Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define NUM_PREALLOC_POST_READ_CTXS     128
30
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static mempool_t *bio_post_read_ctx_pool;
33
34 static bool __is_cp_guaranteed(struct page *page)
35 {
36         struct address_space *mapping = page->mapping;
37         struct inode *inode;
38         struct f2fs_sb_info *sbi;
39
40         if (!mapping)
41                 return false;
42
43         inode = mapping->host;
44         sbi = F2FS_I_SB(inode);
45
46         if (inode->i_ino == F2FS_META_INO(sbi) ||
47                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
48                         S_ISDIR(inode->i_mode) ||
49                         (S_ISREG(inode->i_mode) &&
50                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
51                         is_cold_data(page))
52                 return true;
53         return false;
54 }
55
56 static enum count_type __read_io_type(struct page *page)
57 {
58         struct address_space *mapping = page_file_mapping(page);
59
60         if (mapping) {
61                 struct inode *inode = mapping->host;
62                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
63
64                 if (inode->i_ino == F2FS_META_INO(sbi))
65                         return F2FS_RD_META;
66
67                 if (inode->i_ino == F2FS_NODE_INO(sbi))
68                         return F2FS_RD_NODE;
69         }
70         return F2FS_RD_DATA;
71 }
72
73 /* postprocessing steps for read bios */
74 enum bio_post_read_step {
75         STEP_INITIAL = 0,
76         STEP_DECRYPT,
77 };
78
79 struct bio_post_read_ctx {
80         struct bio *bio;
81         struct work_struct work;
82         unsigned int cur_step;
83         unsigned int enabled_steps;
84 };
85
86 static void __read_end_io(struct bio *bio)
87 {
88         struct page *page;
89         struct bio_vec *bv;
90         struct bvec_iter_all iter_all;
91
92         bio_for_each_segment_all(bv, bio, iter_all) {
93                 page = bv->bv_page;
94
95                 /* PG_error was set if any post_read step failed */
96                 if (bio->bi_status || PageError(page)) {
97                         ClearPageUptodate(page);
98                         /* will re-read again later */
99                         ClearPageError(page);
100                 } else {
101                         SetPageUptodate(page);
102                 }
103                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
104                 unlock_page(page);
105         }
106         if (bio->bi_private)
107                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
108         bio_put(bio);
109 }
110
111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
112
113 static void decrypt_work(struct work_struct *work)
114 {
115         struct bio_post_read_ctx *ctx =
116                 container_of(work, struct bio_post_read_ctx, work);
117
118         fscrypt_decrypt_bio(ctx->bio);
119
120         bio_post_read_processing(ctx);
121 }
122
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125         switch (++ctx->cur_step) {
126         case STEP_DECRYPT:
127                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
128                         INIT_WORK(&ctx->work, decrypt_work);
129                         fscrypt_enqueue_decrypt_work(&ctx->work);
130                         return;
131                 }
132                 ctx->cur_step++;
133                 /* fall-through */
134         default:
135                 __read_end_io(ctx->bio);
136         }
137 }
138
139 static bool f2fs_bio_post_read_required(struct bio *bio)
140 {
141         return bio->bi_private && !bio->bi_status;
142 }
143
144 static void f2fs_read_end_io(struct bio *bio)
145 {
146         if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
147                                                 FAULT_READ_IO)) {
148                 f2fs_show_injection_info(FAULT_READ_IO);
149                 bio->bi_status = BLK_STS_IOERR;
150         }
151
152         if (f2fs_bio_post_read_required(bio)) {
153                 struct bio_post_read_ctx *ctx = bio->bi_private;
154
155                 ctx->cur_step = STEP_INITIAL;
156                 bio_post_read_processing(ctx);
157                 return;
158         }
159
160         __read_end_io(bio);
161 }
162
163 static void f2fs_write_end_io(struct bio *bio)
164 {
165         struct f2fs_sb_info *sbi = bio->bi_private;
166         struct bio_vec *bvec;
167         struct bvec_iter_all iter_all;
168
169         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
170                 f2fs_show_injection_info(FAULT_WRITE_IO);
171                 bio->bi_status = BLK_STS_IOERR;
172         }
173
174         bio_for_each_segment_all(bvec, bio, iter_all) {
175                 struct page *page = bvec->bv_page;
176                 enum count_type type = WB_DATA_TYPE(page);
177
178                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
179                         set_page_private(page, (unsigned long)NULL);
180                         ClearPagePrivate(page);
181                         unlock_page(page);
182                         mempool_free(page, sbi->write_io_dummy);
183
184                         if (unlikely(bio->bi_status))
185                                 f2fs_stop_checkpoint(sbi, true);
186                         continue;
187                 }
188
189                 fscrypt_finalize_bounce_page(&page);
190
191                 if (unlikely(bio->bi_status)) {
192                         mapping_set_error(page->mapping, -EIO);
193                         if (type == F2FS_WB_CP_DATA)
194                                 f2fs_stop_checkpoint(sbi, true);
195                 }
196
197                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
198                                         page->index != nid_of_node(page));
199
200                 dec_page_count(sbi, type);
201                 if (f2fs_in_warm_node_list(sbi, page))
202                         f2fs_del_fsync_node_entry(sbi, page);
203                 clear_cold_data(page);
204                 end_page_writeback(page);
205         }
206         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
207                                 wq_has_sleeper(&sbi->cp_wait))
208                 wake_up(&sbi->cp_wait);
209
210         bio_put(bio);
211 }
212
213 /*
214  * Return true, if pre_bio's bdev is same as its target device.
215  */
216 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
217                                 block_t blk_addr, struct bio *bio)
218 {
219         struct block_device *bdev = sbi->sb->s_bdev;
220         int i;
221
222         if (f2fs_is_multi_device(sbi)) {
223                 for (i = 0; i < sbi->s_ndevs; i++) {
224                         if (FDEV(i).start_blk <= blk_addr &&
225                             FDEV(i).end_blk >= blk_addr) {
226                                 blk_addr -= FDEV(i).start_blk;
227                                 bdev = FDEV(i).bdev;
228                                 break;
229                         }
230                 }
231         }
232         if (bio) {
233                 bio_set_dev(bio, bdev);
234                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
235         }
236         return bdev;
237 }
238
239 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
240 {
241         int i;
242
243         if (!f2fs_is_multi_device(sbi))
244                 return 0;
245
246         for (i = 0; i < sbi->s_ndevs; i++)
247                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
248                         return i;
249         return 0;
250 }
251
252 static bool __same_bdev(struct f2fs_sb_info *sbi,
253                                 block_t blk_addr, struct bio *bio)
254 {
255         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
256         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
257 }
258
259 /*
260  * Low-level block read/write IO operations.
261  */
262 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
263                                 struct writeback_control *wbc,
264                                 int npages, bool is_read,
265                                 enum page_type type, enum temp_type temp)
266 {
267         struct bio *bio;
268
269         bio = f2fs_bio_alloc(sbi, npages, true);
270
271         f2fs_target_device(sbi, blk_addr, bio);
272         if (is_read) {
273                 bio->bi_end_io = f2fs_read_end_io;
274                 bio->bi_private = NULL;
275         } else {
276                 bio->bi_end_io = f2fs_write_end_io;
277                 bio->bi_private = sbi;
278                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
279         }
280         if (wbc)
281                 wbc_init_bio(wbc, bio);
282
283         return bio;
284 }
285
286 static inline void __submit_bio(struct f2fs_sb_info *sbi,
287                                 struct bio *bio, enum page_type type)
288 {
289         if (!is_read_io(bio_op(bio))) {
290                 unsigned int start;
291
292                 if (type != DATA && type != NODE)
293                         goto submit_io;
294
295                 if (test_opt(sbi, LFS) && current->plug)
296                         blk_finish_plug(current->plug);
297
298                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
299                 start %= F2FS_IO_SIZE(sbi);
300
301                 if (start == 0)
302                         goto submit_io;
303
304                 /* fill dummy pages */
305                 for (; start < F2FS_IO_SIZE(sbi); start++) {
306                         struct page *page =
307                                 mempool_alloc(sbi->write_io_dummy,
308                                               GFP_NOIO | __GFP_NOFAIL);
309                         f2fs_bug_on(sbi, !page);
310
311                         zero_user_segment(page, 0, PAGE_SIZE);
312                         SetPagePrivate(page);
313                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
314                         lock_page(page);
315                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
316                                 f2fs_bug_on(sbi, 1);
317                 }
318                 /*
319                  * In the NODE case, we lose next block address chain. So, we
320                  * need to do checkpoint in f2fs_sync_file.
321                  */
322                 if (type == NODE)
323                         set_sbi_flag(sbi, SBI_NEED_CP);
324         }
325 submit_io:
326         if (is_read_io(bio_op(bio)))
327                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
328         else
329                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
330         submit_bio(bio);
331 }
332
333 static void __submit_merged_bio(struct f2fs_bio_info *io)
334 {
335         struct f2fs_io_info *fio = &io->fio;
336
337         if (!io->bio)
338                 return;
339
340         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
341
342         if (is_read_io(fio->op))
343                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
344         else
345                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
346
347         __submit_bio(io->sbi, io->bio, fio->type);
348         io->bio = NULL;
349 }
350
351 static bool __has_merged_page(struct bio *bio, struct inode *inode,
352                                                 struct page *page, nid_t ino)
353 {
354         struct bio_vec *bvec;
355         struct page *target;
356         struct bvec_iter_all iter_all;
357
358         if (!bio)
359                 return false;
360
361         if (!inode && !page && !ino)
362                 return true;
363
364         bio_for_each_segment_all(bvec, bio, iter_all) {
365
366                 target = bvec->bv_page;
367                 if (fscrypt_is_bounce_page(target))
368                         target = fscrypt_pagecache_page(target);
369
370                 if (inode && inode == target->mapping->host)
371                         return true;
372                 if (page && page == target)
373                         return true;
374                 if (ino && ino == ino_of_node(target))
375                         return true;
376         }
377
378         return false;
379 }
380
381 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
382                                 enum page_type type, enum temp_type temp)
383 {
384         enum page_type btype = PAGE_TYPE_OF_BIO(type);
385         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
386
387         down_write(&io->io_rwsem);
388
389         /* change META to META_FLUSH in the checkpoint procedure */
390         if (type >= META_FLUSH) {
391                 io->fio.type = META_FLUSH;
392                 io->fio.op = REQ_OP_WRITE;
393                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
394                 if (!test_opt(sbi, NOBARRIER))
395                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
396         }
397         __submit_merged_bio(io);
398         up_write(&io->io_rwsem);
399 }
400
401 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
402                                 struct inode *inode, struct page *page,
403                                 nid_t ino, enum page_type type, bool force)
404 {
405         enum temp_type temp;
406         bool ret = true;
407
408         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
409                 if (!force)     {
410                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
411                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
412
413                         down_read(&io->io_rwsem);
414                         ret = __has_merged_page(io->bio, inode, page, ino);
415                         up_read(&io->io_rwsem);
416                 }
417                 if (ret)
418                         __f2fs_submit_merged_write(sbi, type, temp);
419
420                 /* TODO: use HOT temp only for meta pages now. */
421                 if (type >= META)
422                         break;
423         }
424 }
425
426 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
427 {
428         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
429 }
430
431 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
432                                 struct inode *inode, struct page *page,
433                                 nid_t ino, enum page_type type)
434 {
435         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
436 }
437
438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
439 {
440         f2fs_submit_merged_write(sbi, DATA);
441         f2fs_submit_merged_write(sbi, NODE);
442         f2fs_submit_merged_write(sbi, META);
443 }
444
445 /*
446  * Fill the locked page with data located in the block address.
447  * A caller needs to unlock the page on failure.
448  */
449 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
450 {
451         struct bio *bio;
452         struct page *page = fio->encrypted_page ?
453                         fio->encrypted_page : fio->page;
454
455         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
456                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
457                         META_GENERIC : DATA_GENERIC_ENHANCE)))
458                 return -EFSCORRUPTED;
459
460         trace_f2fs_submit_page_bio(page, fio);
461         f2fs_trace_ios(fio, 0);
462
463         /* Allocate a new bio */
464         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
465                                 1, is_read_io(fio->op), fio->type, fio->temp);
466
467         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
468                 bio_put(bio);
469                 return -EFAULT;
470         }
471
472         if (fio->io_wbc && !is_read_io(fio->op))
473                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
474
475         bio_set_op_attrs(bio, fio->op, fio->op_flags);
476
477         inc_page_count(fio->sbi, is_read_io(fio->op) ?
478                         __read_io_type(page): WB_DATA_TYPE(fio->page));
479
480         __submit_bio(fio->sbi, bio, fio->type);
481         return 0;
482 }
483
484 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
485 {
486         struct bio *bio = *fio->bio;
487         struct page *page = fio->encrypted_page ?
488                         fio->encrypted_page : fio->page;
489
490         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
491                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
492                 return -EFSCORRUPTED;
493
494         trace_f2fs_submit_page_bio(page, fio);
495         f2fs_trace_ios(fio, 0);
496
497         if (bio && (*fio->last_block + 1 != fio->new_blkaddr ||
498                         !__same_bdev(fio->sbi, fio->new_blkaddr, bio))) {
499                 __submit_bio(fio->sbi, bio, fio->type);
500                 bio = NULL;
501         }
502 alloc_new:
503         if (!bio) {
504                 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
505                                 BIO_MAX_PAGES, false, fio->type, fio->temp);
506                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
507         }
508
509         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
510                 __submit_bio(fio->sbi, bio, fio->type);
511                 bio = NULL;
512                 goto alloc_new;
513         }
514
515         if (fio->io_wbc)
516                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
517
518         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
519
520         *fio->last_block = fio->new_blkaddr;
521         *fio->bio = bio;
522
523         return 0;
524 }
525
526 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio,
527                                                         struct page *page)
528 {
529         if (!bio)
530                 return;
531
532         if (!__has_merged_page(*bio, NULL, page, 0))
533                 return;
534
535         __submit_bio(sbi, *bio, DATA);
536         *bio = NULL;
537 }
538
539 void f2fs_submit_page_write(struct f2fs_io_info *fio)
540 {
541         struct f2fs_sb_info *sbi = fio->sbi;
542         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
543         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
544         struct page *bio_page;
545
546         f2fs_bug_on(sbi, is_read_io(fio->op));
547
548         down_write(&io->io_rwsem);
549 next:
550         if (fio->in_list) {
551                 spin_lock(&io->io_lock);
552                 if (list_empty(&io->io_list)) {
553                         spin_unlock(&io->io_lock);
554                         goto out;
555                 }
556                 fio = list_first_entry(&io->io_list,
557                                                 struct f2fs_io_info, list);
558                 list_del(&fio->list);
559                 spin_unlock(&io->io_lock);
560         }
561
562         verify_fio_blkaddr(fio);
563
564         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
565
566         /* set submitted = true as a return value */
567         fio->submitted = true;
568
569         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
570
571         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
572             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
573                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
574                 __submit_merged_bio(io);
575 alloc_new:
576         if (io->bio == NULL) {
577                 if ((fio->type == DATA || fio->type == NODE) &&
578                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
579                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
580                         fio->retry = true;
581                         goto skip;
582                 }
583                 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
584                                                 BIO_MAX_PAGES, false,
585                                                 fio->type, fio->temp);
586                 io->fio = *fio;
587         }
588
589         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
590                 __submit_merged_bio(io);
591                 goto alloc_new;
592         }
593
594         if (fio->io_wbc)
595                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
596
597         io->last_block_in_bio = fio->new_blkaddr;
598         f2fs_trace_ios(fio, 0);
599
600         trace_f2fs_submit_page_write(fio->page, fio);
601 skip:
602         if (fio->in_list)
603                 goto next;
604 out:
605         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
606                                 f2fs_is_checkpoint_ready(sbi))
607                 __submit_merged_bio(io);
608         up_write(&io->io_rwsem);
609 }
610
611 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
612                                         unsigned nr_pages, unsigned op_flag)
613 {
614         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
615         struct bio *bio;
616         struct bio_post_read_ctx *ctx;
617         unsigned int post_read_steps = 0;
618
619         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
620         if (!bio)
621                 return ERR_PTR(-ENOMEM);
622         f2fs_target_device(sbi, blkaddr, bio);
623         bio->bi_end_io = f2fs_read_end_io;
624         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
625
626         if (f2fs_encrypted_file(inode))
627                 post_read_steps |= 1 << STEP_DECRYPT;
628         if (post_read_steps) {
629                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
630                 if (!ctx) {
631                         bio_put(bio);
632                         return ERR_PTR(-ENOMEM);
633                 }
634                 ctx->bio = bio;
635                 ctx->enabled_steps = post_read_steps;
636                 bio->bi_private = ctx;
637         }
638
639         return bio;
640 }
641
642 /* This can handle encryption stuffs */
643 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
644                                                         block_t blkaddr)
645 {
646         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
647         struct bio *bio;
648
649         bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
650         if (IS_ERR(bio))
651                 return PTR_ERR(bio);
652
653         /* wait for GCed page writeback via META_MAPPING */
654         f2fs_wait_on_block_writeback(inode, blkaddr);
655
656         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
657                 bio_put(bio);
658                 return -EFAULT;
659         }
660         ClearPageError(page);
661         inc_page_count(sbi, F2FS_RD_DATA);
662         __submit_bio(sbi, bio, DATA);
663         return 0;
664 }
665
666 static void __set_data_blkaddr(struct dnode_of_data *dn)
667 {
668         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
669         __le32 *addr_array;
670         int base = 0;
671
672         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
673                 base = get_extra_isize(dn->inode);
674
675         /* Get physical address of data block */
676         addr_array = blkaddr_in_node(rn);
677         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
678 }
679
680 /*
681  * Lock ordering for the change of data block address:
682  * ->data_page
683  *  ->node_page
684  *    update block addresses in the node page
685  */
686 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
687 {
688         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
689         __set_data_blkaddr(dn);
690         if (set_page_dirty(dn->node_page))
691                 dn->node_changed = true;
692 }
693
694 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
695 {
696         dn->data_blkaddr = blkaddr;
697         f2fs_set_data_blkaddr(dn);
698         f2fs_update_extent_cache(dn);
699 }
700
701 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
702 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
703 {
704         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
705         int err;
706
707         if (!count)
708                 return 0;
709
710         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
711                 return -EPERM;
712         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
713                 return err;
714
715         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
716                                                 dn->ofs_in_node, count);
717
718         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
719
720         for (; count > 0; dn->ofs_in_node++) {
721                 block_t blkaddr = datablock_addr(dn->inode,
722                                         dn->node_page, dn->ofs_in_node);
723                 if (blkaddr == NULL_ADDR) {
724                         dn->data_blkaddr = NEW_ADDR;
725                         __set_data_blkaddr(dn);
726                         count--;
727                 }
728         }
729
730         if (set_page_dirty(dn->node_page))
731                 dn->node_changed = true;
732         return 0;
733 }
734
735 /* Should keep dn->ofs_in_node unchanged */
736 int f2fs_reserve_new_block(struct dnode_of_data *dn)
737 {
738         unsigned int ofs_in_node = dn->ofs_in_node;
739         int ret;
740
741         ret = f2fs_reserve_new_blocks(dn, 1);
742         dn->ofs_in_node = ofs_in_node;
743         return ret;
744 }
745
746 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
747 {
748         bool need_put = dn->inode_page ? false : true;
749         int err;
750
751         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
752         if (err)
753                 return err;
754
755         if (dn->data_blkaddr == NULL_ADDR)
756                 err = f2fs_reserve_new_block(dn);
757         if (err || need_put)
758                 f2fs_put_dnode(dn);
759         return err;
760 }
761
762 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
763 {
764         struct extent_info ei  = {0,0,0};
765         struct inode *inode = dn->inode;
766
767         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
768                 dn->data_blkaddr = ei.blk + index - ei.fofs;
769                 return 0;
770         }
771
772         return f2fs_reserve_block(dn, index);
773 }
774
775 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
776                                                 int op_flags, bool for_write)
777 {
778         struct address_space *mapping = inode->i_mapping;
779         struct dnode_of_data dn;
780         struct page *page;
781         struct extent_info ei = {0,0,0};
782         int err;
783
784         page = f2fs_grab_cache_page(mapping, index, for_write);
785         if (!page)
786                 return ERR_PTR(-ENOMEM);
787
788         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
789                 dn.data_blkaddr = ei.blk + index - ei.fofs;
790                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
791                                                 DATA_GENERIC_ENHANCE_READ)) {
792                         err = -EFSCORRUPTED;
793                         goto put_err;
794                 }
795                 goto got_it;
796         }
797
798         set_new_dnode(&dn, inode, NULL, NULL, 0);
799         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
800         if (err)
801                 goto put_err;
802         f2fs_put_dnode(&dn);
803
804         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
805                 err = -ENOENT;
806                 goto put_err;
807         }
808         if (dn.data_blkaddr != NEW_ADDR &&
809                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
810                                                 dn.data_blkaddr,
811                                                 DATA_GENERIC_ENHANCE)) {
812                 err = -EFSCORRUPTED;
813                 goto put_err;
814         }
815 got_it:
816         if (PageUptodate(page)) {
817                 unlock_page(page);
818                 return page;
819         }
820
821         /*
822          * A new dentry page is allocated but not able to be written, since its
823          * new inode page couldn't be allocated due to -ENOSPC.
824          * In such the case, its blkaddr can be remained as NEW_ADDR.
825          * see, f2fs_add_link -> f2fs_get_new_data_page ->
826          * f2fs_init_inode_metadata.
827          */
828         if (dn.data_blkaddr == NEW_ADDR) {
829                 zero_user_segment(page, 0, PAGE_SIZE);
830                 if (!PageUptodate(page))
831                         SetPageUptodate(page);
832                 unlock_page(page);
833                 return page;
834         }
835
836         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
837         if (err)
838                 goto put_err;
839         return page;
840
841 put_err:
842         f2fs_put_page(page, 1);
843         return ERR_PTR(err);
844 }
845
846 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
847 {
848         struct address_space *mapping = inode->i_mapping;
849         struct page *page;
850
851         page = find_get_page(mapping, index);
852         if (page && PageUptodate(page))
853                 return page;
854         f2fs_put_page(page, 0);
855
856         page = f2fs_get_read_data_page(inode, index, 0, false);
857         if (IS_ERR(page))
858                 return page;
859
860         if (PageUptodate(page))
861                 return page;
862
863         wait_on_page_locked(page);
864         if (unlikely(!PageUptodate(page))) {
865                 f2fs_put_page(page, 0);
866                 return ERR_PTR(-EIO);
867         }
868         return page;
869 }
870
871 /*
872  * If it tries to access a hole, return an error.
873  * Because, the callers, functions in dir.c and GC, should be able to know
874  * whether this page exists or not.
875  */
876 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
877                                                         bool for_write)
878 {
879         struct address_space *mapping = inode->i_mapping;
880         struct page *page;
881 repeat:
882         page = f2fs_get_read_data_page(inode, index, 0, for_write);
883         if (IS_ERR(page))
884                 return page;
885
886         /* wait for read completion */
887         lock_page(page);
888         if (unlikely(page->mapping != mapping)) {
889                 f2fs_put_page(page, 1);
890                 goto repeat;
891         }
892         if (unlikely(!PageUptodate(page))) {
893                 f2fs_put_page(page, 1);
894                 return ERR_PTR(-EIO);
895         }
896         return page;
897 }
898
899 /*
900  * Caller ensures that this data page is never allocated.
901  * A new zero-filled data page is allocated in the page cache.
902  *
903  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
904  * f2fs_unlock_op().
905  * Note that, ipage is set only by make_empty_dir, and if any error occur,
906  * ipage should be released by this function.
907  */
908 struct page *f2fs_get_new_data_page(struct inode *inode,
909                 struct page *ipage, pgoff_t index, bool new_i_size)
910 {
911         struct address_space *mapping = inode->i_mapping;
912         struct page *page;
913         struct dnode_of_data dn;
914         int err;
915
916         page = f2fs_grab_cache_page(mapping, index, true);
917         if (!page) {
918                 /*
919                  * before exiting, we should make sure ipage will be released
920                  * if any error occur.
921                  */
922                 f2fs_put_page(ipage, 1);
923                 return ERR_PTR(-ENOMEM);
924         }
925
926         set_new_dnode(&dn, inode, ipage, NULL, 0);
927         err = f2fs_reserve_block(&dn, index);
928         if (err) {
929                 f2fs_put_page(page, 1);
930                 return ERR_PTR(err);
931         }
932         if (!ipage)
933                 f2fs_put_dnode(&dn);
934
935         if (PageUptodate(page))
936                 goto got_it;
937
938         if (dn.data_blkaddr == NEW_ADDR) {
939                 zero_user_segment(page, 0, PAGE_SIZE);
940                 if (!PageUptodate(page))
941                         SetPageUptodate(page);
942         } else {
943                 f2fs_put_page(page, 1);
944
945                 /* if ipage exists, blkaddr should be NEW_ADDR */
946                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
947                 page = f2fs_get_lock_data_page(inode, index, true);
948                 if (IS_ERR(page))
949                         return page;
950         }
951 got_it:
952         if (new_i_size && i_size_read(inode) <
953                                 ((loff_t)(index + 1) << PAGE_SHIFT))
954                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
955         return page;
956 }
957
958 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
959 {
960         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
961         struct f2fs_summary sum;
962         struct node_info ni;
963         block_t old_blkaddr;
964         blkcnt_t count = 1;
965         int err;
966
967         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
968                 return -EPERM;
969
970         err = f2fs_get_node_info(sbi, dn->nid, &ni);
971         if (err)
972                 return err;
973
974         dn->data_blkaddr = datablock_addr(dn->inode,
975                                 dn->node_page, dn->ofs_in_node);
976         if (dn->data_blkaddr != NULL_ADDR)
977                 goto alloc;
978
979         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
980                 return err;
981
982 alloc:
983         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
984         old_blkaddr = dn->data_blkaddr;
985         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
986                                         &sum, seg_type, NULL, false);
987         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
988                 invalidate_mapping_pages(META_MAPPING(sbi),
989                                         old_blkaddr, old_blkaddr);
990         f2fs_set_data_blkaddr(dn);
991
992         /*
993          * i_size will be updated by direct_IO. Otherwise, we'll get stale
994          * data from unwritten block via dio_read.
995          */
996         return 0;
997 }
998
999 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1000 {
1001         struct inode *inode = file_inode(iocb->ki_filp);
1002         struct f2fs_map_blocks map;
1003         int flag;
1004         int err = 0;
1005         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1006
1007         /* convert inline data for Direct I/O*/
1008         if (direct_io) {
1009                 err = f2fs_convert_inline_inode(inode);
1010                 if (err)
1011                         return err;
1012         }
1013
1014         if (direct_io && allow_outplace_dio(inode, iocb, from))
1015                 return 0;
1016
1017         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1018                 return 0;
1019
1020         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1021         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1022         if (map.m_len > map.m_lblk)
1023                 map.m_len -= map.m_lblk;
1024         else
1025                 map.m_len = 0;
1026
1027         map.m_next_pgofs = NULL;
1028         map.m_next_extent = NULL;
1029         map.m_seg_type = NO_CHECK_TYPE;
1030         map.m_may_create = true;
1031
1032         if (direct_io) {
1033                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1034                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1035                                         F2FS_GET_BLOCK_PRE_AIO :
1036                                         F2FS_GET_BLOCK_PRE_DIO;
1037                 goto map_blocks;
1038         }
1039         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1040                 err = f2fs_convert_inline_inode(inode);
1041                 if (err)
1042                         return err;
1043         }
1044         if (f2fs_has_inline_data(inode))
1045                 return err;
1046
1047         flag = F2FS_GET_BLOCK_PRE_AIO;
1048
1049 map_blocks:
1050         err = f2fs_map_blocks(inode, &map, 1, flag);
1051         if (map.m_len > 0 && err == -ENOSPC) {
1052                 if (!direct_io)
1053                         set_inode_flag(inode, FI_NO_PREALLOC);
1054                 err = 0;
1055         }
1056         return err;
1057 }
1058
1059 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1060 {
1061         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1062                 if (lock)
1063                         down_read(&sbi->node_change);
1064                 else
1065                         up_read(&sbi->node_change);
1066         } else {
1067                 if (lock)
1068                         f2fs_lock_op(sbi);
1069                 else
1070                         f2fs_unlock_op(sbi);
1071         }
1072 }
1073
1074 /*
1075  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1076  * f2fs_map_blocks structure.
1077  * If original data blocks are allocated, then give them to blockdev.
1078  * Otherwise,
1079  *     a. preallocate requested block addresses
1080  *     b. do not use extent cache for better performance
1081  *     c. give the block addresses to blockdev
1082  */
1083 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1084                                                 int create, int flag)
1085 {
1086         unsigned int maxblocks = map->m_len;
1087         struct dnode_of_data dn;
1088         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1089         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1090         pgoff_t pgofs, end_offset, end;
1091         int err = 0, ofs = 1;
1092         unsigned int ofs_in_node, last_ofs_in_node;
1093         blkcnt_t prealloc;
1094         struct extent_info ei = {0,0,0};
1095         block_t blkaddr;
1096         unsigned int start_pgofs;
1097
1098         if (!maxblocks)
1099                 return 0;
1100
1101         map->m_len = 0;
1102         map->m_flags = 0;
1103
1104         /* it only supports block size == page size */
1105         pgofs = (pgoff_t)map->m_lblk;
1106         end = pgofs + maxblocks;
1107
1108         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1109                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1110                                                         map->m_may_create)
1111                         goto next_dnode;
1112
1113                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1114                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1115                 map->m_flags = F2FS_MAP_MAPPED;
1116                 if (map->m_next_extent)
1117                         *map->m_next_extent = pgofs + map->m_len;
1118
1119                 /* for hardware encryption, but to avoid potential issue in future */
1120                 if (flag == F2FS_GET_BLOCK_DIO)
1121                         f2fs_wait_on_block_writeback_range(inode,
1122                                                 map->m_pblk, map->m_len);
1123                 goto out;
1124         }
1125
1126 next_dnode:
1127         if (map->m_may_create)
1128                 __do_map_lock(sbi, flag, true);
1129
1130         /* When reading holes, we need its node page */
1131         set_new_dnode(&dn, inode, NULL, NULL, 0);
1132         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1133         if (err) {
1134                 if (flag == F2FS_GET_BLOCK_BMAP)
1135                         map->m_pblk = 0;
1136                 if (err == -ENOENT) {
1137                         err = 0;
1138                         if (map->m_next_pgofs)
1139                                 *map->m_next_pgofs =
1140                                         f2fs_get_next_page_offset(&dn, pgofs);
1141                         if (map->m_next_extent)
1142                                 *map->m_next_extent =
1143                                         f2fs_get_next_page_offset(&dn, pgofs);
1144                 }
1145                 goto unlock_out;
1146         }
1147
1148         start_pgofs = pgofs;
1149         prealloc = 0;
1150         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1151         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1152
1153 next_block:
1154         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1155
1156         if (__is_valid_data_blkaddr(blkaddr) &&
1157                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1158                 err = -EFSCORRUPTED;
1159                 goto sync_out;
1160         }
1161
1162         if (__is_valid_data_blkaddr(blkaddr)) {
1163                 /* use out-place-update for driect IO under LFS mode */
1164                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1165                                                         map->m_may_create) {
1166                         err = __allocate_data_block(&dn, map->m_seg_type);
1167                         if (!err) {
1168                                 blkaddr = dn.data_blkaddr;
1169                                 set_inode_flag(inode, FI_APPEND_WRITE);
1170                         }
1171                 }
1172         } else {
1173                 if (create) {
1174                         if (unlikely(f2fs_cp_error(sbi))) {
1175                                 err = -EIO;
1176                                 goto sync_out;
1177                         }
1178                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1179                                 if (blkaddr == NULL_ADDR) {
1180                                         prealloc++;
1181                                         last_ofs_in_node = dn.ofs_in_node;
1182                                 }
1183                         } else {
1184                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1185                                         flag != F2FS_GET_BLOCK_DIO);
1186                                 err = __allocate_data_block(&dn,
1187                                                         map->m_seg_type);
1188                                 if (!err)
1189                                         set_inode_flag(inode, FI_APPEND_WRITE);
1190                         }
1191                         if (err)
1192                                 goto sync_out;
1193                         map->m_flags |= F2FS_MAP_NEW;
1194                         blkaddr = dn.data_blkaddr;
1195                 } else {
1196                         if (flag == F2FS_GET_BLOCK_BMAP) {
1197                                 map->m_pblk = 0;
1198                                 goto sync_out;
1199                         }
1200                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1201                                 goto sync_out;
1202                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1203                                                 blkaddr == NULL_ADDR) {
1204                                 if (map->m_next_pgofs)
1205                                         *map->m_next_pgofs = pgofs + 1;
1206                                 goto sync_out;
1207                         }
1208                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1209                                 /* for defragment case */
1210                                 if (map->m_next_pgofs)
1211                                         *map->m_next_pgofs = pgofs + 1;
1212                                 goto sync_out;
1213                         }
1214                 }
1215         }
1216
1217         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1218                 goto skip;
1219
1220         if (map->m_len == 0) {
1221                 /* preallocated unwritten block should be mapped for fiemap. */
1222                 if (blkaddr == NEW_ADDR)
1223                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1224                 map->m_flags |= F2FS_MAP_MAPPED;
1225
1226                 map->m_pblk = blkaddr;
1227                 map->m_len = 1;
1228         } else if ((map->m_pblk != NEW_ADDR &&
1229                         blkaddr == (map->m_pblk + ofs)) ||
1230                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1231                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1232                 ofs++;
1233                 map->m_len++;
1234         } else {
1235                 goto sync_out;
1236         }
1237
1238 skip:
1239         dn.ofs_in_node++;
1240         pgofs++;
1241
1242         /* preallocate blocks in batch for one dnode page */
1243         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1244                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1245
1246                 dn.ofs_in_node = ofs_in_node;
1247                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1248                 if (err)
1249                         goto sync_out;
1250
1251                 map->m_len += dn.ofs_in_node - ofs_in_node;
1252                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1253                         err = -ENOSPC;
1254                         goto sync_out;
1255                 }
1256                 dn.ofs_in_node = end_offset;
1257         }
1258
1259         if (pgofs >= end)
1260                 goto sync_out;
1261         else if (dn.ofs_in_node < end_offset)
1262                 goto next_block;
1263
1264         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1265                 if (map->m_flags & F2FS_MAP_MAPPED) {
1266                         unsigned int ofs = start_pgofs - map->m_lblk;
1267
1268                         f2fs_update_extent_cache_range(&dn,
1269                                 start_pgofs, map->m_pblk + ofs,
1270                                 map->m_len - ofs);
1271                 }
1272         }
1273
1274         f2fs_put_dnode(&dn);
1275
1276         if (map->m_may_create) {
1277                 __do_map_lock(sbi, flag, false);
1278                 f2fs_balance_fs(sbi, dn.node_changed);
1279         }
1280         goto next_dnode;
1281
1282 sync_out:
1283
1284         /* for hardware encryption, but to avoid potential issue in future */
1285         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1286                 f2fs_wait_on_block_writeback_range(inode,
1287                                                 map->m_pblk, map->m_len);
1288
1289         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1290                 if (map->m_flags & F2FS_MAP_MAPPED) {
1291                         unsigned int ofs = start_pgofs - map->m_lblk;
1292
1293                         f2fs_update_extent_cache_range(&dn,
1294                                 start_pgofs, map->m_pblk + ofs,
1295                                 map->m_len - ofs);
1296                 }
1297                 if (map->m_next_extent)
1298                         *map->m_next_extent = pgofs + 1;
1299         }
1300         f2fs_put_dnode(&dn);
1301 unlock_out:
1302         if (map->m_may_create) {
1303                 __do_map_lock(sbi, flag, false);
1304                 f2fs_balance_fs(sbi, dn.node_changed);
1305         }
1306 out:
1307         trace_f2fs_map_blocks(inode, map, err);
1308         return err;
1309 }
1310
1311 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1312 {
1313         struct f2fs_map_blocks map;
1314         block_t last_lblk;
1315         int err;
1316
1317         if (pos + len > i_size_read(inode))
1318                 return false;
1319
1320         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1321         map.m_next_pgofs = NULL;
1322         map.m_next_extent = NULL;
1323         map.m_seg_type = NO_CHECK_TYPE;
1324         map.m_may_create = false;
1325         last_lblk = F2FS_BLK_ALIGN(pos + len);
1326
1327         while (map.m_lblk < last_lblk) {
1328                 map.m_len = last_lblk - map.m_lblk;
1329                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1330                 if (err || map.m_len == 0)
1331                         return false;
1332                 map.m_lblk += map.m_len;
1333         }
1334         return true;
1335 }
1336
1337 static int __get_data_block(struct inode *inode, sector_t iblock,
1338                         struct buffer_head *bh, int create, int flag,
1339                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1340 {
1341         struct f2fs_map_blocks map;
1342         int err;
1343
1344         map.m_lblk = iblock;
1345         map.m_len = bh->b_size >> inode->i_blkbits;
1346         map.m_next_pgofs = next_pgofs;
1347         map.m_next_extent = NULL;
1348         map.m_seg_type = seg_type;
1349         map.m_may_create = may_write;
1350
1351         err = f2fs_map_blocks(inode, &map, create, flag);
1352         if (!err) {
1353                 map_bh(bh, inode->i_sb, map.m_pblk);
1354                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1355                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1356         }
1357         return err;
1358 }
1359
1360 static int get_data_block(struct inode *inode, sector_t iblock,
1361                         struct buffer_head *bh_result, int create, int flag,
1362                         pgoff_t *next_pgofs)
1363 {
1364         return __get_data_block(inode, iblock, bh_result, create,
1365                                                         flag, next_pgofs,
1366                                                         NO_CHECK_TYPE, create);
1367 }
1368
1369 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1370                         struct buffer_head *bh_result, int create)
1371 {
1372         return __get_data_block(inode, iblock, bh_result, create,
1373                                 F2FS_GET_BLOCK_DIO, NULL,
1374                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1375                                 true);
1376 }
1377
1378 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1379                         struct buffer_head *bh_result, int create)
1380 {
1381         return __get_data_block(inode, iblock, bh_result, create,
1382                                 F2FS_GET_BLOCK_DIO, NULL,
1383                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1384                                 false);
1385 }
1386
1387 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1388                         struct buffer_head *bh_result, int create)
1389 {
1390         /* Block number less than F2FS MAX BLOCKS */
1391         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1392                 return -EFBIG;
1393
1394         return __get_data_block(inode, iblock, bh_result, create,
1395                                                 F2FS_GET_BLOCK_BMAP, NULL,
1396                                                 NO_CHECK_TYPE, create);
1397 }
1398
1399 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1400 {
1401         return (offset >> inode->i_blkbits);
1402 }
1403
1404 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1405 {
1406         return (blk << inode->i_blkbits);
1407 }
1408
1409 static int f2fs_xattr_fiemap(struct inode *inode,
1410                                 struct fiemap_extent_info *fieinfo)
1411 {
1412         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1413         struct page *page;
1414         struct node_info ni;
1415         __u64 phys = 0, len;
1416         __u32 flags;
1417         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1418         int err = 0;
1419
1420         if (f2fs_has_inline_xattr(inode)) {
1421                 int offset;
1422
1423                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1424                                                 inode->i_ino, false);
1425                 if (!page)
1426                         return -ENOMEM;
1427
1428                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1429                 if (err) {
1430                         f2fs_put_page(page, 1);
1431                         return err;
1432                 }
1433
1434                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1435                 offset = offsetof(struct f2fs_inode, i_addr) +
1436                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1437                                         get_inline_xattr_addrs(inode));
1438
1439                 phys += offset;
1440                 len = inline_xattr_size(inode);
1441
1442                 f2fs_put_page(page, 1);
1443
1444                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1445
1446                 if (!xnid)
1447                         flags |= FIEMAP_EXTENT_LAST;
1448
1449                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1450                 if (err || err == 1)
1451                         return err;
1452         }
1453
1454         if (xnid) {
1455                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1456                 if (!page)
1457                         return -ENOMEM;
1458
1459                 err = f2fs_get_node_info(sbi, xnid, &ni);
1460                 if (err) {
1461                         f2fs_put_page(page, 1);
1462                         return err;
1463                 }
1464
1465                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1466                 len = inode->i_sb->s_blocksize;
1467
1468                 f2fs_put_page(page, 1);
1469
1470                 flags = FIEMAP_EXTENT_LAST;
1471         }
1472
1473         if (phys)
1474                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1475
1476         return (err < 0 ? err : 0);
1477 }
1478
1479 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1480                 u64 start, u64 len)
1481 {
1482         struct buffer_head map_bh;
1483         sector_t start_blk, last_blk;
1484         pgoff_t next_pgofs;
1485         u64 logical = 0, phys = 0, size = 0;
1486         u32 flags = 0;
1487         int ret = 0;
1488
1489         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1490                 ret = f2fs_precache_extents(inode);
1491                 if (ret)
1492                         return ret;
1493         }
1494
1495         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1496         if (ret)
1497                 return ret;
1498
1499         inode_lock(inode);
1500
1501         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1502                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1503                 goto out;
1504         }
1505
1506         if (f2fs_has_inline_data(inode)) {
1507                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1508                 if (ret != -EAGAIN)
1509                         goto out;
1510         }
1511
1512         if (logical_to_blk(inode, len) == 0)
1513                 len = blk_to_logical(inode, 1);
1514
1515         start_blk = logical_to_blk(inode, start);
1516         last_blk = logical_to_blk(inode, start + len - 1);
1517
1518 next:
1519         memset(&map_bh, 0, sizeof(struct buffer_head));
1520         map_bh.b_size = len;
1521
1522         ret = get_data_block(inode, start_blk, &map_bh, 0,
1523                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1524         if (ret)
1525                 goto out;
1526
1527         /* HOLE */
1528         if (!buffer_mapped(&map_bh)) {
1529                 start_blk = next_pgofs;
1530
1531                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1532                                         F2FS_I_SB(inode)->max_file_blocks))
1533                         goto prep_next;
1534
1535                 flags |= FIEMAP_EXTENT_LAST;
1536         }
1537
1538         if (size) {
1539                 if (IS_ENCRYPTED(inode))
1540                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1541
1542                 ret = fiemap_fill_next_extent(fieinfo, logical,
1543                                 phys, size, flags);
1544         }
1545
1546         if (start_blk > last_blk || ret)
1547                 goto out;
1548
1549         logical = blk_to_logical(inode, start_blk);
1550         phys = blk_to_logical(inode, map_bh.b_blocknr);
1551         size = map_bh.b_size;
1552         flags = 0;
1553         if (buffer_unwritten(&map_bh))
1554                 flags = FIEMAP_EXTENT_UNWRITTEN;
1555
1556         start_blk += logical_to_blk(inode, size);
1557
1558 prep_next:
1559         cond_resched();
1560         if (fatal_signal_pending(current))
1561                 ret = -EINTR;
1562         else
1563                 goto next;
1564 out:
1565         if (ret == 1)
1566                 ret = 0;
1567
1568         inode_unlock(inode);
1569         return ret;
1570 }
1571
1572 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1573                                         unsigned nr_pages,
1574                                         struct f2fs_map_blocks *map,
1575                                         struct bio **bio_ret,
1576                                         sector_t *last_block_in_bio,
1577                                         bool is_readahead)
1578 {
1579         struct bio *bio = *bio_ret;
1580         const unsigned blkbits = inode->i_blkbits;
1581         const unsigned blocksize = 1 << blkbits;
1582         sector_t block_in_file;
1583         sector_t last_block;
1584         sector_t last_block_in_file;
1585         sector_t block_nr;
1586         int ret = 0;
1587
1588         block_in_file = (sector_t)page_index(page);
1589         last_block = block_in_file + nr_pages;
1590         last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1591                                                         blkbits;
1592         if (last_block > last_block_in_file)
1593                 last_block = last_block_in_file;
1594
1595         /* just zeroing out page which is beyond EOF */
1596         if (block_in_file >= last_block)
1597                 goto zero_out;
1598         /*
1599          * Map blocks using the previous result first.
1600          */
1601         if ((map->m_flags & F2FS_MAP_MAPPED) &&
1602                         block_in_file > map->m_lblk &&
1603                         block_in_file < (map->m_lblk + map->m_len))
1604                 goto got_it;
1605
1606         /*
1607          * Then do more f2fs_map_blocks() calls until we are
1608          * done with this page.
1609          */
1610         map->m_lblk = block_in_file;
1611         map->m_len = last_block - block_in_file;
1612
1613         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1614         if (ret)
1615                 goto out;
1616 got_it:
1617         if ((map->m_flags & F2FS_MAP_MAPPED)) {
1618                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1619                 SetPageMappedToDisk(page);
1620
1621                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1622                                         !cleancache_get_page(page))) {
1623                         SetPageUptodate(page);
1624                         goto confused;
1625                 }
1626
1627                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1628                                                 DATA_GENERIC_ENHANCE_READ)) {
1629                         ret = -EFSCORRUPTED;
1630                         goto out;
1631                 }
1632         } else {
1633 zero_out:
1634                 zero_user_segment(page, 0, PAGE_SIZE);
1635                 if (!PageUptodate(page))
1636                         SetPageUptodate(page);
1637                 unlock_page(page);
1638                 goto out;
1639         }
1640
1641         /*
1642          * This page will go to BIO.  Do we need to send this
1643          * BIO off first?
1644          */
1645         if (bio && (*last_block_in_bio != block_nr - 1 ||
1646                 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1647 submit_and_realloc:
1648                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1649                 bio = NULL;
1650         }
1651         if (bio == NULL) {
1652                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1653                                 is_readahead ? REQ_RAHEAD : 0);
1654                 if (IS_ERR(bio)) {
1655                         ret = PTR_ERR(bio);
1656                         bio = NULL;
1657                         goto out;
1658                 }
1659         }
1660
1661         /*
1662          * If the page is under writeback, we need to wait for
1663          * its completion to see the correct decrypted data.
1664          */
1665         f2fs_wait_on_block_writeback(inode, block_nr);
1666
1667         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1668                 goto submit_and_realloc;
1669
1670         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1671         ClearPageError(page);
1672         *last_block_in_bio = block_nr;
1673         goto out;
1674 confused:
1675         if (bio) {
1676                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1677                 bio = NULL;
1678         }
1679         unlock_page(page);
1680 out:
1681         *bio_ret = bio;
1682         return ret;
1683 }
1684
1685 /*
1686  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1687  * Major change was from block_size == page_size in f2fs by default.
1688  *
1689  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1690  * this function ever deviates from doing just read-ahead, it should either
1691  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1692  * from read-ahead.
1693  */
1694 static int f2fs_mpage_readpages(struct address_space *mapping,
1695                         struct list_head *pages, struct page *page,
1696                         unsigned nr_pages, bool is_readahead)
1697 {
1698         struct bio *bio = NULL;
1699         sector_t last_block_in_bio = 0;
1700         struct inode *inode = mapping->host;
1701         struct f2fs_map_blocks map;
1702         int ret = 0;
1703
1704         map.m_pblk = 0;
1705         map.m_lblk = 0;
1706         map.m_len = 0;
1707         map.m_flags = 0;
1708         map.m_next_pgofs = NULL;
1709         map.m_next_extent = NULL;
1710         map.m_seg_type = NO_CHECK_TYPE;
1711         map.m_may_create = false;
1712
1713         for (; nr_pages; nr_pages--) {
1714                 if (pages) {
1715                         page = list_last_entry(pages, struct page, lru);
1716
1717                         prefetchw(&page->flags);
1718                         list_del(&page->lru);
1719                         if (add_to_page_cache_lru(page, mapping,
1720                                                   page_index(page),
1721                                                   readahead_gfp_mask(mapping)))
1722                                 goto next_page;
1723                 }
1724
1725                 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1726                                         &last_block_in_bio, is_readahead);
1727                 if (ret) {
1728                         SetPageError(page);
1729                         zero_user_segment(page, 0, PAGE_SIZE);
1730                         unlock_page(page);
1731                 }
1732 next_page:
1733                 if (pages)
1734                         put_page(page);
1735         }
1736         BUG_ON(pages && !list_empty(pages));
1737         if (bio)
1738                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1739         return pages ? 0 : ret;
1740 }
1741
1742 static int f2fs_read_data_page(struct file *file, struct page *page)
1743 {
1744         struct inode *inode = page_file_mapping(page)->host;
1745         int ret = -EAGAIN;
1746
1747         trace_f2fs_readpage(page, DATA);
1748
1749         /* If the file has inline data, try to read it directly */
1750         if (f2fs_has_inline_data(inode))
1751                 ret = f2fs_read_inline_data(inode, page);
1752         if (ret == -EAGAIN)
1753                 ret = f2fs_mpage_readpages(page_file_mapping(page),
1754                                                 NULL, page, 1, false);
1755         return ret;
1756 }
1757
1758 static int f2fs_read_data_pages(struct file *file,
1759                         struct address_space *mapping,
1760                         struct list_head *pages, unsigned nr_pages)
1761 {
1762         struct inode *inode = mapping->host;
1763         struct page *page = list_last_entry(pages, struct page, lru);
1764
1765         trace_f2fs_readpages(inode, page, nr_pages);
1766
1767         /* If the file has inline data, skip readpages */
1768         if (f2fs_has_inline_data(inode))
1769                 return 0;
1770
1771         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1772 }
1773
1774 static int encrypt_one_page(struct f2fs_io_info *fio)
1775 {
1776         struct inode *inode = fio->page->mapping->host;
1777         struct page *mpage;
1778         gfp_t gfp_flags = GFP_NOFS;
1779
1780         if (!f2fs_encrypted_file(inode))
1781                 return 0;
1782
1783         /* wait for GCed page writeback via META_MAPPING */
1784         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1785
1786 retry_encrypt:
1787         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1788                                                                PAGE_SIZE, 0,
1789                                                                gfp_flags);
1790         if (IS_ERR(fio->encrypted_page)) {
1791                 /* flush pending IOs and wait for a while in the ENOMEM case */
1792                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1793                         f2fs_flush_merged_writes(fio->sbi);
1794                         congestion_wait(BLK_RW_ASYNC, HZ/50);
1795                         gfp_flags |= __GFP_NOFAIL;
1796                         goto retry_encrypt;
1797                 }
1798                 return PTR_ERR(fio->encrypted_page);
1799         }
1800
1801         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1802         if (mpage) {
1803                 if (PageUptodate(mpage))
1804                         memcpy(page_address(mpage),
1805                                 page_address(fio->encrypted_page), PAGE_SIZE);
1806                 f2fs_put_page(mpage, 1);
1807         }
1808         return 0;
1809 }
1810
1811 static inline bool check_inplace_update_policy(struct inode *inode,
1812                                 struct f2fs_io_info *fio)
1813 {
1814         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1815         unsigned int policy = SM_I(sbi)->ipu_policy;
1816
1817         if (policy & (0x1 << F2FS_IPU_FORCE))
1818                 return true;
1819         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1820                 return true;
1821         if (policy & (0x1 << F2FS_IPU_UTIL) &&
1822                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1823                 return true;
1824         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1825                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1826                 return true;
1827
1828         /*
1829          * IPU for rewrite async pages
1830          */
1831         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1832                         fio && fio->op == REQ_OP_WRITE &&
1833                         !(fio->op_flags & REQ_SYNC) &&
1834                         !IS_ENCRYPTED(inode))
1835                 return true;
1836
1837         /* this is only set during fdatasync */
1838         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1839                         is_inode_flag_set(inode, FI_NEED_IPU))
1840                 return true;
1841
1842         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1843                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1844                 return true;
1845
1846         return false;
1847 }
1848
1849 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1850 {
1851         if (f2fs_is_pinned_file(inode))
1852                 return true;
1853
1854         /* if this is cold file, we should overwrite to avoid fragmentation */
1855         if (file_is_cold(inode))
1856                 return true;
1857
1858         return check_inplace_update_policy(inode, fio);
1859 }
1860
1861 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1862 {
1863         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1864
1865         if (test_opt(sbi, LFS))
1866                 return true;
1867         if (S_ISDIR(inode->i_mode))
1868                 return true;
1869         if (IS_NOQUOTA(inode))
1870                 return true;
1871         if (f2fs_is_atomic_file(inode))
1872                 return true;
1873         if (fio) {
1874                 if (is_cold_data(fio->page))
1875                         return true;
1876                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1877                         return true;
1878                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1879                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1880                         return true;
1881         }
1882         return false;
1883 }
1884
1885 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1886 {
1887         struct inode *inode = fio->page->mapping->host;
1888
1889         if (f2fs_should_update_outplace(inode, fio))
1890                 return false;
1891
1892         return f2fs_should_update_inplace(inode, fio);
1893 }
1894
1895 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1896 {
1897         struct page *page = fio->page;
1898         struct inode *inode = page->mapping->host;
1899         struct dnode_of_data dn;
1900         struct extent_info ei = {0,0,0};
1901         struct node_info ni;
1902         bool ipu_force = false;
1903         int err = 0;
1904
1905         set_new_dnode(&dn, inode, NULL, NULL, 0);
1906         if (need_inplace_update(fio) &&
1907                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1908                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1909
1910                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1911                                                 DATA_GENERIC_ENHANCE))
1912                         return -EFSCORRUPTED;
1913
1914                 ipu_force = true;
1915                 fio->need_lock = LOCK_DONE;
1916                 goto got_it;
1917         }
1918
1919         /* Deadlock due to between page->lock and f2fs_lock_op */
1920         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1921                 return -EAGAIN;
1922
1923         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1924         if (err)
1925                 goto out;
1926
1927         fio->old_blkaddr = dn.data_blkaddr;
1928
1929         /* This page is already truncated */
1930         if (fio->old_blkaddr == NULL_ADDR) {
1931                 ClearPageUptodate(page);
1932                 clear_cold_data(page);
1933                 goto out_writepage;
1934         }
1935 got_it:
1936         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1937                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1938                                                 DATA_GENERIC_ENHANCE)) {
1939                 err = -EFSCORRUPTED;
1940                 goto out_writepage;
1941         }
1942         /*
1943          * If current allocation needs SSR,
1944          * it had better in-place writes for updated data.
1945          */
1946         if (ipu_force ||
1947                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1948                                         need_inplace_update(fio))) {
1949                 err = encrypt_one_page(fio);
1950                 if (err)
1951                         goto out_writepage;
1952
1953                 set_page_writeback(page);
1954                 ClearPageError(page);
1955                 f2fs_put_dnode(&dn);
1956                 if (fio->need_lock == LOCK_REQ)
1957                         f2fs_unlock_op(fio->sbi);
1958                 err = f2fs_inplace_write_data(fio);
1959                 if (err) {
1960                         if (f2fs_encrypted_file(inode))
1961                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
1962                         if (PageWriteback(page))
1963                                 end_page_writeback(page);
1964                 } else {
1965                         set_inode_flag(inode, FI_UPDATE_WRITE);
1966                 }
1967                 trace_f2fs_do_write_data_page(fio->page, IPU);
1968                 return err;
1969         }
1970
1971         if (fio->need_lock == LOCK_RETRY) {
1972                 if (!f2fs_trylock_op(fio->sbi)) {
1973                         err = -EAGAIN;
1974                         goto out_writepage;
1975                 }
1976                 fio->need_lock = LOCK_REQ;
1977         }
1978
1979         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1980         if (err)
1981                 goto out_writepage;
1982
1983         fio->version = ni.version;
1984
1985         err = encrypt_one_page(fio);
1986         if (err)
1987                 goto out_writepage;
1988
1989         set_page_writeback(page);
1990         ClearPageError(page);
1991
1992         /* LFS mode write path */
1993         f2fs_outplace_write_data(&dn, fio);
1994         trace_f2fs_do_write_data_page(page, OPU);
1995         set_inode_flag(inode, FI_APPEND_WRITE);
1996         if (page->index == 0)
1997                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1998 out_writepage:
1999         f2fs_put_dnode(&dn);
2000 out:
2001         if (fio->need_lock == LOCK_REQ)
2002                 f2fs_unlock_op(fio->sbi);
2003         return err;
2004 }
2005
2006 static int __write_data_page(struct page *page, bool *submitted,
2007                                 struct bio **bio,
2008                                 sector_t *last_block,
2009                                 struct writeback_control *wbc,
2010                                 enum iostat_type io_type)
2011 {
2012         struct inode *inode = page->mapping->host;
2013         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2014         loff_t i_size = i_size_read(inode);
2015         const pgoff_t end_index = ((unsigned long long) i_size)
2016                                                         >> PAGE_SHIFT;
2017         loff_t psize = (page->index + 1) << PAGE_SHIFT;
2018         unsigned offset = 0;
2019         bool need_balance_fs = false;
2020         int err = 0;
2021         struct f2fs_io_info fio = {
2022                 .sbi = sbi,
2023                 .ino = inode->i_ino,
2024                 .type = DATA,
2025                 .op = REQ_OP_WRITE,
2026                 .op_flags = wbc_to_write_flags(wbc),
2027                 .old_blkaddr = NULL_ADDR,
2028                 .page = page,
2029                 .encrypted_page = NULL,
2030                 .submitted = false,
2031                 .need_lock = LOCK_RETRY,
2032                 .io_type = io_type,
2033                 .io_wbc = wbc,
2034                 .bio = bio,
2035                 .last_block = last_block,
2036         };
2037
2038         trace_f2fs_writepage(page, DATA);
2039
2040         /* we should bypass data pages to proceed the kworkder jobs */
2041         if (unlikely(f2fs_cp_error(sbi))) {
2042                 mapping_set_error(page->mapping, -EIO);
2043                 /*
2044                  * don't drop any dirty dentry pages for keeping lastest
2045                  * directory structure.
2046                  */
2047                 if (S_ISDIR(inode->i_mode))
2048                         goto redirty_out;
2049                 goto out;
2050         }
2051
2052         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2053                 goto redirty_out;
2054
2055         if (page->index < end_index)
2056                 goto write;
2057
2058         /*
2059          * If the offset is out-of-range of file size,
2060          * this page does not have to be written to disk.
2061          */
2062         offset = i_size & (PAGE_SIZE - 1);
2063         if ((page->index >= end_index + 1) || !offset)
2064                 goto out;
2065
2066         zero_user_segment(page, offset, PAGE_SIZE);
2067 write:
2068         if (f2fs_is_drop_cache(inode))
2069                 goto out;
2070         /* we should not write 0'th page having journal header */
2071         if (f2fs_is_volatile_file(inode) && (!page->index ||
2072                         (!wbc->for_reclaim &&
2073                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2074                 goto redirty_out;
2075
2076         /* Dentry blocks are controlled by checkpoint */
2077         if (S_ISDIR(inode->i_mode)) {
2078                 fio.need_lock = LOCK_DONE;
2079                 err = f2fs_do_write_data_page(&fio);
2080                 goto done;
2081         }
2082
2083         if (!wbc->for_reclaim)
2084                 need_balance_fs = true;
2085         else if (has_not_enough_free_secs(sbi, 0, 0))
2086                 goto redirty_out;
2087         else
2088                 set_inode_flag(inode, FI_HOT_DATA);
2089
2090         err = -EAGAIN;
2091         if (f2fs_has_inline_data(inode)) {
2092                 err = f2fs_write_inline_data(inode, page);
2093                 if (!err)
2094                         goto out;
2095         }
2096
2097         if (err == -EAGAIN) {
2098                 err = f2fs_do_write_data_page(&fio);
2099                 if (err == -EAGAIN) {
2100                         fio.need_lock = LOCK_REQ;
2101                         err = f2fs_do_write_data_page(&fio);
2102                 }
2103         }
2104
2105         if (err) {
2106                 file_set_keep_isize(inode);
2107         } else {
2108                 down_write(&F2FS_I(inode)->i_sem);
2109                 if (F2FS_I(inode)->last_disk_size < psize)
2110                         F2FS_I(inode)->last_disk_size = psize;
2111                 up_write(&F2FS_I(inode)->i_sem);
2112         }
2113
2114 done:
2115         if (err && err != -ENOENT)
2116                 goto redirty_out;
2117
2118 out:
2119         inode_dec_dirty_pages(inode);
2120         if (err) {
2121                 ClearPageUptodate(page);
2122                 clear_cold_data(page);
2123         }
2124
2125         if (wbc->for_reclaim) {
2126                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2127                 clear_inode_flag(inode, FI_HOT_DATA);
2128                 f2fs_remove_dirty_inode(inode);
2129                 submitted = NULL;
2130         }
2131
2132         unlock_page(page);
2133         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2134                                         !F2FS_I(inode)->cp_task) {
2135                 f2fs_submit_ipu_bio(sbi, bio, page);
2136                 f2fs_balance_fs(sbi, need_balance_fs);
2137         }
2138
2139         if (unlikely(f2fs_cp_error(sbi))) {
2140                 f2fs_submit_ipu_bio(sbi, bio, page);
2141                 f2fs_submit_merged_write(sbi, DATA);
2142                 submitted = NULL;
2143         }
2144
2145         if (submitted)
2146                 *submitted = fio.submitted;
2147
2148         return 0;
2149
2150 redirty_out:
2151         redirty_page_for_writepage(wbc, page);
2152         /*
2153          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2154          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2155          * file_write_and_wait_range() will see EIO error, which is critical
2156          * to return value of fsync() followed by atomic_write failure to user.
2157          */
2158         if (!err || wbc->for_reclaim)
2159                 return AOP_WRITEPAGE_ACTIVATE;
2160         unlock_page(page);
2161         return err;
2162 }
2163
2164 static int f2fs_write_data_page(struct page *page,
2165                                         struct writeback_control *wbc)
2166 {
2167         return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2168 }
2169
2170 /*
2171  * This function was copied from write_cche_pages from mm/page-writeback.c.
2172  * The major change is making write step of cold data page separately from
2173  * warm/hot data page.
2174  */
2175 static int f2fs_write_cache_pages(struct address_space *mapping,
2176                                         struct writeback_control *wbc,
2177                                         enum iostat_type io_type)
2178 {
2179         int ret = 0;
2180         int done = 0;
2181         struct pagevec pvec;
2182         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2183         struct bio *bio = NULL;
2184         sector_t last_block;
2185         int nr_pages;
2186         pgoff_t uninitialized_var(writeback_index);
2187         pgoff_t index;
2188         pgoff_t end;            /* Inclusive */
2189         pgoff_t done_index;
2190         int cycled;
2191         int range_whole = 0;
2192         xa_mark_t tag;
2193         int nwritten = 0;
2194
2195         pagevec_init(&pvec);
2196
2197         if (get_dirty_pages(mapping->host) <=
2198                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2199                 set_inode_flag(mapping->host, FI_HOT_DATA);
2200         else
2201                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2202
2203         if (wbc->range_cyclic) {
2204                 writeback_index = mapping->writeback_index; /* prev offset */
2205                 index = writeback_index;
2206                 if (index == 0)
2207                         cycled = 1;
2208                 else
2209                         cycled = 0;
2210                 end = -1;
2211         } else {
2212                 index = wbc->range_start >> PAGE_SHIFT;
2213                 end = wbc->range_end >> PAGE_SHIFT;
2214                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2215                         range_whole = 1;
2216                 cycled = 1; /* ignore range_cyclic tests */
2217         }
2218         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2219                 tag = PAGECACHE_TAG_TOWRITE;
2220         else
2221                 tag = PAGECACHE_TAG_DIRTY;
2222 retry:
2223         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2224                 tag_pages_for_writeback(mapping, index, end);
2225         done_index = index;
2226         while (!done && (index <= end)) {
2227                 int i;
2228
2229                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2230                                 tag);
2231                 if (nr_pages == 0)
2232                         break;
2233
2234                 for (i = 0; i < nr_pages; i++) {
2235                         struct page *page = pvec.pages[i];
2236                         bool submitted = false;
2237
2238                         /* give a priority to WB_SYNC threads */
2239                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2240                                         wbc->sync_mode == WB_SYNC_NONE) {
2241                                 done = 1;
2242                                 break;
2243                         }
2244
2245                         done_index = page->index;
2246 retry_write:
2247                         lock_page(page);
2248
2249                         if (unlikely(page->mapping != mapping)) {
2250 continue_unlock:
2251                                 unlock_page(page);
2252                                 continue;
2253                         }
2254
2255                         if (!PageDirty(page)) {
2256                                 /* someone wrote it for us */
2257                                 goto continue_unlock;
2258                         }
2259
2260                         if (PageWriteback(page)) {
2261                                 if (wbc->sync_mode != WB_SYNC_NONE) {
2262                                         f2fs_wait_on_page_writeback(page,
2263                                                         DATA, true, true);
2264                                         f2fs_submit_ipu_bio(sbi, &bio, page);
2265                                 } else {
2266                                         goto continue_unlock;
2267                                 }
2268                         }
2269
2270                         if (!clear_page_dirty_for_io(page))
2271                                 goto continue_unlock;
2272
2273                         ret = __write_data_page(page, &submitted, &bio,
2274                                         &last_block, wbc, io_type);
2275                         if (unlikely(ret)) {
2276                                 /*
2277                                  * keep nr_to_write, since vfs uses this to
2278                                  * get # of written pages.
2279                                  */
2280                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2281                                         unlock_page(page);
2282                                         ret = 0;
2283                                         continue;
2284                                 } else if (ret == -EAGAIN) {
2285                                         ret = 0;
2286                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2287                                                 cond_resched();
2288                                                 congestion_wait(BLK_RW_ASYNC,
2289                                                                         HZ/50);
2290                                                 goto retry_write;
2291                                         }
2292                                         continue;
2293                                 }
2294                                 done_index = page->index + 1;
2295                                 done = 1;
2296                                 break;
2297                         } else if (submitted) {
2298                                 nwritten++;
2299                         }
2300
2301                         if (--wbc->nr_to_write <= 0 &&
2302                                         wbc->sync_mode == WB_SYNC_NONE) {
2303                                 done = 1;
2304                                 break;
2305                         }
2306                 }
2307                 pagevec_release(&pvec);
2308                 cond_resched();
2309         }
2310
2311         if (!cycled && !done) {
2312                 cycled = 1;
2313                 index = 0;
2314                 end = writeback_index - 1;
2315                 goto retry;
2316         }
2317         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2318                 mapping->writeback_index = done_index;
2319
2320         if (nwritten)
2321                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2322                                                                 NULL, 0, DATA);
2323         /* submit cached bio of IPU write */
2324         if (bio)
2325                 __submit_bio(sbi, bio, DATA);
2326
2327         return ret;
2328 }
2329
2330 static inline bool __should_serialize_io(struct inode *inode,
2331                                         struct writeback_control *wbc)
2332 {
2333         if (!S_ISREG(inode->i_mode))
2334                 return false;
2335         if (IS_NOQUOTA(inode))
2336                 return false;
2337         /* to avoid deadlock in path of data flush */
2338         if (F2FS_I(inode)->cp_task)
2339                 return false;
2340         if (wbc->sync_mode != WB_SYNC_ALL)
2341                 return true;
2342         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2343                 return true;
2344         return false;
2345 }
2346
2347 static int __f2fs_write_data_pages(struct address_space *mapping,
2348                                                 struct writeback_control *wbc,
2349                                                 enum iostat_type io_type)
2350 {
2351         struct inode *inode = mapping->host;
2352         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2353         struct blk_plug plug;
2354         int ret;
2355         bool locked = false;
2356
2357         /* deal with chardevs and other special file */
2358         if (!mapping->a_ops->writepage)
2359                 return 0;
2360
2361         /* skip writing if there is no dirty page in this inode */
2362         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2363                 return 0;
2364
2365         /* during POR, we don't need to trigger writepage at all. */
2366         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2367                 goto skip_write;
2368
2369         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2370                         wbc->sync_mode == WB_SYNC_NONE &&
2371                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2372                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
2373                 goto skip_write;
2374
2375         /* skip writing during file defragment */
2376         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2377                 goto skip_write;
2378
2379         trace_f2fs_writepages(mapping->host, wbc, DATA);
2380
2381         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2382         if (wbc->sync_mode == WB_SYNC_ALL)
2383                 atomic_inc(&sbi->wb_sync_req[DATA]);
2384         else if (atomic_read(&sbi->wb_sync_req[DATA]))
2385                 goto skip_write;
2386
2387         if (__should_serialize_io(inode, wbc)) {
2388                 mutex_lock(&sbi->writepages);
2389                 locked = true;
2390         }
2391
2392         blk_start_plug(&plug);
2393         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2394         blk_finish_plug(&plug);
2395
2396         if (locked)
2397                 mutex_unlock(&sbi->writepages);
2398
2399         if (wbc->sync_mode == WB_SYNC_ALL)
2400                 atomic_dec(&sbi->wb_sync_req[DATA]);
2401         /*
2402          * if some pages were truncated, we cannot guarantee its mapping->host
2403          * to detect pending bios.
2404          */
2405
2406         f2fs_remove_dirty_inode(inode);
2407         return ret;
2408
2409 skip_write:
2410         wbc->pages_skipped += get_dirty_pages(inode);
2411         trace_f2fs_writepages(mapping->host, wbc, DATA);
2412         return 0;
2413 }
2414
2415 static int f2fs_write_data_pages(struct address_space *mapping,
2416                             struct writeback_control *wbc)
2417 {
2418         struct inode *inode = mapping->host;
2419
2420         return __f2fs_write_data_pages(mapping, wbc,
2421                         F2FS_I(inode)->cp_task == current ?
2422                         FS_CP_DATA_IO : FS_DATA_IO);
2423 }
2424
2425 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2426 {
2427         struct inode *inode = mapping->host;
2428         loff_t i_size = i_size_read(inode);
2429
2430         if (to > i_size) {
2431                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2432                 down_write(&F2FS_I(inode)->i_mmap_sem);
2433
2434                 truncate_pagecache(inode, i_size);
2435                 if (!IS_NOQUOTA(inode))
2436                         f2fs_truncate_blocks(inode, i_size, true);
2437
2438                 up_write(&F2FS_I(inode)->i_mmap_sem);
2439                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2440         }
2441 }
2442
2443 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2444                         struct page *page, loff_t pos, unsigned len,
2445                         block_t *blk_addr, bool *node_changed)
2446 {
2447         struct inode *inode = page->mapping->host;
2448         pgoff_t index = page->index;
2449         struct dnode_of_data dn;
2450         struct page *ipage;
2451         bool locked = false;
2452         struct extent_info ei = {0,0,0};
2453         int err = 0;
2454         int flag;
2455
2456         /*
2457          * we already allocated all the blocks, so we don't need to get
2458          * the block addresses when there is no need to fill the page.
2459          */
2460         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2461                         !is_inode_flag_set(inode, FI_NO_PREALLOC))
2462                 return 0;
2463
2464         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2465         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2466                 flag = F2FS_GET_BLOCK_DEFAULT;
2467         else
2468                 flag = F2FS_GET_BLOCK_PRE_AIO;
2469
2470         if (f2fs_has_inline_data(inode) ||
2471                         (pos & PAGE_MASK) >= i_size_read(inode)) {
2472                 __do_map_lock(sbi, flag, true);
2473                 locked = true;
2474         }
2475 restart:
2476         /* check inline_data */
2477         ipage = f2fs_get_node_page(sbi, inode->i_ino);
2478         if (IS_ERR(ipage)) {
2479                 err = PTR_ERR(ipage);
2480                 goto unlock_out;
2481         }
2482
2483         set_new_dnode(&dn, inode, ipage, ipage, 0);
2484
2485         if (f2fs_has_inline_data(inode)) {
2486                 if (pos + len <= MAX_INLINE_DATA(inode)) {
2487                         f2fs_do_read_inline_data(page, ipage);
2488                         set_inode_flag(inode, FI_DATA_EXIST);
2489                         if (inode->i_nlink)
2490                                 set_inline_node(ipage);
2491                 } else {
2492                         err = f2fs_convert_inline_page(&dn, page);
2493                         if (err)
2494                                 goto out;
2495                         if (dn.data_blkaddr == NULL_ADDR)
2496                                 err = f2fs_get_block(&dn, index);
2497                 }
2498         } else if (locked) {
2499                 err = f2fs_get_block(&dn, index);
2500         } else {
2501                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2502                         dn.data_blkaddr = ei.blk + index - ei.fofs;
2503                 } else {
2504                         /* hole case */
2505                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2506                         if (err || dn.data_blkaddr == NULL_ADDR) {
2507                                 f2fs_put_dnode(&dn);
2508                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2509                                                                 true);
2510                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2511                                 locked = true;
2512                                 goto restart;
2513                         }
2514                 }
2515         }
2516
2517         /* convert_inline_page can make node_changed */
2518         *blk_addr = dn.data_blkaddr;
2519         *node_changed = dn.node_changed;
2520 out:
2521         f2fs_put_dnode(&dn);
2522 unlock_out:
2523         if (locked)
2524                 __do_map_lock(sbi, flag, false);
2525         return err;
2526 }
2527
2528 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2529                 loff_t pos, unsigned len, unsigned flags,
2530                 struct page **pagep, void **fsdata)
2531 {
2532         struct inode *inode = mapping->host;
2533         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534         struct page *page = NULL;
2535         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2536         bool need_balance = false, drop_atomic = false;
2537         block_t blkaddr = NULL_ADDR;
2538         int err = 0;
2539
2540         trace_f2fs_write_begin(inode, pos, len, flags);
2541
2542         err = f2fs_is_checkpoint_ready(sbi);
2543         if (err)
2544                 goto fail;
2545
2546         if ((f2fs_is_atomic_file(inode) &&
2547                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2548                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2549                 err = -ENOMEM;
2550                 drop_atomic = true;
2551                 goto fail;
2552         }
2553
2554         /*
2555          * We should check this at this moment to avoid deadlock on inode page
2556          * and #0 page. The locking rule for inline_data conversion should be:
2557          * lock_page(page #0) -> lock_page(inode_page)
2558          */
2559         if (index != 0) {
2560                 err = f2fs_convert_inline_inode(inode);
2561                 if (err)
2562                         goto fail;
2563         }
2564 repeat:
2565         /*
2566          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2567          * wait_for_stable_page. Will wait that below with our IO control.
2568          */
2569         page = f2fs_pagecache_get_page(mapping, index,
2570                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2571         if (!page) {
2572                 err = -ENOMEM;
2573                 goto fail;
2574         }
2575
2576         *pagep = page;
2577
2578         err = prepare_write_begin(sbi, page, pos, len,
2579                                         &blkaddr, &need_balance);
2580         if (err)
2581                 goto fail;
2582
2583         if (need_balance && !IS_NOQUOTA(inode) &&
2584                         has_not_enough_free_secs(sbi, 0, 0)) {
2585                 unlock_page(page);
2586                 f2fs_balance_fs(sbi, true);
2587                 lock_page(page);
2588                 if (page->mapping != mapping) {
2589                         /* The page got truncated from under us */
2590                         f2fs_put_page(page, 1);
2591                         goto repeat;
2592                 }
2593         }
2594
2595         f2fs_wait_on_page_writeback(page, DATA, false, true);
2596
2597         if (len == PAGE_SIZE || PageUptodate(page))
2598                 return 0;
2599
2600         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2601                 zero_user_segment(page, len, PAGE_SIZE);
2602                 return 0;
2603         }
2604
2605         if (blkaddr == NEW_ADDR) {
2606                 zero_user_segment(page, 0, PAGE_SIZE);
2607                 SetPageUptodate(page);
2608         } else {
2609                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2610                                 DATA_GENERIC_ENHANCE_READ)) {
2611                         err = -EFSCORRUPTED;
2612                         goto fail;
2613                 }
2614                 err = f2fs_submit_page_read(inode, page, blkaddr);
2615                 if (err)
2616                         goto fail;
2617
2618                 lock_page(page);
2619                 if (unlikely(page->mapping != mapping)) {
2620                         f2fs_put_page(page, 1);
2621                         goto repeat;
2622                 }
2623                 if (unlikely(!PageUptodate(page))) {
2624                         err = -EIO;
2625                         goto fail;
2626                 }
2627         }
2628         return 0;
2629
2630 fail:
2631         f2fs_put_page(page, 1);
2632         f2fs_write_failed(mapping, pos + len);
2633         if (drop_atomic)
2634                 f2fs_drop_inmem_pages_all(sbi, false);
2635         return err;
2636 }
2637
2638 static int f2fs_write_end(struct file *file,
2639                         struct address_space *mapping,
2640                         loff_t pos, unsigned len, unsigned copied,
2641                         struct page *page, void *fsdata)
2642 {
2643         struct inode *inode = page->mapping->host;
2644
2645         trace_f2fs_write_end(inode, pos, len, copied);
2646
2647         /*
2648          * This should be come from len == PAGE_SIZE, and we expect copied
2649          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2650          * let generic_perform_write() try to copy data again through copied=0.
2651          */
2652         if (!PageUptodate(page)) {
2653                 if (unlikely(copied != len))
2654                         copied = 0;
2655                 else
2656                         SetPageUptodate(page);
2657         }
2658         if (!copied)
2659                 goto unlock_out;
2660
2661         set_page_dirty(page);
2662
2663         if (pos + copied > i_size_read(inode))
2664                 f2fs_i_size_write(inode, pos + copied);
2665 unlock_out:
2666         f2fs_put_page(page, 1);
2667         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2668         return copied;
2669 }
2670
2671 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2672                            loff_t offset)
2673 {
2674         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2675         unsigned blkbits = i_blkbits;
2676         unsigned blocksize_mask = (1 << blkbits) - 1;
2677         unsigned long align = offset | iov_iter_alignment(iter);
2678         struct block_device *bdev = inode->i_sb->s_bdev;
2679
2680         if (align & blocksize_mask) {
2681                 if (bdev)
2682                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
2683                 blocksize_mask = (1 << blkbits) - 1;
2684                 if (align & blocksize_mask)
2685                         return -EINVAL;
2686                 return 1;
2687         }
2688         return 0;
2689 }
2690
2691 static void f2fs_dio_end_io(struct bio *bio)
2692 {
2693         struct f2fs_private_dio *dio = bio->bi_private;
2694
2695         dec_page_count(F2FS_I_SB(dio->inode),
2696                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2697
2698         bio->bi_private = dio->orig_private;
2699         bio->bi_end_io = dio->orig_end_io;
2700
2701         kvfree(dio);
2702
2703         bio_endio(bio);
2704 }
2705
2706 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2707                                                         loff_t file_offset)
2708 {
2709         struct f2fs_private_dio *dio;
2710         bool write = (bio_op(bio) == REQ_OP_WRITE);
2711
2712         dio = f2fs_kzalloc(F2FS_I_SB(inode),
2713                         sizeof(struct f2fs_private_dio), GFP_NOFS);
2714         if (!dio)
2715                 goto out;
2716
2717         dio->inode = inode;
2718         dio->orig_end_io = bio->bi_end_io;
2719         dio->orig_private = bio->bi_private;
2720         dio->write = write;
2721
2722         bio->bi_end_io = f2fs_dio_end_io;
2723         bio->bi_private = dio;
2724
2725         inc_page_count(F2FS_I_SB(inode),
2726                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2727
2728         submit_bio(bio);
2729         return;
2730 out:
2731         bio->bi_status = BLK_STS_IOERR;
2732         bio_endio(bio);
2733 }
2734
2735 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2736 {
2737         struct address_space *mapping = iocb->ki_filp->f_mapping;
2738         struct inode *inode = mapping->host;
2739         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740         struct f2fs_inode_info *fi = F2FS_I(inode);
2741         size_t count = iov_iter_count(iter);
2742         loff_t offset = iocb->ki_pos;
2743         int rw = iov_iter_rw(iter);
2744         int err;
2745         enum rw_hint hint = iocb->ki_hint;
2746         int whint_mode = F2FS_OPTION(sbi).whint_mode;
2747         bool do_opu;
2748
2749         err = check_direct_IO(inode, iter, offset);
2750         if (err)
2751                 return err < 0 ? err : 0;
2752
2753         if (f2fs_force_buffered_io(inode, iocb, iter))
2754                 return 0;
2755
2756         do_opu = allow_outplace_dio(inode, iocb, iter);
2757
2758         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2759
2760         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2761                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2762
2763         if (iocb->ki_flags & IOCB_NOWAIT) {
2764                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2765                         iocb->ki_hint = hint;
2766                         err = -EAGAIN;
2767                         goto out;
2768                 }
2769                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2770                         up_read(&fi->i_gc_rwsem[rw]);
2771                         iocb->ki_hint = hint;
2772                         err = -EAGAIN;
2773                         goto out;
2774                 }
2775         } else {
2776                 down_read(&fi->i_gc_rwsem[rw]);
2777                 if (do_opu)
2778                         down_read(&fi->i_gc_rwsem[READ]);
2779         }
2780
2781         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2782                         iter, rw == WRITE ? get_data_block_dio_write :
2783                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
2784                         DIO_LOCKING | DIO_SKIP_HOLES);
2785
2786         if (do_opu)
2787                 up_read(&fi->i_gc_rwsem[READ]);
2788
2789         up_read(&fi->i_gc_rwsem[rw]);
2790
2791         if (rw == WRITE) {
2792                 if (whint_mode == WHINT_MODE_OFF)
2793                         iocb->ki_hint = hint;
2794                 if (err > 0) {
2795                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2796                                                                         err);
2797                         if (!do_opu)
2798                                 set_inode_flag(inode, FI_UPDATE_WRITE);
2799                 } else if (err < 0) {
2800                         f2fs_write_failed(mapping, offset + count);
2801                 }
2802         }
2803
2804 out:
2805         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2806
2807         return err;
2808 }
2809
2810 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2811                                                         unsigned int length)
2812 {
2813         struct inode *inode = page->mapping->host;
2814         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2815
2816         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2817                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2818                 return;
2819
2820         if (PageDirty(page)) {
2821                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2822                         dec_page_count(sbi, F2FS_DIRTY_META);
2823                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2824                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2825                 } else {
2826                         inode_dec_dirty_pages(inode);
2827                         f2fs_remove_dirty_inode(inode);
2828                 }
2829         }
2830
2831         clear_cold_data(page);
2832
2833         if (IS_ATOMIC_WRITTEN_PAGE(page))
2834                 return f2fs_drop_inmem_page(inode, page);
2835
2836         f2fs_clear_page_private(page);
2837 }
2838
2839 int f2fs_release_page(struct page *page, gfp_t wait)
2840 {
2841         /* If this is dirty page, keep PagePrivate */
2842         if (PageDirty(page))
2843                 return 0;
2844
2845         /* This is atomic written page, keep Private */
2846         if (IS_ATOMIC_WRITTEN_PAGE(page))
2847                 return 0;
2848
2849         clear_cold_data(page);
2850         f2fs_clear_page_private(page);
2851         return 1;
2852 }
2853
2854 static int f2fs_set_data_page_dirty(struct page *page)
2855 {
2856         struct inode *inode = page_file_mapping(page)->host;
2857
2858         trace_f2fs_set_page_dirty(page, DATA);
2859
2860         if (!PageUptodate(page))
2861                 SetPageUptodate(page);
2862         if (PageSwapCache(page))
2863                 return __set_page_dirty_nobuffers(page);
2864
2865         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2866                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2867                         f2fs_register_inmem_page(inode, page);
2868                         return 1;
2869                 }
2870                 /*
2871                  * Previously, this page has been registered, we just
2872                  * return here.
2873                  */
2874                 return 0;
2875         }
2876
2877         if (!PageDirty(page)) {
2878                 __set_page_dirty_nobuffers(page);
2879                 f2fs_update_dirty_page(inode, page);
2880                 return 1;
2881         }
2882         return 0;
2883 }
2884
2885 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2886 {
2887         struct inode *inode = mapping->host;
2888
2889         if (f2fs_has_inline_data(inode))
2890                 return 0;
2891
2892         /* make sure allocating whole blocks */
2893         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2894                 filemap_write_and_wait(mapping);
2895
2896         return generic_block_bmap(mapping, block, get_data_block_bmap);
2897 }
2898
2899 #ifdef CONFIG_MIGRATION
2900 #include <linux/migrate.h>
2901
2902 int f2fs_migrate_page(struct address_space *mapping,
2903                 struct page *newpage, struct page *page, enum migrate_mode mode)
2904 {
2905         int rc, extra_count;
2906         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2907         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2908
2909         BUG_ON(PageWriteback(page));
2910
2911         /* migrating an atomic written page is safe with the inmem_lock hold */
2912         if (atomic_written) {
2913                 if (mode != MIGRATE_SYNC)
2914                         return -EBUSY;
2915                 if (!mutex_trylock(&fi->inmem_lock))
2916                         return -EAGAIN;
2917         }
2918
2919         /* one extra reference was held for atomic_write page */
2920         extra_count = atomic_written ? 1 : 0;
2921         rc = migrate_page_move_mapping(mapping, newpage,
2922                                 page, extra_count);
2923         if (rc != MIGRATEPAGE_SUCCESS) {
2924                 if (atomic_written)
2925                         mutex_unlock(&fi->inmem_lock);
2926                 return rc;
2927         }
2928
2929         if (atomic_written) {
2930                 struct inmem_pages *cur;
2931                 list_for_each_entry(cur, &fi->inmem_pages, list)
2932                         if (cur->page == page) {
2933                                 cur->page = newpage;
2934                                 break;
2935                         }
2936                 mutex_unlock(&fi->inmem_lock);
2937                 put_page(page);
2938                 get_page(newpage);
2939         }
2940
2941         if (PagePrivate(page)) {
2942                 f2fs_set_page_private(newpage, page_private(page));
2943                 f2fs_clear_page_private(page);
2944         }
2945
2946         if (mode != MIGRATE_SYNC_NO_COPY)
2947                 migrate_page_copy(newpage, page);
2948         else
2949                 migrate_page_states(newpage, page);
2950
2951         return MIGRATEPAGE_SUCCESS;
2952 }
2953 #endif
2954
2955 #ifdef CONFIG_SWAP
2956 /* Copied from generic_swapfile_activate() to check any holes */
2957 static int check_swap_activate(struct file *swap_file, unsigned int max)
2958 {
2959         struct address_space *mapping = swap_file->f_mapping;
2960         struct inode *inode = mapping->host;
2961         unsigned blocks_per_page;
2962         unsigned long page_no;
2963         unsigned blkbits;
2964         sector_t probe_block;
2965         sector_t last_block;
2966         sector_t lowest_block = -1;
2967         sector_t highest_block = 0;
2968
2969         blkbits = inode->i_blkbits;
2970         blocks_per_page = PAGE_SIZE >> blkbits;
2971
2972         /*
2973          * Map all the blocks into the extent list.  This code doesn't try
2974          * to be very smart.
2975          */
2976         probe_block = 0;
2977         page_no = 0;
2978         last_block = i_size_read(inode) >> blkbits;
2979         while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
2980                 unsigned block_in_page;
2981                 sector_t first_block;
2982
2983                 cond_resched();
2984
2985                 first_block = bmap(inode, probe_block);
2986                 if (first_block == 0)
2987                         goto bad_bmap;
2988
2989                 /*
2990                  * It must be PAGE_SIZE aligned on-disk
2991                  */
2992                 if (first_block & (blocks_per_page - 1)) {
2993                         probe_block++;
2994                         goto reprobe;
2995                 }
2996
2997                 for (block_in_page = 1; block_in_page < blocks_per_page;
2998                                         block_in_page++) {
2999                         sector_t block;
3000
3001                         block = bmap(inode, probe_block + block_in_page);
3002                         if (block == 0)
3003                                 goto bad_bmap;
3004                         if (block != first_block + block_in_page) {
3005                                 /* Discontiguity */
3006                                 probe_block++;
3007                                 goto reprobe;
3008                         }
3009                 }
3010
3011                 first_block >>= (PAGE_SHIFT - blkbits);
3012                 if (page_no) {  /* exclude the header page */
3013                         if (first_block < lowest_block)
3014                                 lowest_block = first_block;
3015                         if (first_block > highest_block)
3016                                 highest_block = first_block;
3017                 }
3018
3019                 page_no++;
3020                 probe_block += blocks_per_page;
3021 reprobe:
3022                 continue;
3023         }
3024         return 0;
3025
3026 bad_bmap:
3027         pr_err("swapon: swapfile has holes\n");
3028         return -EINVAL;
3029 }
3030
3031 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3032                                 sector_t *span)
3033 {
3034         struct inode *inode = file_inode(file);
3035         int ret;
3036
3037         if (!S_ISREG(inode->i_mode))
3038                 return -EINVAL;
3039
3040         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3041                 return -EROFS;
3042
3043         ret = f2fs_convert_inline_inode(inode);
3044         if (ret)
3045                 return ret;
3046
3047         ret = check_swap_activate(file, sis->max);
3048         if (ret)
3049                 return ret;
3050
3051         set_inode_flag(inode, FI_PIN_FILE);
3052         f2fs_precache_extents(inode);
3053         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3054         return 0;
3055 }
3056
3057 static void f2fs_swap_deactivate(struct file *file)
3058 {
3059         struct inode *inode = file_inode(file);
3060
3061         clear_inode_flag(inode, FI_PIN_FILE);
3062 }
3063 #else
3064 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3065                                 sector_t *span)
3066 {
3067         return -EOPNOTSUPP;
3068 }
3069
3070 static void f2fs_swap_deactivate(struct file *file)
3071 {
3072 }
3073 #endif
3074
3075 const struct address_space_operations f2fs_dblock_aops = {
3076         .readpage       = f2fs_read_data_page,
3077         .readpages      = f2fs_read_data_pages,
3078         .writepage      = f2fs_write_data_page,
3079         .writepages     = f2fs_write_data_pages,
3080         .write_begin    = f2fs_write_begin,
3081         .write_end      = f2fs_write_end,
3082         .set_page_dirty = f2fs_set_data_page_dirty,
3083         .invalidatepage = f2fs_invalidate_page,
3084         .releasepage    = f2fs_release_page,
3085         .direct_IO      = f2fs_direct_IO,
3086         .bmap           = f2fs_bmap,
3087         .swap_activate  = f2fs_swap_activate,
3088         .swap_deactivate = f2fs_swap_deactivate,
3089 #ifdef CONFIG_MIGRATION
3090         .migratepage    = f2fs_migrate_page,
3091 #endif
3092 };
3093
3094 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3095 {
3096         struct address_space *mapping = page_mapping(page);
3097         unsigned long flags;
3098
3099         xa_lock_irqsave(&mapping->i_pages, flags);
3100         __xa_clear_mark(&mapping->i_pages, page_index(page),
3101                                                 PAGECACHE_TAG_DIRTY);
3102         xa_unlock_irqrestore(&mapping->i_pages, flags);
3103 }
3104
3105 int __init f2fs_init_post_read_processing(void)
3106 {
3107         bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
3108         if (!bio_post_read_ctx_cache)
3109                 goto fail;
3110         bio_post_read_ctx_pool =
3111                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3112                                          bio_post_read_ctx_cache);
3113         if (!bio_post_read_ctx_pool)
3114                 goto fail_free_cache;
3115         return 0;
3116
3117 fail_free_cache:
3118         kmem_cache_destroy(bio_post_read_ctx_cache);
3119 fail:
3120         return -ENOMEM;
3121 }
3122
3123 void __exit f2fs_destroy_post_read_processing(void)
3124 {
3125         mempool_destroy(bio_post_read_ctx_pool);
3126         kmem_cache_destroy(bio_post_read_ctx_cache);
3127 }