                    it will only do so if the freed blocks are somehow
652                    contiguous with a span of free blocks that follows. Still,
653                    it will force the number to be recalculated later. */
654                 rgd->rd_extfail_pt += rs->rs_free;
655                 rs->rs_free = 0;
656                 if (gfs2_rbm_from_block(&last_rbm, last_block))
657                         return;
658                 start = rbm_bi(&rs->rs_rbm);
659                 last = rbm_bi(&last_rbm);
660                 do
661                         clear_bit(GBF_FULL, &start->bi_flags);
662                 while (start++ != last);
663         }
664 }
665
666 /**
667  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
668  * @rs: The reservation to remove
669  *
670  */
671 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
672 {
673         struct gfs2_rgrpd *rgd;
674
675         rgd = rs->rs_rbm.rgd;
676         if (rgd) {
677                 spin_lock(&rgd->rd_rsspin);
678                 __rs_deltree(rs);
679                 BUG_ON(rs->rs_free);
680                 spin_unlock(&rgd->rd_rsspin);
681         }
682 }
683
684 /**
685  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
686  * @ip: The inode for this reservation
687  * @wcount: The inode's write count, or NULL
688  *
689  */
690 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
691 {
692         down_write(&ip->i_rw_mutex);
693         if ((wcount == NULL) || (atomic_read(wcount) <= 1))
694                 gfs2_rs_deltree(&ip->i_res);
695         up_write(&ip->i_rw_mutex);
696         gfs2_qa_delete(ip, wcount);
697 }
698
699 /**
700  * return_all_reservations - return all reserved blocks back to the rgrp.
701  * @rgd: the rgrp that needs its space back
702  *
703  * We previously reserved a bunch of blocks for allocation. Now we need to
704  * give them back. This leave the reservation structures in tact, but removes
705  * all of their corresponding "no-fly zones".
706  */
707 static void return_all_reservations(struct gfs2_rgrpd *rgd)
708 {
709         struct rb_node *n;
710         struct gfs2_blkreserv *rs;
711
712         spin_lock(&rgd->rd_rsspin);
713         while ((n = rb_first(&rgd->rd_rstree))) {
714                 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
715                 __rs_deltree(rs);
716         }
717         spin_unlock(&rgd->rd_rsspin);
718 }
719
720 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
721 {
722         struct rb_node *n;
723         struct gfs2_rgrpd *rgd;
724         struct gfs2_glock *gl;
725
726         while ((n = rb_first(&sdp->sd_rindex_tree))) {
727                 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
728                 gl = rgd->rd_gl;
729
730                 rb_erase(n, &sdp->sd_rindex_tree);
731
732                 if (gl) {
733                         glock_clear_object(gl, rgd);
734                         gfs2_rgrp_brelse(rgd);
735                         gfs2_glock_put(gl);
736                 }
737
738                 gfs2_free_clones(rgd);
739                 kfree(rgd->rd_bits);
740                 rgd->rd_bits = NULL;
741                 return_all_reservations(rgd);
742                 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743         }
744 }
745
746 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
747 {
748         struct gfs2_sbd *sdp = rgd->rd_sbd;
749
750         fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
751         fs_info(sdp, "ri_length = %u\n", rgd->rd_length);
752         fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
753         fs_info(sdp, "ri_data = %u\n", rgd->rd_data);
754         fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes);
755 }
756
757 /**
758  * gfs2_compute_bitstructs - Compute the bitmap sizes
759  * @rgd: The resource group descriptor
760  *
761  * Calculates bitmap descriptors, one for each block that contains bitmap data
762  *
763  * Returns: errno
764  */
765
766 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
767 {
768         struct gfs2_sbd *sdp = rgd->rd_sbd;
769         struct gfs2_bitmap *bi;
770         u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
771         u32 bytes_left, bytes;
772         int x;
773
774         if (!length)
775                 return -EINVAL;
776
777         rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
778         if (!rgd->rd_bits)
779                 return -ENOMEM;
780
781         bytes_left = rgd->rd_bitbytes;
782
783         for (x = 0; x < length; x++) {
784                 bi = rgd->rd_bits + x;
785
786                 bi->bi_flags = 0;
787                 /* small rgrp; bitmap stored completely in header block */
788                 if (length == 1) {
789                         bytes = bytes_left;
790                         bi->bi_offset = sizeof(struct gfs2_rgrp);
791                         bi->bi_start = 0;
792                         bi->bi_bytes = bytes;
793                         bi->bi_blocks = bytes * GFS2_NBBY;
794                 /* header block */
795                 } else if (x == 0) {
796                         bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
797                         bi->bi_offset = sizeof(struct gfs2_rgrp);
798                         bi->bi_start = 0;
799                         bi->bi_bytes = bytes;
800                         bi->bi_blocks = bytes * GFS2_NBBY;
801                 /* last block */
802                 } else if (x + 1 == length) {
803                         bytes = bytes_left;
804                         bi->bi_offset = sizeof(struct gfs2_meta_header);
805                         bi->bi_start = rgd->rd_bitbytes - bytes_left;
806                         bi->bi_bytes = bytes;
807                         bi->bi_blocks = bytes * GFS2_NBBY;
808                 /* other blocks */
809                 } else {
810                         bytes = sdp->sd_sb.sb_bsize -
811                                 sizeof(struct gfs2_meta_header);
812                         bi->bi_offset = sizeof(struct gfs2_meta_header);
813                         bi->bi_start = rgd->rd_bitbytes - bytes_left;
814                         bi->bi_bytes = bytes;
815                         bi->bi_blocks = bytes * GFS2_NBBY;
816                 }
817
818                 bytes_left -= bytes;
819         }
820
821         if (bytes_left) {
822                 gfs2_consist_rgrpd(rgd);
823                 return -EIO;
824         }
825         bi = rgd->rd_bits + (length - 1);
826         if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
827                 if (gfs2_consist_rgrpd(rgd)) {
828                         gfs2_rindex_print(rgd);
829                         fs_err(sdp, "start=%u len=%u offset=%u\n",
830                                bi->bi_start, bi->bi_bytes, bi->bi_offset);
831                 }
832                 return -EIO;
833         }
834
835         return 0;
836 }
837
838 /**
839  * gfs2_ri_total - Total up the file system space, according to the rindex.
840  * @sdp: the filesystem
841  *
842  */
843 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
844 {
845         u64 total_data = 0;     
846         struct inode *inode = sdp->sd_rindex;
847         struct gfs2_inode *ip = GFS2_I(inode);
848         char buf[sizeof(struct gfs2_rindex)];
849         int error, rgrps;
850
851         for (rgrps = 0;; rgrps++) {
852                 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
853
854                 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
855                         break;
856                 error = gfs2_internal_read(ip, buf, &pos,
857                                            sizeof(struct gfs2_rindex));
858                 if (error != sizeof(struct gfs2_rindex))
859                         break;
860                 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
861         }
862         return total_data;
863 }
864
865 static int rgd_insert(struct gfs2_rgrpd *rgd)
866 {
867         struct gfs2_sbd *sdp = rgd->rd_sbd;
868         struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
869
870         /* Figure out where to put new node */
871         while (*newn) {
872                 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
873                                                   rd_node);
874
875                 parent = *newn;
876                 if (rgd->rd_addr < cur->rd_addr)
877                         newn = &((*newn)->rb_left);
878                 else if (rgd->rd_addr > cur->rd_addr)
879                         newn = &((*newn)->rb_right);
880                 else
881                         return -EEXIST;
882         }
883
884         rb_link_node(&rgd->rd_node, parent, newn);
885         rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
886         sdp->sd_rgrps++;
887         return 0;
888 }
889
890 /**
891  * read_rindex_entry - Pull in a new resource index entry from the disk
892  * @ip: Pointer to the rindex inode
893  *
894  * Returns: 0 on success, > 0 on EOF, error code otherwise
895  */
896
897 static int read_rindex_entry(struct gfs2_inode *ip)
898 {
899         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
900         const unsigned bsize = sdp->sd_sb.sb_bsize;
901         loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
902         struct gfs2_rindex buf;
903         int error;
904         struct gfs2_rgrpd *rgd;
905
906         if (pos >= i_size_read(&ip->i_inode))
907                 return 1;
908
909         error = gfs2_internal_read(ip, (char *)&buf, &pos,
910                                    sizeof(struct gfs2_rindex));
911
912         if (error != sizeof(struct gfs2_rindex))
913                 return (error == 0) ? 1 : error;
914
915         rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
916         error = -ENOMEM;
917         if (!rgd)
918                 return error;
919
920         rgd->rd_sbd = sdp;
921         rgd->rd_addr = be64_to_cpu(buf.ri_addr);
922         rgd->rd_length = be32_to_cpu(buf.ri_length);
923         rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
924         rgd->rd_data = be32_to_cpu(buf.ri_data);
925         rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
926         spin_lock_init(&rgd->rd_rsspin);
927
928         error = compute_bitstructs(rgd);
929         if (error)
930                 goto fail;
931
932         error = gfs2_glock_get(sdp, rgd->rd_addr,
933                                &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
934         if (error)
935                 goto fail;
936
937         rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
938         rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
939         if (rgd->rd_data > sdp->sd_max_rg_data)
940                 sdp->sd_max_rg_data = rgd->rd_data;
941         spin_lock(&sdp->sd_rindex_spin);
942         error = rgd_insert(rgd);
943         spin_unlock(&sdp->sd_rindex_spin);
944         if (!error) {
945                 glock_set_object(rgd->rd_gl, rgd);
946                 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
947                 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
948                                                     rgd->rd_length) * bsize) - 1;
949                 return 0;
950         }
951
952         error = 0; /* someone else read in the rgrp; free it and ignore it */
953         gfs2_glock_put(rgd->rd_gl);
954
955 fail:
956         kfree(rgd->rd_bits);
957         rgd->rd_bits = NULL;
958         kmem_cache_free(gfs2_rgrpd_cachep, rgd);
959         return error;
960 }
961
962 /**
963  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
964  * @sdp: the GFS2 superblock
965  *
966  * The purpose of this function is to select a subset of the resource groups
967  * and mark them as PREFERRED. We do it in such a way that each node prefers
968  * to use a unique set of rgrps to minimize glock contention.
969  */
970 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
971 {
972         struct gfs2_rgrpd *rgd, *first;
973         int i;
974
975         /* Skip an initial number of rgrps, based on this node's journal ID.
976            That should start each node out on its own set. */
977         rgd = gfs2_rgrpd_get_first(sdp);
978         for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
979                 rgd = gfs2_rgrpd_get_next(rgd);
980         first = rgd;
981
982         do {
983                 rgd->rd_flags |= GFS2_RDF_PREFERRED;
984                 for (i = 0; i < sdp->sd_journals; i++) {
985                         rgd = gfs2_rgrpd_get_next(rgd);
986                         if (!rgd || rgd == first)
987                                 break;
988                 }
989         } while (rgd && rgd != first);
990 }
991
992 /**
993  * gfs2_ri_update - Pull in a new resource index from the disk
994  * @ip: pointer to the rindex inode
995  *
996  * Returns: 0 on successful update, error code otherwise
997  */
998
999 static int gfs2_ri_update(struct gfs2_inode *ip)
1000 {
1001         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1002         int error;
1003
1004         do {
1005                 error = read_rindex_entry(ip);
1006         } while (error == 0);
1007
1008         if (error < 0)
1009                 return error;
1010
1011         set_rgrp_preferences(sdp);
1012
1013         sdp->sd_rindex_uptodate = 1;
1014         return 0;
1015 }
1016
1017 /**
1018  * gfs2_rindex_update - Update the rindex if required
1019  * @sdp: The GFS2 superblock
1020  *
1021  * We grab a lock on the rindex inode to make sure that it doesn't
1022  * change whilst we are performing an operation. We keep this lock
1023  * for quite long periods of time compared to other locks. This
1024  * doesn't matter, since it is shared and it is very, very rarely
1025  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026  *
1027  * This makes sure that we're using the latest copy of the resource index
1028  * special file, which might have been updated if someone expanded the
1029  * filesystem (via gfs2_grow utility), which adds new resource groups.
1030  *
1031  * Returns: 0 on succeess, error code otherwise
1032  */
1033
1034 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035 {
1036         struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037         struct gfs2_glock *gl = ip->i_gl;
1038         struct gfs2_holder ri_gh;
1039         int error = 0;
1040         int unlock_required = 0;
1041
1042         /* Read new copy from disk if we don't have the latest */
1043         if (!sdp->sd_rindex_uptodate) {
1044                 if (!gfs2_glock_is_locked_by_me(gl)) {
1045                         error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046                         if (error)
1047                                 return error;
1048                         unlock_required = 1;
1049                 }
1050                 if (!sdp->sd_rindex_uptodate)
1051                         error = gfs2_ri_update(ip);
1052                 if (unlock_required)
1053                         gfs2_glock_dq_uninit(&ri_gh);
1054         }
1055
1056         return error;
1057 }
1058
1059 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060 {
1061         const struct gfs2_rgrp *str = buf;
1062         u32 rg_flags;
1063
1064         rg_flags = be32_to_cpu(str->rg_flags);
1065         rg_flags &= ~GFS2_RDF_MASK;
1066         rgd->rd_flags &= GFS2_RDF_MASK;
1067         rgd->rd_flags |= rg_flags;
1068         rgd->rd_free = be32_to_cpu(str->rg_free);
1069         rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070         rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071         /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072 }
1073
1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075 {
1076         const struct gfs2_rgrp *str = buf;
1077
1078         rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079         rgl->rl_flags = str->rg_flags;
1080         rgl->rl_free = str->rg_free;
1081         rgl->rl_dinodes = str->rg_dinodes;
1082         rgl->rl_igeneration = str->rg_igeneration;
1083         rgl->__pad = 0UL;
1084 }
1085
1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087 {
1088         struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089         struct gfs2_rgrp *str = buf;
1090         u32 crc;
1091
1092         str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093         str->rg_free = cpu_to_be32(rgd->rd_free);
1094         str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095         if (next == NULL)
1096                 str->rg_skip = 0;
1097         else if (next->rd_addr > rgd->rd_addr)
1098                 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099         str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100         str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101         str->rg_data = cpu_to_be32(rgd->rd_data);
1102         str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103         str->rg_crc = 0;
1104         crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105         str->rg_crc = cpu_to_be32(crc);
1106
1107         memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108         gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109 }
1110
1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112 {
1113         struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114         struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115         struct gfs2_sbd *sdp = rgd->rd_sbd;
1116         int valid = 1;
1117
1118         if (rgl->rl_flags != str->rg_flags) {
1119                 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120                         (unsigned long long)rgd->rd_addr,
1121                        be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122                 valid = 0;
1123         }
1124         if (rgl->rl_free != str->rg_free) {
1125                 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126                         (unsigned long long)rgd->rd_addr,
1127                         be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128                 valid = 0;
1129         }
1130         if (rgl->rl_dinodes != str->rg_dinodes) {
1131                 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132                         (unsigned long long)rgd->rd_addr,
1133                         be32_to_cpu(rgl->rl_dinodes),
1134                         be32_to_cpu(str->rg_dinodes));
1135                 valid = 0;
1136         }
1137         if (rgl->rl_igeneration != str->rg_igeneration) {
1138                 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139                         (unsigned long long)rgd->rd_addr,
1140                         (unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141                         (unsigned long long)be64_to_cpu(str->rg_igeneration));
1142                 valid = 0;
1143         }
1144         return valid;
1145 }
1146
1147 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148 {
1149         struct gfs2_bitmap *bi;
1150         const u32 length = rgd->rd_length;
1151         const u8 *buffer = NULL;
1152         u32 i, goal, count = 0;
1153
1154         for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155                 goal = 0;
1156                 buffer = bi->bi_bh->b_data + bi->bi_offset;
1157                 WARN_ON(!buffer_uptodate(bi->bi_bh));
1158                 while (goal < bi->bi_blocks) {
1159                         goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160                                            GFS2_BLKST_UNLINKED);
1161                         if (goal == BFITNOENT)
1162                                 break;
1163                         count++;
1164                         goal++;
1165                 }
1166         }
1167
1168         return count;
1169 }
1170
1171
1172 /**
1173  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1174  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1175  *
1176  * Read in all of a Resource Group's header and bitmap blocks.
1177  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1178  *
1179  * Returns: errno
1180  */
1181
1182 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1183 {
1184         struct gfs2_sbd *sdp = rgd->rd_sbd;
1185         struct gfs2_glock *gl = rgd->rd_gl;
1186         unsigned int length = rgd->rd_length;
1187         struct gfs2_bitmap *bi;
1188         unsigned int x, y;
1189         int error;
1190
1191         if (rgd->rd_bits[0].bi_bh != NULL)
1192                 return 0;
1193
1194         for (x = 0; x < length; x++) {
1195                 bi = rgd->rd_bits + x;
1196                 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1197                 if (error)
1198                         goto fail;
1199         }
1200
1201         for (y = length; y--;) {
1202                 bi = rgd->rd_bits + y;
1203                 error = gfs2_meta_wait(sdp, bi->bi_bh);
1204                 if (error)
1205                         goto fail;
1206                 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1207                                               GFS2_METATYPE_RG)) {
1208                         error = -EIO;
1209                         goto fail;
1210                 }
1211         }
1212
1213         if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1214                 for (x = 0; x < length; x++)
1215                         clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1216                 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1217                 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1218                 rgd->rd_free_clone = rgd->rd_free;
1219                 /* max out the rgrp allocation failure point */
1220                 rgd->rd_extfail_pt = rgd->rd_free;
1221         }
1222         if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1223                 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1224                 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1225                                      rgd->rd_bits[0].bi_bh->b_data);
1226         }
1227         else if (sdp->sd_args.ar_rgrplvb) {
1228                 if (!gfs2_rgrp_lvb_valid(rgd)){
1229                         gfs2_consist_rgrpd(rgd);
1230                         error = -EIO;
1231                         goto fail;
1232                 }
1233                 if (rgd->rd_rgl->rl_unlinked == 0)
1234                         rgd->rd_flags &= ~GFS2_RDF_CHECK;
1235         }
1236         return 0;
1237
1238 fail:
1239         while (x--) {
1240                 bi = rgd->rd_bits + x;
1241                 brelse(bi->bi_bh);
1242                 bi->bi_bh = NULL;
1243                 gfs2_assert_warn(sdp, !bi->bi_clone);
1244         }
1245
1246         return error;
1247 }
1248
1249 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1250 {
1251         u32 rl_flags;
1252
1253         if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1254                 return 0;
1255
1256         if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1257                 return gfs2_rgrp_bh_get(rgd);
1258
1259         rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1260         rl_flags &= ~GFS2_RDF_MASK;
1261         rgd->rd_flags &= GFS2_RDF_MASK;
1262         rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1263         if (rgd->rd_rgl->rl_unlinked == 0)
1264                 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1265         rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1266         rgd->rd_free_clone = rgd->rd_free;
1267         rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1268         rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1269         return 0;
1270 }
1271
1272 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1273 {
1274         struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1275         struct gfs2_sbd *sdp = rgd->rd_sbd;
1276
1277         if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1278                 return 0;
1279         return gfs2_rgrp_bh_get(rgd);
1280 }
1281
1282 /**
1283  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1284  * @rgd: The resource group
1285  *
1286  */
1287
1288 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1289 {
1290         int x, length = rgd->rd_length;
1291
1292         for (x = 0; x < length; x++) {
1293                 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1294                 if (bi->bi_bh) {
1295                         brelse(bi->bi_bh);
1296                         bi->bi_bh = NULL;
1297                 }
1298         }
1299
1300 }
1301
1302 /**
1303  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1304  * @gh: The glock holder for the resource group
1305  *
1306  */
1307
1308 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1309 {
1310         struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1311         int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1312                 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1313
1314         if (rgd && demote_requested)
1315                 gfs2_rgrp_brelse(rgd);
1316 }
1317
1318 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1319                              struct buffer_head *bh,
1320                              const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1321 {
1322         struct super_block *sb = sdp->sd_vfs;
1323         u64 blk;
1324         sector_t start = 0;
1325         sector_t nr_blks = 0;
1326         int rv;
1327         unsigned int x;
1328         u32 trimmed = 0;
1329         u8 diff;
1330
1331         for (x = 0; x < bi->bi_bytes; x++) {
1332                 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1333                 clone += bi->bi_offset;
1334                 clone += x;
1335                 if (bh) {
1336                         const u8 *orig = bh->b_data + bi->bi_offset + x;
1337                         diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1338                 } else {
1339                         diff = ~(*clone | (*clone >> 1));
1340                 }
1341                 diff &= 0x55;
1342                 if (diff == 0)
1343                         continue;
1344                 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1345                 while(diff) {
1346                         if (diff & 1) {
1347                                 if (nr_blks == 0)
1348                                         goto start_new_extent;
1349                                 if ((start + nr_blks) != blk) {
1350                                         if (nr_blks >= minlen) {
1351                                                 rv = sb_issue_discard(sb,
1352                                                         start, nr_blks,
1353                                                         GFP_NOFS, 0);
1354                                                 if (rv)
1355                                                         goto fail;
1356                                                 trimmed += nr_blks;
1357                                         }
1358                                         nr_blks = 0;
1359 start_new_extent:
1360                                         start = blk;
1361                                 }
1362                                 nr_blks++;
1363                         }
1364                         diff >>= 2;
1365                         blk++;
1366                 }
1367         }
1368         if (nr_blks >= minlen) {
1369                 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1370                 if (rv)
1371                         goto fail;
1372                 trimmed += nr_blks;
1373         }
1374         if (ptrimmed)
1375                 *ptrimmed = trimmed;
1376         return 0;
1377
1378 fail:
1379         if (sdp->sd_args.ar_discard)
1380                 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1381         sdp->sd_args.ar_discard = 0;
1382         return -EIO;
1383 }
1384
1385 /**
1386  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1387  * @filp: Any file on the filesystem
1388  * @argp: Pointer to the arguments (also used to pass result)
1389  *
1390  * Returns: 0 on success, otherwise error code
1391  */
1392
1393 int gfs2_fitrim(struct file *filp, void __user *argp)
1394 {
1395         struct inode *inode = file_inode(filp);
1396         struct gfs2_sbd *sdp = GFS2_SB(inode);
1397         struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1398         struct buffer_head *bh;
1399         struct gfs2_rgrpd *rgd;
1400         struct gfs2_rgrpd *rgd_end;
1401         struct gfs2_holder gh;
1402         struct fstrim_range r;
1403         int ret = 0;
1404         u64 amt;
1405         u64 trimmed = 0;
1406         u64 start, end, minlen;
1407         unsigned int x;
1408         unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1409
1410         if (!capable(CAP_SYS_ADMIN))
1411                 return -EPERM;
1412
1413         if (!blk_queue_discard(q))
1414                 return -EOPNOTSUPP;
1415
1416         if (copy_from_user(&r, argp, sizeof(r)))
1417                 return -EFAULT;
1418
1419         ret = gfs2_rindex_update(sdp);
1420         if (ret)
1421                 return ret;
1422
1423         start = r.start >> bs_shift;
1424         end = start + (r.len >> bs_shift);
1425         minlen = max_t(u64, r.minlen,
1426                        q->limits.discard_granularity) >> bs_shift;
1427
1428         if (end <= start || minlen > sdp->sd_max_rg_data)
1429                 return -EINVAL;
1430
1431         rgd = gfs2_blk2rgrpd(sdp, start, 0);
1432         rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1433
1434         if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1435             && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1436                 return -EINVAL; /* start is beyond the end of the fs */
1437
1438         while (1) {
1439
1440                 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1441                 if (ret)
1442                         goto out;
1443
1444                 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1445                         /* Trim each bitmap in the rgrp */
1446                         for (x = 0; x < rgd->rd_length; x++) {
1447                                 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1448                                 ret = gfs2_rgrp_send_discards(sdp,
1449                                                 rgd->rd_data0, NULL, bi, minlen,
1450                                                 &amt);
1451                                 if (ret) {
1452                                         gfs2_glock_dq_uninit(&gh);
1453                                         goto out;
1454                                 }
1455                                 trimmed += amt;
1456                         }
1457
1458                         /* Mark rgrp as having been trimmed */
1459                         ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1460                         if (ret == 0) {
1461                                 bh = rgd->rd_bits[0].bi_bh;
1462                                 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1463                                 gfs2_trans_add_meta(rgd->rd_gl, bh);
1464                                 gfs2_rgrp_out(rgd, bh->b_data);
1465                                 gfs2_trans_end(sdp);
1466                         }
1467                 }
1468                 gfs2_glock_dq_uninit(&gh);
1469
1470                 if (rgd == rgd_end)
1471                         break;
1472
1473                 rgd = gfs2_rgrpd_get_next(rgd);
1474         }
1475
1476 out:
1477         r.len = trimmed << bs_shift;
1478         if (copy_to_user(argp, &r, sizeof(r)))
1479                 return -EFAULT;
1480
1481         return ret;
1482 }
1483
1484 /**
1485  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1486  * @ip: the inode structure
1487  *
1488  */
1489 static void rs_insert(struct gfs2_inode *ip)
1490 {
1491         struct rb_node **newn, *parent = NULL;
1492         int rc;
1493         struct gfs2_blkreserv *rs = &ip->i_res;
1494         struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1495         u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1496
1497         BUG_ON(gfs2_rs_active(rs));
1498
1499         spin_lock(&rgd->rd_rsspin);
1500         newn = &rgd->rd_rstree.rb_node;
1501         while (*newn) {
1502                 struct gfs2_blkreserv *cur =
1503                         rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1504
1505                 parent = *newn;
1506                 rc = rs_cmp(fsblock, rs->rs_free, cur);
1507                 if (rc > 0)
1508                         newn = &((*newn)->rb_right);
1509                 else if (rc < 0)
1510                         newn = &((*newn)->rb_left);
1511                 else {
1512                         spin_unlock(&rgd->rd_rsspin);
1513                         WARN_ON(1);
1514                         return;
1515                 }
1516         }
1517
1518         rb_link_node(&rs->rs_node, parent, newn);
1519         rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1520
1521         /* Do our rgrp accounting for the reservation */
1522         rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1523         spin_unlock(&rgd->rd_rsspin);
1524         trace_gfs2_rs(rs, TRACE_RS_INSERT);
1525 }
1526
1527 /**
1528  * rgd_free - return the number of free blocks we can allocate.
1529  * @rgd: the resource group
1530  *
1531  * This function returns the number of free blocks for an rgrp.
1532  * That's the clone-free blocks (blocks that are free, not including those
1533  * still being used for unlinked files that haven't been deleted.)
1534  *
1535  * It also subtracts any blocks reserved by someone else, but does not
1536  * include free blocks that are still part of our current reservation,
1537  * because obviously we can (and will) allocate them.
1538  */
1539 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1540 {
1541         u32 tot_reserved, tot_free;
1542
1543         if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1544                 return 0;
1545         tot_reserved = rgd->rd_reserved - rs->rs_free;
1546
1547         if (rgd->rd_free_clone < tot_reserved)
1548                 tot_reserved = 0;
1549
1550         tot_free = rgd->rd_free_clone - tot_reserved;
1551
1552         return tot_free;
1553 }
1554
1555 /**
1556  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1557  * @rgd: the resource group descriptor
1558  * @ip: pointer to the inode for which we're reserving blocks
1559  * @ap: the allocation parameters
1560  *
1561  */
1562
1563 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1564                            const struct gfs2_alloc_parms *ap)
1565 {
1566         struct gfs2_rbm rbm = { .rgd = rgd, };
1567         u64 goal;
1568         struct gfs2_blkreserv *rs = &ip->i_res;
1569         u32 extlen;
1570         u32 free_blocks = rgd_free(rgd, rs);
1571         int ret;
1572         struct inode *inode = &ip->i_inode;
1573
1574         if (S_ISDIR(inode->i_mode))
1575                 extlen = 1;
1576         else {
1577                 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1578                 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1579         }
1580         if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1581                 return;
1582
1583         /* Find bitmap block that contains bits for goal block */
1584         if (rgrp_contains_block(rgd, ip->i_goal))
1585                 goal = ip->i_goal;
1586         else
1587                 goal = rgd->rd_last_alloc + rgd->rd_data0;
1588
1589         if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1590                 return;
1591
1592         ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1593         if (ret == 0) {
1594                 rs->rs_rbm = rbm;
1595                 rs->rs_free = extlen;
1596                 rs_insert(ip);
1597         } else {
1598                 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1599                         rgd->rd_last_alloc = 0;
1600         }
1601 }
1602
1603 /**
1604  * gfs2_next_unreserved_block - Return next block that is not reserved
1605  * @rgd: The resource group
1606  * @block: The starting block
1607  * @length: The required length
1608  * @ip: Ignore any reservations for this inode
1609  *
1610  * If the block does not appear in any reservation, then return the
1611  * block number unchanged. If it does appear in the reservation, then
1612  * keep looking through the tree of reservations in order to find the
1613  * first block number which is not reserved.
1614  */
1615
1616 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1617                                       u32 length,
1618                                       const struct gfs2_inode *ip)
1619 {
1620         struct gfs2_blkreserv *rs;
1621         struct rb_node *n;
1622         int rc;
1623
1624         spin_lock(&rgd->rd_rsspin);
1625         n = rgd->rd_rstree.rb_node;
1626         while (n) {
1627                 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1628                 rc = rs_cmp(block, length, rs);
1629                 if (rc < 0)
1630                         n = n->rb_left;
1631                 else if (rc > 0)
1632                         n = n->rb_right;
1633                 else
1634                         break;
1635         }
1636
1637         if (n) {
1638                 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1639                         block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1640                         n = n->rb_right;
1641                         if (n == NULL)
1642                                 break;
1643                         rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1644                 }
1645         }
1646
1647         spin_unlock(&rgd->rd_rsspin);
1648         return block;
1649 }
1650
1651 /**
1652  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1653  * @rbm: The current position in the resource group
1654  * @ip: The inode for which we are searching for blocks
1655  * @minext: The minimum extent length
1656  * @maxext: A pointer to the maximum extent structure
1657  *
1658  * This checks the current position in the rgrp to see whether there is
1659  * a reservation covering this block. If not then this function is a
1660  * no-op. If there is, then the position is moved to the end of the
1661  * contiguous reservation(s) so that we are pointing at the first
1662  * non-reserved block.
1663  *
1664  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1665  */
1666
1667 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1668                                              const struct gfs2_inode *ip,
1669                                              u32 minext,
1670                                              struct gfs2_extent *maxext)
1671 {
1672         u64 block = gfs2_rbm_to_block(rbm);
1673         u32 extlen = 1;
1674         u64 nblock;
1675         int ret;
1676
1677         /*
1678          * If we have a minimum extent length, then skip over any extent
1679          * which is less than the min extent length in size.
1680          */
1681         if (minext) {
1682                 extlen = gfs2_free_extlen(rbm, minext);
1683                 if (extlen <= maxext->len)
1684                         goto fail;
1685         }
1686
1687         /*
1688          * Check the extent which has been found against the reservations
1689          * and skip if parts of it are already reserved
1690          */
1691         nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1692         if (nblock == block) {
1693                 if (!minext || extlen >= minext)
1694                         return 0;
1695
1696                 if (extlen > maxext->len) {
1697                         maxext->len = extlen;
1698                         maxext->rbm = *rbm;
1699                 }
1700 fail:
1701                 nblock = block + extlen;
1702         }
1703         ret = gfs2_rbm_from_block(rbm, nblock);
1704         if (ret < 0)
1705                 return ret;
1706         return 1;
1707 }
1708
1709 /**
1710  * gfs2_rbm_find - Look for blocks of a particular state
1711  * @rbm: Value/result starting position and final position
1712  * @state: The state which we want to find
1713  * @minext: Pointer to the requested extent length (NULL for a single block)
1714  *          This is updated to be the actual reservation size.
1715  * @ip: If set, check for reservations
1716  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1717  *          around until we've reached the starting point.
1718  *
1719  * Side effects:
1720  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1721  *   has no free blocks in it.
1722  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1723  *   has come up short on a free block search.
1724  *
1725  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1726  */
1727
1728 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1729                          const struct gfs2_inode *ip, bool nowrap)
1730 {
1731         bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1732         struct buffer_head *bh;
1733         int last_bii;
1734         u32 offset;
1735         u8 *buffer;
1736         bool wrapped = false;
1737         int ret;
1738         struct gfs2_bitmap *bi;
1739         struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1740
1741         /*
1742          * Determine the last bitmap to search.  If we're not starting at the
1743          * beginning of a bitmap, we need to search that bitmap twice to scan
1744          * the entire resource group.
1745          */
1746         last_bii = rbm->bii - (rbm->offset == 0);
1747
1748         while(1) {
1749                 bi = rbm_bi(rbm);
1750                 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1751                     test_bit(GBF_FULL, &bi->bi_flags) &&
1752                     (state == GFS2_BLKST_FREE))
1753                         goto next_bitmap;
1754
1755                 bh = bi->bi_bh;
1756                 buffer = bh->b_data + bi->bi_offset;
1757                 WARN_ON(!buffer_uptodate(bh));
1758                 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1759                         buffer = bi->bi_clone + bi->bi_offset;
1760                 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1761                 if (offset == BFITNOENT) {
1762                         if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1763                                 set_bit(GBF_FULL, &bi->bi_flags);
1764                         goto next_bitmap;
1765                 }
1766                 rbm->offset = offset;
1767                 if (ip == NULL)
1768                         return 0;
1769
1770                 ret = gfs2_reservation_check_and_update(rbm, ip,
1771                                                         minext ? *minext : 0,
1772                                                         &maxext);
1773                 if (ret == 0)
1774                         return 0;
1775                 if (ret > 0)
1776                         goto next_iter;
1777                 if (ret == -E2BIG) {
1778                         rbm->bii = 0;
1779                         rbm->offset = 0;
1780                         goto res_covered_end_of_rgrp;
1781                 }
1782                 return ret;
1783
1784 next_bitmap:    /* Find next bitmap in the rgrp */
1785                 rbm->offset = 0;
1786                 rbm->bii++;
1787                 if (rbm->bii == rbm->rgd->rd_length)
1788                         rbm->bii = 0;
1789 res_covered_end_of_rgrp:
1790                 if (rbm->bii == 0) {
1791                         if (wrapped)
1792                                 break;
1793                         wrapped = true;
1794                         if (nowrap)
1795                                 break;
1796                 }
1797 next_iter:
1798                 /* Have we scanned the entire resource group? */
1799                 if (wrapped && rbm->bii > last_bii)
1800                         break;
1801         }
1802
1803         if (minext == NULL || state != GFS2_BLKST_FREE)
1804                 return -ENOSPC;
1805
1806         /* If the extent was too small, and it's smaller than the smallest
1807            to have failed before, remember for future reference that it's
1808            useless to search this rgrp again for this amount or more. */
1809         if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1810             *minext < rbm->rgd->rd_extfail_pt)
1811                 rbm->rgd->rd_extfail_pt = *minext;
1812
1813         /* If the maximum extent we found is big enough to fulfill the
1814            minimum requirements, use it anyway. */
1815         if (maxext.len) {
1816                 *rbm = maxext.rbm;
1817                 *minext = maxext.len;
1818                 return 0;
1819         }
1820
1821         return -ENOSPC;
1822 }
1823
1824 /**
1825  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1826  * @rgd: The rgrp
1827  * @last_unlinked: block address of the last dinode we unlinked
1828  * @skip: block address we should explicitly not unlink
1829  *
1830  * Returns: 0 if no error
1831  *          The inode, if one has been found, in inode.
1832  */
1833
1834 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1835 {
1836         u64 block;
1837         struct gfs2_sbd *sdp = rgd->rd_sbd;
1838         struct gfs2_glock *gl;
1839         struct gfs2_inode *ip;
1840         int error;
1841         int found = 0;
1842         struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1843
1844         while (1) {
1845                 down_write(&sdp->sd_log_flush_lock);
1846                 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1847                                       true);
1848                 up_write(&sdp->sd_log_flush_lock);
1849                 if (error == -ENOSPC)
1850                         break;
1851                 if (WARN_ON_ONCE(error))
1852                         break;
1853
1854                 block = gfs2_rbm_to_block(&rbm);
1855                 if (gfs2_rbm_from_block(&rbm, block + 1))
1856                         break;
1857                 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1858                         continue;
1859                 if (block == skip)
1860                         continue;
1861                 *last_unlinked = block;
1862
1863                 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1864                 if (error)
1865                         continue;
1866
1867                 /* If the inode is already in cache, we can ignore it here
1868                  * because the existing inode disposal code will deal with
1869                  * it when all refs have gone away. Accessing gl_object like
1870                  * this is not safe in general. Here it is ok because we do
1871                  * not dereference the pointer, and we only need an approx
1872                  * answer to whether it is NULL or not.
1873                  */
1874                 ip = gl->gl_object;
1875
1876                 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1877                         gfs2_glock_put(gl);
1878                 else
1879                         found++;
1880
1881                 /* Limit reclaim to sensible number of tasks */
1882                 if (found > NR_CPUS)
1883                         return;
1884         }
1885
1886         rgd->rd_flags &= ~GFS2_RDF_CHECK;
1887         return;
1888 }
1889
1890 /**
1891  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1892  * @rgd: The rgrp in question
1893  * @loops: An indication of how picky we can be (0=very, 1=less so)
1894  *
1895  * This function uses the recently added glock statistics in order to
1896  * figure out whether a parciular resource group is suffering from
1897  * contention from multiple nodes. This is done purely on the basis
1898  * of timings, since this is the only data we have to work with and
1899  * our aim here is to reject a resource group which is highly contended
1900  * but (very important) not to do this too often in order to ensure that
1901  * we do not land up introducing fragmentation by changing resource
1902  * groups when not actually required.
1903  *
1904  * The calculation is fairly simple, we want to know whether the SRTTB
1905  * (i.e. smoothed round trip time for blocking operations) to acquire
1906  * the lock for this rgrp's glock is significantly greater than the
1907  * time taken for resource groups on average. We introduce a margin in
1908  * the form of the variable @var which is computed as the sum of the two
1909  * respective variences, and multiplied by a factor depending on @loops
1910  * and whether we have a lot of data to base the decision on. This is
1911  * then tested against the square difference of the means in order to
1912  * decide whether the result is statistically significant or not.
1913  *
1914  * Returns: A boolean verdict on the congestion status
1915  */
1916
1917 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1918 {
1919         const struct gfs2_glock *gl = rgd->rd_gl;
1920         const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1921         struct gfs2_lkstats *st;
1922         u64 r_dcount, l_dcount;
1923         u64 l_srttb, a_srttb = 0;
1924         s64 srttb_diff;
1925         u64 sqr_diff;
1926         u64 var;
1927         int cpu, nonzero = 0;
1928
1929         preempt_disable();
1930         for_each_present_cpu(cpu) {
1931                 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1932                 if (st->stats[GFS2_LKS_SRTTB]) {
1933                         a_srttb += st->stats[GFS2_LKS_SRTTB];
1934                         nonzero++;
1935                 }
1936         }
1937         st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1938         if (nonzero)
1939                 do_div(a_srttb, nonzero);
1940         r_dcount = st->stats[GFS2_LKS_DCOUNT];
1941         var = st->stats[GFS2_LKS_SRTTVARB] +
1942               gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1943         preempt_enable();
1944
1945         l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1946         l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1947
1948         if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1949                 return false;
1950
1951         srttb_diff = a_srttb - l_srttb;
1952         sqr_diff = srttb_diff * srttb_diff;
1953
1954         var *= 2;
1955         if (l_dcount < 8 || r_dcount < 8)
1956                 var *= 2;
1957         if (loops == 1)
1958                 var *= 2;
1959
1960         return ((srttb_diff < 0) && (sqr_diff > var));
1961 }
1962
1963 /**
1964  * gfs2_rgrp_used_recently
1965  * @rs: The block reservation with the rgrp to test
1966  * @msecs: The time limit in milliseconds
1967  *
1968  * Returns: True if the rgrp glock has been used within the time limit
1969  */
1970 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1971                                     u64 msecs)
1972 {
1973         u64 tdiff;
1974
1975         tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1976                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1977
1978         return tdiff > (msecs * 1000 * 1000);
1979 }
1980
1981 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1982 {
1983         const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1984         u32 skip;
1985
1986         get_random_bytes(&skip, sizeof(skip));
1987         return skip % sdp->sd_rgrps;
1988 }
1989
1990 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1991 {
1992         struct gfs2_rgrpd *rgd = *pos;
1993         struct gfs2_sbd *sdp = rgd->rd_sbd;
1994
1995         rgd = gfs2_rgrpd_get_next(rgd);
1996         if (rgd == NULL)
1997                 rgd = gfs2_rgrpd_get_first(sdp);
1998         *pos = rgd;
1999         if (rgd != begin) /* If we didn't wrap */
2000                 return true;
2001         return false;
2002 }
2003
2004 /**
2005  * fast_to_acquire - determine if a resource group will be fast to acquire
2006  *
2007  * If this is one of our preferred rgrps, it should be quicker to acquire,
2008  * because we tried to set ourselves up as dlm lock master.
2009  */
2010 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2011 {
2012         struct gfs2_glock *gl = rgd->rd_gl;
2013
2014         if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2015             !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2016             !test_bit(GLF_DEMOTE, &gl->gl_flags))
2017                 return 1;
2018         if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2019                 return 1;
2020         return 0;
2021 }
2022
2023 /**
2024  * gfs2_inplace_reserve - Reserve space in the filesystem
2025  * @ip: the inode to reserve space for
2026  * @ap: the allocation parameters
2027  *
2028  * We try our best to find an rgrp that has at least ap->target blocks
2029  * available. After a couple of passes (loops == 2), the prospects of finding
2030  * such an rgrp diminish. At this stage, we return the first rgrp that has
2031  * at least ap->min_target blocks available. Either way, we set ap->allowed to
2032  * the number of blocks available in the chosen rgrp.
2033  *
2034  * Returns: 0 on success,
2035  *          -ENOMEM if a suitable rgrp can't be found
2036  *          errno otherwise
2037  */
2038
2039 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2040 {
2041         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2042         struct gfs2_rgrpd *begin = NULL;
2043         struct gfs2_blkreserv *rs = &ip->i_res;
2044         int error = 0, rg_locked, flags = 0;
2045         u64 last_unlinked = NO_BLOCK;
2046         int loops = 0;
2047         u32 free_blocks, skip = 0;
2048
2049         if (sdp->sd_args.ar_rgrplvb)
2050                 flags |= GL_SKIP;
2051         if (gfs2_assert_warn(sdp, ap->target))
2052                 return -EINVAL;
2053         if (gfs2_rs_active(rs)) {
2054                 begin = rs->rs_rbm.rgd;
2055         } else if (rs->rs_rbm.rgd &&
2056                    rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2057                 begin = rs->rs_rbm.rgd;
2058         } else {
2059                 check_and_update_goal(ip);
2060                 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2061         }
2062         if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2063                 skip = gfs2_orlov_skip(ip);
2064         if (rs->rs_rbm.rgd == NULL)
2065                 return -EBADSLT;
2066
2067         while (loops < 3) {
2068                 rg_locked = 1;
2069
2070                 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2071                         rg_locked = 0;
2072                         if (skip && skip--)
2073                                 goto next_rgrp;
2074                         if (!gfs2_rs_active(rs)) {
2075                                 if (loops == 0 &&
2076                                     !fast_to_acquire(rs->rs_rbm.rgd))
2077                                         goto next_rgrp;
2078                                 if ((loops < 2) &&
2079                                     gfs2_rgrp_used_recently(rs, 1000) &&
2080                                     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2081                                         goto next_rgrp;
2082                         }
2083                         error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2084                                                    LM_ST_EXCLUSIVE, flags,
2085                                                    &ip->i_rgd_gh);
2086                         if (unlikely(error))
2087                                 return error;
2088                         if (!gfs2_rs_active(rs) && (loops < 2) &&
2089                             gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2090                                 goto skip_rgrp;
2091                         if (sdp->sd_args.ar_rgrplvb) {
2092                                 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2093                                 if (unlikely(error)) {
2094                                         gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2095                                         return error;
2096                                 }
2097                         }
2098                 }
2099
2100                 /* Skip unusable resource groups */
2101                 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2102                                                  GFS2_RDF_ERROR)) ||
2103                     (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2104                         goto skip_rgrp;
2105
2106                 if (sdp->sd_args.ar_rgrplvb)
2107                         gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2108
2109                 /* Get a reservation if we don't already have one */
2110                 if (!gfs2_rs_active(rs))
2111                         rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2112
2113                 /* Skip rgrps when we can't get a reservation on first pass */
2114                 if (!gfs2_rs_active(rs) && (loops < 1))
2115                         goto check_rgrp;
2116
2117                 /* If rgrp has enough free space, use it */
2118                 free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2119                 if (free_blocks >= ap->target ||
2120                     (loops == 2 && ap->min_target &&
2121                      free_blocks >= ap->min_target)) {
2122                         ap->allowed = free_blocks;
2123                         return 0;
2124                 }
2125 check_rgrp:
2126                 /* Check for unlinked inodes which can be reclaimed */
2127                 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2128                         try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2129                                         ip->i_no_addr);
2130 skip_rgrp:
2131                 /* Drop reservation, if we couldn't use reserved rgrp */
2132                 if (gfs2_rs_active(rs))
2133                         gfs2_rs_deltree(rs);
2134
2135                 /* Unlock rgrp if required */
2136                 if (!rg_locked)
2137                         gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2138 next_rgrp:
2139                 /* Find the next rgrp, and continue looking */
2140                 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2141                         continue;
2142                 if (skip)
2143                         continue;
2144
2145                 /* If we've scanned all the rgrps, but found no free blocks
2146                  * then this checks for some less likely conditions before
2147                  * trying again.
2148                  */
2149                 loops++;
2150                 /* Check that fs hasn't grown if writing to rindex */
2151                 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2152                         error = gfs2_ri_update(ip);
2153                         if (error)
2154                                 return error;
2155                 }
2156                 /* Flushing the log may release space */
2157                 if (loops == 2)
2158                         gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2159                                        GFS2_LFC_INPLACE_RESERVE);
2160         }
2161
2162         return -ENOSPC;
2163 }
2164
2165 /**
2166  * gfs2_inplace_release - release an inplace reservation
2167  * @ip: the inode the reservation was taken out on
2168  *
2169  * Release a reservation made by gfs2_inplace_reserve().
2170  */
2171
2172 void gfs2_inplace_release(struct gfs2_inode *ip)
2173 {
2174         if (gfs2_holder_initialized(&ip->i_rgd_gh))
2175                 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2176 }
2177
2178 /**
2179  * gfs2_alloc_extent - allocate an extent from a given bitmap
2180  * @rbm: the resource group information
2181  * @dinode: TRUE if the first block we allocate is for a dinode
2182  * @n: The extent length (value/result)
2183  *
2184  * Add the bitmap buffer to the transaction.
2185  * Set the found bits to @new_state to change block's allocation state.
2186  */
2187 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2188                              unsigned int *n)
2189 {
2190         struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2191         const unsigned int elen = *n;
2192         u64 block;
2193         int ret;
2194
2195         *n = 1;
2196         block = gfs2_rbm_to_block(rbm);
2197         gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2198         gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2199         block++;
2200         while (*n < elen) {
2201                 ret = gfs2_rbm_from_block(&pos, block);
2202                 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2203                         break;
2204                 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2205                 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2206                 (*n)++;
2207                 block++;
2208         }
2209 }
2210
2211 /**
2212  * rgblk_free - Change alloc state of given block(s)
2213  * @sdp: the filesystem
2214  * @rgd: the resource group the blocks are in
2215  * @bstart: the start of a run of blocks to free
2216  * @blen: the length of the block run (all must lie within ONE RG!)
2217  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2218  */
2219
2220 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2221                        u64 bstart, u32 blen, unsigned char new_state)
2222 {
2223         struct gfs2_rbm rbm;
2224         struct gfs2_bitmap *bi, *bi_prev = NULL;
2225
2226         rbm.rgd = rgd;
2227         if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2228                 return;
2229         while (blen--) {
2230                 bi = rbm_bi(&rbm);
2231                 if (bi != bi_prev) {
2232                         if (!bi->bi_clone) {
2233                                 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2234                                                       GFP_NOFS | __GFP_NOFAIL);
2235                                 memcpy(bi->bi_clone + bi->bi_offset,
2236                                        bi->bi_bh->b_data + bi->bi_offset,
2237                                        bi->bi_bytes);
2238                         }
2239                         gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2240                         bi_prev = bi;
2241                 }
2242                 gfs2_setbit(&rbm, false, new_state);
2243                 gfs2_rbm_incr(&rbm);
2244         }
2245 }
2246
2247 /**
2248  * gfs2_rgrp_dump - print out an rgrp
2249  * @seq: The iterator
2250  * @gl: The glock in question
2251  * @fs_id_buf: pointer to file system id (if requested)
2252  *
2253  */
2254
2255 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2256                     const char *fs_id_buf)
2257 {
2258         struct gfs2_rgrpd *rgd = gl->gl_object;
2259         struct gfs2_blkreserv *trs;
2260         const struct rb_node *n;
2261
2262         if (rgd == NULL)
2263                 return;
2264         gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2265                        fs_id_buf,
2266                        (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2267                        rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2268                        rgd->rd_reserved, rgd->rd_extfail_pt);
2269         if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2270                 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2271
2272                 gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2273                                be32_to_cpu(rgl->rl_flags),
2274                                be32_to_cpu(rgl->rl_free),
2275                                be32_to_cpu(rgl->rl_dinodes));
2276         }
2277         spin_lock(&rgd->rd_rsspin);
2278         for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2279                 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2280                 dump_rs(seq, trs, fs_id_buf);
2281         }
2282         spin_unlock(&rgd->rd_rsspin);
2283 }
2284
2285 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2286 {
2287         struct gfs2_sbd *sdp = rgd->rd_sbd;
2288         char fs_id_buf[GFS2_FSNAME_LEN + 3 * sizeof(int) + 2];
2289
2290         fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2291                 (unsigned long long)rgd->rd_addr);
2292         fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2293         sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2294         gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2295         rgd->rd_flags |= GFS2_RDF_ERROR;
2296 }
2297
2298 /**
2299  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2300  * @ip: The inode we have just allocated blocks for
2301  * @rbm: The start of the allocated blocks
2302  * @len: The extent length
2303  *
2304  * Adjusts a reservation after an allocation has taken place. If the
2305  * reservation does not match the allocation, or if it is now empty
2306  * then it is removed.
2307  */
2308
2309 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2310                                     const struct gfs2_rbm *rbm, unsigned len)
2311 {
2312         struct gfs2_blkreserv *rs = &ip->i_res;
2313         struct gfs2_rgrpd *rgd = rbm->rgd;
2314         unsigned rlen;
2315         u64 block;
2316         int ret;
2317
2318         spin_lock(&rgd->rd_rsspin);
2319         if (gfs2_rs_active(rs)) {
2320                 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2321                         block = gfs2_rbm_to_block(rbm);
2322                         ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2323                         rlen = min(rs->rs_free, len);
2324                         rs->rs_free -= rlen;
2325                         rgd->rd_reserved -= rlen;
2326                         trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2327                         if (rs->rs_free && !ret)
2328                                 goto out;
2329                         /* We used up our block reservation, so we should
2330                            reserve more blocks next time. */
2331                         atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2332                 }
2333                 __rs_deltree(rs);
2334         }
2335 out:
2336         spin_unlock(&rgd->rd_rsspin);
2337 }
2338
2339 /**
2340  * gfs2_set_alloc_start - Set starting point for block allocation
2341  * @rbm: The rbm which will be set to the required location
2342  * @ip: The gfs2 inode
2343  * @dinode: Flag to say if allocation includes a new inode
2344  *
2345  * This sets the starting point from the reservation if one is active
2346  * otherwise it falls back to guessing a start point based on the
2347  * inode's goal block or the last allocation point in the rgrp.
2348  */
2349
2350 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2351                                  const struct gfs2_inode *ip, bool dinode)
2352 {
2353         u64 goal;
2354
2355         if (gfs2_rs_active(&ip->i_res)) {
2356                 *rbm = ip->i_res.rs_rbm;
2357                 return;
2358         }
2359
2360         if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2361                 goal = ip->i_goal;
2362         else
2363                 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2364
2365         if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2366                 rbm->bii = 0;
2367                 rbm->offset = 0;
2368         }
2369 }
2370
2371 /**
2372  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2373  * @ip: the inode to allocate the block for
2374  * @bn: Used to return the starting block number
2375  * @nblocks: requested number of blocks/extent length (value/result)
2376  * @dinode: 1 if we're allocating a dinode block, else 0
2377  * @generation: the generation number of the inode
2378  *
2379  * Returns: 0 or error
2380  */
2381
2382 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2383                       bool dinode, u64 *generation)
2384 {
2385         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2386         struct buffer_head *dibh;
2387         struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2388         unsigned int ndata;
2389         u64 block; /* block, within the file system scope */
2390         int error;
2391
2392         gfs2_set_alloc_start(&rbm, ip, dinode);
2393         error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2394
2395         if (error == -ENOSPC) {
2396                 gfs2_set_alloc_start(&rbm, ip, dinode);
2397                 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2398         }
2399
2400         /* Since all blocks are reserved in advance, this shouldn't happen */
2401         if (error) {
2402                 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2403                         (unsigned long long)ip->i_no_addr, error, *nblocks,
2404                         test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2405                         rbm.rgd->rd_extfail_pt);
2406                 goto rgrp_error;
2407         }
2408
2409         gfs2_alloc_extent(&rbm, dinode, nblocks);
2410         block = gfs2_rbm_to_block(&rbm);
2411         rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2412         if (gfs2_rs_active(&ip->i_res))
2413                 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2414         ndata = *nblocks;
2415         if (dinode)
2416                 ndata--;
2417
2418         if (!dinode) {
2419                 ip->i_goal = block + ndata - 1;
2420                 error = gfs2_meta_inode_buffer(ip, &dibh);
2421                 if (error == 0) {
2422                         struct gfs2_dinode *di =
2423                                 (struct gfs2_dinode *)dibh->b_data;
2424                         gfs2_trans_add_meta(ip->i_gl, dibh);
2425                         di->di_goal_meta = di->di_goal_data =
2426                                 cpu_to_be64(ip->i_goal);
2427                         brelse(dibh);
2428                 }
2429         }
2430         if (rbm.rgd->rd_free < *nblocks) {
2431                 fs_warn(sdp, "nblocks=%u\n", *nblocks);
2432                 goto rgrp_error;
2433         }
2434
2435         rbm.rgd->rd_free -= *nblocks;
2436         if (dinode) {
2437                 rbm.rgd->rd_dinodes++;
2438                 *generation = rbm.rgd->rd_igeneration++;
2439                 if (*generation == 0)
2440                         *generation = rbm.rgd->rd_igeneration++;
2441         }
2442
2443         gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2444         gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2445
2446         gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2447         if (dinode)
2448                 gfs2_trans_remove_revoke(sdp, block, *nblocks);
2449
2450         gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2451
2452         rbm.rgd->rd_free_clone -= *nblocks;
2453         trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2454                                dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2455         *bn = block;
2456         return 0;
2457
2458 rgrp_error:
2459         gfs2_rgrp_error(rbm.rgd);
2460         return -EIO;
2461 }
2462
2463 /**
2464  * __gfs2_free_blocks - free a contiguous run of block(s)
2465  * @ip: the inode these blocks are being freed from
2466  * @rgd: the resource group the blocks are in
2467  * @bstart: first block of a run of contiguous blocks
2468  * @blen: the length of the block run
2469  * @meta: 1 if the blocks represent metadata
2470  *
2471  */
2472
2473 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2474                         u64 bstart, u32 blen, int meta)
2475 {
2476         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2477
2478         rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2479         trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2480         rgd->rd_free += blen;
2481         rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2482         gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483         gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484
2485         /* Directories keep their data in the metadata address space */
2486         if (meta || ip->i_depth)
2487                 gfs2_meta_wipe(ip, bstart, blen);
2488 }
2489
2490 /**
2491  * gfs2_free_meta - free a contiguous run of data block(s)
2492  * @ip: the inode these blocks are being freed from
2493  * @rgd: the resource group the blocks are in
2494  * @bstart: first block of a run of contiguous blocks
2495  * @blen: the length of the block run
2496  *
2497  */
2498
2499 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2500                     u64 bstart, u32 blen)
2501 {
2502         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2503
2504         __gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2505         gfs2_statfs_change(sdp, 0, +blen, 0);
2506         gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2507 }
2508
2509 void gfs2_unlink_di(struct inode *inode)
2510 {
2511         struct gfs2_inode *ip = GFS2_I(inode);
2512         struct gfs2_sbd *sdp = GFS2_SB(inode);
2513         struct gfs2_rgrpd *rgd;
2514         u64 blkno = ip->i_no_addr;
2515
2516         rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2517         if (!rgd)
2518                 return;
2519         rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2520         trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2521         gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2522         gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2523         be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2524 }
2525
2526 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2527 {
2528         struct gfs2_sbd *sdp = rgd->rd_sbd;
2529
2530         rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2531         if (!rgd->rd_dinodes)
2532                 gfs2_consist_rgrpd(rgd);
2533         rgd->rd_dinodes--;
2534         rgd->rd_free++;
2535
2536         gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2537         gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2538         be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2539
2540         gfs2_statfs_change(sdp, 0, +1, -1);
2541         trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2542         gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2543         gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2544 }
2545
2546 /**
2547  * gfs2_check_blk_type - Check the type of a block
2548  * @sdp: The superblock
2549  * @no_addr: The block number to check
2550  * @type: The block type we are looking for
2551  *
2552  * Returns: 0 if the block type matches the expected type
2553  *          -ESTALE if it doesn't match
2554  *          or -ve errno if something went wrong while checking
2555  */
2556
2557 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2558 {
2559         struct gfs2_rgrpd *rgd;
2560         struct gfs2_holder rgd_gh;
2561         struct gfs2_rbm rbm;
2562         int error = -EINVAL;
2563
2564         rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2565         if (!rgd)
2566                 goto fail;
2567
2568         error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2569         if (error)
2570                 goto fail;
2571
2572         rbm.rgd = rgd;
2573         error = gfs2_rbm_from_block(&rbm, no_addr);
2574         if (WARN_ON_ONCE(error))
2575                 goto fail;
2576
2577         if (gfs2_testbit(&rbm, false) != type)
2578                 error = -ESTALE;
2579
2580         gfs2_glock_dq_uninit(&rgd_gh);
2581 fail:
2582         return error;
2583 }
2584
2585 /**
2586  * gfs2_rlist_add - add a RG to a list of RGs
2587  * @ip: the inode
2588  * @rlist: the list of resource groups
2589  * @block: the block
2590  *
2591  * Figure out what RG a block belongs to and add that RG to the list
2592  *
2593  * FIXME: Don't use NOFAIL
2594  *
2595  */
2596
2597 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2598                     u64 block)
2599 {
2600         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2601         struct gfs2_rgrpd *rgd;
2602         struct gfs2_rgrpd **tmp;
2603         unsigned int new_space;
2604         unsigned int x;
2605
2606         if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2607                 return;
2608
2609         /*
2610          * The resource group last accessed is kept in the last position.
2611          */
2612
2613         if (rlist->rl_rgrps) {
2614                 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2615                 if (rgrp_contains_block(rgd, block))
2616                         return;
2617                 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2618         } else {
2619                 rgd = ip->i_res.rs_rbm.rgd;
2620                 if (!rgd || !rgrp_contains_block(rgd, block))
2621                         rgd = gfs2_blk2rgrpd(sdp, block, 1);
2622         }
2623
2624         if (!rgd) {
2625                 fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2626                        (unsigned long long)block);
2627                 return;
2628         }
2629
2630         for (x = 0; x < rlist->rl_rgrps; x++) {
2631                 if (rlist->rl_rgd[x] == rgd) {
2632                         swap(rlist->rl_rgd[x],
2633                              rlist->rl_rgd[rlist->rl_rgrps - 1]);
2634                         return;
2635                 }
2636         }
2637
2638         if (rlist->rl_rgrps == rlist->rl_space) {
2639                 new_space = rlist->rl_space + 10;
2640
2641                 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2642                               GFP_NOFS | __GFP_NOFAIL);
2643
2644                 if (rlist->rl_rgd) {
2645                         memcpy(tmp, rlist->rl_rgd,
2646                                rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2647                         kfree(rlist->rl_rgd);
2648                 }
2649
2650                 rlist->rl_space = new_space;
2651                 rlist->rl_rgd = tmp;
2652         }
2653
2654         rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2655 }
2656
2657 /**
2658  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2659  *      and initialize an array of glock holders for them
2660  * @rlist: the list of resource groups
2661  *
2662  * FIXME: Don't use NOFAIL
2663  *
2664  */
2665
2666 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2667 {
2668         unsigned int x;
2669
2670         rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2671                                       sizeof(struct gfs2_holder),
2672                                       GFP_NOFS | __GFP_NOFAIL);
2673         for (x = 0; x < rlist->rl_rgrps; x++)
2674                 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2675                                 LM_ST_EXCLUSIVE, 0,
2676                                 &rlist->rl_ghs[x]);
2677 }
2678
2679 /**
2680  * gfs2_rlist_free - free a resource group list
2681  * @rlist: the list of resource groups
2682  *
2683  */
2684
2685 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2686 {
2687         unsigned int x;
2688
2689         kfree(rlist->rl_rgd);
2690
2691         if (rlist->rl_ghs) {
2692                 for (x = 0; x < rlist->rl_rgrps; x++)
2693                         gfs2_holder_uninit(&rlist->rl_ghs[x]);
2694                 kfree(rlist->rl_ghs);
2695                 rlist->rl_ghs = NULL;
2696         }
2697 }
2698