Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
14                           bool may_use_included)
15 {
16         ASSERT(s_info);
17         return s_info->bytes_used + s_info->bytes_reserved +
18                 s_info->bytes_pinned + s_info->bytes_readonly +
19                 (may_use_included ? s_info->bytes_may_use : 0);
20 }
21
22 /*
23  * after adding space to the filesystem, we need to clear the full flags
24  * on all the space infos.
25  */
26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27 {
28         struct list_head *head = &info->space_info;
29         struct btrfs_space_info *found;
30
31         rcu_read_lock();
32         list_for_each_entry_rcu(found, head, list)
33                 found->full = 0;
34         rcu_read_unlock();
35 }
36
37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38 {
39
40         struct btrfs_space_info *space_info;
41         int i;
42         int ret;
43
44         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45         if (!space_info)
46                 return -ENOMEM;
47
48         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49                                  GFP_KERNEL);
50         if (ret) {
51                 kfree(space_info);
52                 return ret;
53         }
54
55         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56                 INIT_LIST_HEAD(&space_info->block_groups[i]);
57         init_rwsem(&space_info->groups_sem);
58         spin_lock_init(&space_info->lock);
59         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61         init_waitqueue_head(&space_info->wait);
62         INIT_LIST_HEAD(&space_info->ro_bgs);
63         INIT_LIST_HEAD(&space_info->tickets);
64         INIT_LIST_HEAD(&space_info->priority_tickets);
65
66         ret = btrfs_sysfs_add_space_info_type(info, space_info);
67         if (ret)
68                 return ret;
69
70         list_add_rcu(&space_info->list, &info->space_info);
71         if (flags & BTRFS_BLOCK_GROUP_DATA)
72                 info->data_sinfo = space_info;
73
74         return ret;
75 }
76
77 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
78 {
79         struct btrfs_super_block *disk_super;
80         u64 features;
81         u64 flags;
82         int mixed = 0;
83         int ret;
84
85         disk_super = fs_info->super_copy;
86         if (!btrfs_super_root(disk_super))
87                 return -EINVAL;
88
89         features = btrfs_super_incompat_flags(disk_super);
90         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
91                 mixed = 1;
92
93         flags = BTRFS_BLOCK_GROUP_SYSTEM;
94         ret = create_space_info(fs_info, flags);
95         if (ret)
96                 goto out;
97
98         if (mixed) {
99                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
100                 ret = create_space_info(fs_info, flags);
101         } else {
102                 flags = BTRFS_BLOCK_GROUP_METADATA;
103                 ret = create_space_info(fs_info, flags);
104                 if (ret)
105                         goto out;
106
107                 flags = BTRFS_BLOCK_GROUP_DATA;
108                 ret = create_space_info(fs_info, flags);
109         }
110 out:
111         return ret;
112 }
113
114 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
115                              u64 total_bytes, u64 bytes_used,
116                              u64 bytes_readonly,
117                              struct btrfs_space_info **space_info)
118 {
119         struct btrfs_space_info *found;
120         int factor;
121
122         factor = btrfs_bg_type_to_factor(flags);
123
124         found = btrfs_find_space_info(info, flags);
125         ASSERT(found);
126         spin_lock(&found->lock);
127         found->total_bytes += total_bytes;
128         found->disk_total += total_bytes * factor;
129         found->bytes_used += bytes_used;
130         found->disk_used += bytes_used * factor;
131         found->bytes_readonly += bytes_readonly;
132         if (total_bytes > 0)
133                 found->full = 0;
134         btrfs_try_granting_tickets(info, found);
135         spin_unlock(&found->lock);
136         *space_info = found;
137 }
138
139 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
140                                                u64 flags)
141 {
142         struct list_head *head = &info->space_info;
143         struct btrfs_space_info *found;
144
145         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
146
147         rcu_read_lock();
148         list_for_each_entry_rcu(found, head, list) {
149                 if (found->flags & flags) {
150                         rcu_read_unlock();
151                         return found;
152                 }
153         }
154         rcu_read_unlock();
155         return NULL;
156 }
157
158 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
159 {
160         return (global->size << 1);
161 }
162
163 static int can_overcommit(struct btrfs_fs_info *fs_info,
164                           struct btrfs_space_info *space_info, u64 bytes,
165                           enum btrfs_reserve_flush_enum flush,
166                           bool system_chunk)
167 {
168         u64 profile;
169         u64 avail;
170         u64 used;
171         int factor;
172
173         /* Don't overcommit when in mixed mode. */
174         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
175                 return 0;
176
177         if (system_chunk)
178                 profile = btrfs_system_alloc_profile(fs_info);
179         else
180                 profile = btrfs_metadata_alloc_profile(fs_info);
181
182         used = btrfs_space_info_used(space_info, true);
183         avail = atomic64_read(&fs_info->free_chunk_space);
184
185         /*
186          * If we have dup, raid1 or raid10 then only half of the free
187          * space is actually usable.  For raid56, the space info used
188          * doesn't include the parity drive, so we don't have to
189          * change the math
190          */
191         factor = btrfs_bg_type_to_factor(profile);
192         avail = div_u64(avail, factor);
193
194         /*
195          * If we aren't flushing all things, let us overcommit up to
196          * 1/2th of the space. If we can flush, don't let us overcommit
197          * too much, let it overcommit up to 1/8 of the space.
198          */
199         if (flush == BTRFS_RESERVE_FLUSH_ALL)
200                 avail >>= 3;
201         else
202                 avail >>= 1;
203
204         if (used + bytes < space_info->total_bytes + avail)
205                 return 1;
206         return 0;
207 }
208
209 /*
210  * This is for space we already have accounted in space_info->bytes_may_use, so
211  * basically when we're returning space from block_rsv's.
212  */
213 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
214                                 struct btrfs_space_info *space_info)
215 {
216         struct list_head *head;
217         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
218
219         lockdep_assert_held(&space_info->lock);
220
221         head = &space_info->priority_tickets;
222 again:
223         while (!list_empty(head)) {
224                 struct reserve_ticket *ticket;
225                 u64 used = btrfs_space_info_used(space_info, true);
226
227                 ticket = list_first_entry(head, struct reserve_ticket, list);
228
229                 /* Check and see if our ticket can be satisified now. */
230                 if ((used + ticket->bytes <= space_info->total_bytes) ||
231                     can_overcommit(fs_info, space_info, ticket->bytes, flush,
232                                    false)) {
233                         btrfs_space_info_update_bytes_may_use(fs_info,
234                                                               space_info,
235                                                               ticket->bytes);
236                         list_del_init(&ticket->list);
237                         ticket->bytes = 0;
238                         space_info->tickets_id++;
239                         wake_up(&ticket->wait);
240                 } else {
241                         break;
242                 }
243         }
244
245         if (head == &space_info->priority_tickets) {
246                 head = &space_info->tickets;
247                 flush = BTRFS_RESERVE_FLUSH_ALL;
248                 goto again;
249         }
250 }
251
252 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
253 do {                                                                    \
254         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
255         spin_lock(&__rsv->lock);                                        \
256         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
257                    __rsv->size, __rsv->reserved);                       \
258         spin_unlock(&__rsv->lock);                                      \
259 } while (0)
260
261 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
262                                     struct btrfs_space_info *info)
263 {
264         lockdep_assert_held(&info->lock);
265
266         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
267                    info->flags,
268                    info->total_bytes - btrfs_space_info_used(info, true),
269                    info->full ? "" : "not ");
270         btrfs_info(fs_info,
271                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
272                 info->total_bytes, info->bytes_used, info->bytes_pinned,
273                 info->bytes_reserved, info->bytes_may_use,
274                 info->bytes_readonly);
275
276         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
277         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
278         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
279         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
280         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
281
282 }
283
284 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
285                            struct btrfs_space_info *info, u64 bytes,
286                            int dump_block_groups)
287 {
288         struct btrfs_block_group_cache *cache;
289         int index = 0;
290
291         spin_lock(&info->lock);
292         __btrfs_dump_space_info(fs_info, info);
293         spin_unlock(&info->lock);
294
295         if (!dump_block_groups)
296                 return;
297
298         down_read(&info->groups_sem);
299 again:
300         list_for_each_entry(cache, &info->block_groups[index], list) {
301                 spin_lock(&cache->lock);
302                 btrfs_info(fs_info,
303                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
304                         cache->key.objectid, cache->key.offset,
305                         btrfs_block_group_used(&cache->item), cache->pinned,
306                         cache->reserved, cache->ro ? "[readonly]" : "");
307                 btrfs_dump_free_space(cache, bytes);
308                 spin_unlock(&cache->lock);
309         }
310         if (++index < BTRFS_NR_RAID_TYPES)
311                 goto again;
312         up_read(&info->groups_sem);
313 }
314
315 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
316                                          unsigned long nr_pages, int nr_items)
317 {
318         struct super_block *sb = fs_info->sb;
319
320         if (down_read_trylock(&sb->s_umount)) {
321                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
322                 up_read(&sb->s_umount);
323         } else {
324                 /*
325                  * We needn't worry the filesystem going from r/w to r/o though
326                  * we don't acquire ->s_umount mutex, because the filesystem
327                  * should guarantee the delalloc inodes list be empty after
328                  * the filesystem is readonly(all dirty pages are written to
329                  * the disk).
330                  */
331                 btrfs_start_delalloc_roots(fs_info, nr_items);
332                 if (!current->journal_info)
333                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
334         }
335 }
336
337 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
338                                         u64 to_reclaim)
339 {
340         u64 bytes;
341         u64 nr;
342
343         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
344         nr = div64_u64(to_reclaim, bytes);
345         if (!nr)
346                 nr = 1;
347         return nr;
348 }
349
350 #define EXTENT_SIZE_PER_ITEM    SZ_256K
351
352 /*
353  * shrink metadata reservation for delalloc
354  */
355 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
356                             u64 orig, bool wait_ordered)
357 {
358         struct btrfs_space_info *space_info;
359         struct btrfs_trans_handle *trans;
360         u64 delalloc_bytes;
361         u64 dio_bytes;
362         u64 async_pages;
363         u64 items;
364         long time_left;
365         unsigned long nr_pages;
366         int loops;
367
368         /* Calc the number of the pages we need flush for space reservation */
369         items = calc_reclaim_items_nr(fs_info, to_reclaim);
370         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
371
372         trans = (struct btrfs_trans_handle *)current->journal_info;
373         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
374
375         delalloc_bytes = percpu_counter_sum_positive(
376                                                 &fs_info->delalloc_bytes);
377         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
378         if (delalloc_bytes == 0 && dio_bytes == 0) {
379                 if (trans)
380                         return;
381                 if (wait_ordered)
382                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
383                 return;
384         }
385
386         /*
387          * If we are doing more ordered than delalloc we need to just wait on
388          * ordered extents, otherwise we'll waste time trying to flush delalloc
389          * that likely won't give us the space back we need.
390          */
391         if (dio_bytes > delalloc_bytes)
392                 wait_ordered = true;
393
394         loops = 0;
395         while ((delalloc_bytes || dio_bytes) && loops < 3) {
396                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
397
398                 /*
399                  * Triggers inode writeback for up to nr_pages. This will invoke
400                  * ->writepages callback and trigger delalloc filling
401                  *  (btrfs_run_delalloc_range()).
402                  */
403                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
404
405                 /*
406                  * We need to wait for the compressed pages to start before
407                  * we continue.
408                  */
409                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
410                 if (!async_pages)
411                         goto skip_async;
412
413                 /*
414                  * Calculate how many compressed pages we want to be written
415                  * before we continue. I.e if there are more async pages than we
416                  * require wait_event will wait until nr_pages are written.
417                  */
418                 if (async_pages <= nr_pages)
419                         async_pages = 0;
420                 else
421                         async_pages -= nr_pages;
422
423                 wait_event(fs_info->async_submit_wait,
424                            atomic_read(&fs_info->async_delalloc_pages) <=
425                            (int)async_pages);
426 skip_async:
427                 spin_lock(&space_info->lock);
428                 if (list_empty(&space_info->tickets) &&
429                     list_empty(&space_info->priority_tickets)) {
430                         spin_unlock(&space_info->lock);
431                         break;
432                 }
433                 spin_unlock(&space_info->lock);
434
435                 loops++;
436                 if (wait_ordered && !trans) {
437                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
438                 } else {
439                         time_left = schedule_timeout_killable(1);
440                         if (time_left)
441                                 break;
442                 }
443                 delalloc_bytes = percpu_counter_sum_positive(
444                                                 &fs_info->delalloc_bytes);
445                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
446         }
447 }
448
449 /**
450  * maybe_commit_transaction - possibly commit the transaction if its ok to
451  * @root - the root we're allocating for
452  * @bytes - the number of bytes we want to reserve
453  * @force - force the commit
454  *
455  * This will check to make sure that committing the transaction will actually
456  * get us somewhere and then commit the transaction if it does.  Otherwise it
457  * will return -ENOSPC.
458  */
459 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
460                                   struct btrfs_space_info *space_info)
461 {
462         struct reserve_ticket *ticket = NULL;
463         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
464         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
465         struct btrfs_trans_handle *trans;
466         u64 bytes_needed;
467         u64 reclaim_bytes = 0;
468         u64 cur_free_bytes = 0;
469
470         trans = (struct btrfs_trans_handle *)current->journal_info;
471         if (trans)
472                 return -EAGAIN;
473
474         spin_lock(&space_info->lock);
475         cur_free_bytes = btrfs_space_info_used(space_info, true);
476         if (cur_free_bytes < space_info->total_bytes)
477                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
478         else
479                 cur_free_bytes = 0;
480
481         if (!list_empty(&space_info->priority_tickets))
482                 ticket = list_first_entry(&space_info->priority_tickets,
483                                           struct reserve_ticket, list);
484         else if (!list_empty(&space_info->tickets))
485                 ticket = list_first_entry(&space_info->tickets,
486                                           struct reserve_ticket, list);
487         bytes_needed = (ticket) ? ticket->bytes : 0;
488
489         if (bytes_needed > cur_free_bytes)
490                 bytes_needed -= cur_free_bytes;
491         else
492                 bytes_needed = 0;
493         spin_unlock(&space_info->lock);
494
495         if (!bytes_needed)
496                 return 0;
497
498         trans = btrfs_join_transaction(fs_info->extent_root);
499         if (IS_ERR(trans))
500                 return PTR_ERR(trans);
501
502         /*
503          * See if there is enough pinned space to make this reservation, or if
504          * we have block groups that are going to be freed, allowing us to
505          * possibly do a chunk allocation the next loop through.
506          */
507         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
508             __percpu_counter_compare(&space_info->total_bytes_pinned,
509                                      bytes_needed,
510                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
511                 goto commit;
512
513         /*
514          * See if there is some space in the delayed insertion reservation for
515          * this reservation.
516          */
517         if (space_info != delayed_rsv->space_info)
518                 goto enospc;
519
520         spin_lock(&delayed_rsv->lock);
521         reclaim_bytes += delayed_rsv->reserved;
522         spin_unlock(&delayed_rsv->lock);
523
524         spin_lock(&delayed_refs_rsv->lock);
525         reclaim_bytes += delayed_refs_rsv->reserved;
526         spin_unlock(&delayed_refs_rsv->lock);
527         if (reclaim_bytes >= bytes_needed)
528                 goto commit;
529         bytes_needed -= reclaim_bytes;
530
531         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
532                                    bytes_needed,
533                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
534                 goto enospc;
535
536 commit:
537         return btrfs_commit_transaction(trans);
538 enospc:
539         btrfs_end_transaction(trans);
540         return -ENOSPC;
541 }
542
543 /*
544  * Try to flush some data based on policy set by @state. This is only advisory
545  * and may fail for various reasons. The caller is supposed to examine the
546  * state of @space_info to detect the outcome.
547  */
548 static void flush_space(struct btrfs_fs_info *fs_info,
549                        struct btrfs_space_info *space_info, u64 num_bytes,
550                        int state)
551 {
552         struct btrfs_root *root = fs_info->extent_root;
553         struct btrfs_trans_handle *trans;
554         int nr;
555         int ret = 0;
556
557         switch (state) {
558         case FLUSH_DELAYED_ITEMS_NR:
559         case FLUSH_DELAYED_ITEMS:
560                 if (state == FLUSH_DELAYED_ITEMS_NR)
561                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
562                 else
563                         nr = -1;
564
565                 trans = btrfs_join_transaction(root);
566                 if (IS_ERR(trans)) {
567                         ret = PTR_ERR(trans);
568                         break;
569                 }
570                 ret = btrfs_run_delayed_items_nr(trans, nr);
571                 btrfs_end_transaction(trans);
572                 break;
573         case FLUSH_DELALLOC:
574         case FLUSH_DELALLOC_WAIT:
575                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
576                                 state == FLUSH_DELALLOC_WAIT);
577                 break;
578         case FLUSH_DELAYED_REFS_NR:
579         case FLUSH_DELAYED_REFS:
580                 trans = btrfs_join_transaction(root);
581                 if (IS_ERR(trans)) {
582                         ret = PTR_ERR(trans);
583                         break;
584                 }
585                 if (state == FLUSH_DELAYED_REFS_NR)
586                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
587                 else
588                         nr = 0;
589                 btrfs_run_delayed_refs(trans, nr);
590                 btrfs_end_transaction(trans);
591                 break;
592         case ALLOC_CHUNK:
593         case ALLOC_CHUNK_FORCE:
594                 trans = btrfs_join_transaction(root);
595                 if (IS_ERR(trans)) {
596                         ret = PTR_ERR(trans);
597                         break;
598                 }
599                 ret = btrfs_chunk_alloc(trans,
600                                 btrfs_metadata_alloc_profile(fs_info),
601                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
602                                         CHUNK_ALLOC_FORCE);
603                 btrfs_end_transaction(trans);
604                 if (ret > 0 || ret == -ENOSPC)
605                         ret = 0;
606                 break;
607         case RUN_DELAYED_IPUTS:
608                 /*
609                  * If we have pending delayed iputs then we could free up a
610                  * bunch of pinned space, so make sure we run the iputs before
611                  * we do our pinned bytes check below.
612                  */
613                 btrfs_run_delayed_iputs(fs_info);
614                 btrfs_wait_on_delayed_iputs(fs_info);
615                 break;
616         case COMMIT_TRANS:
617                 ret = may_commit_transaction(fs_info, space_info);
618                 break;
619         default:
620                 ret = -ENOSPC;
621                 break;
622         }
623
624         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
625                                 ret);
626         return;
627 }
628
629 static inline u64
630 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
631                                  struct btrfs_space_info *space_info,
632                                  bool system_chunk)
633 {
634         struct reserve_ticket *ticket;
635         u64 used;
636         u64 expected;
637         u64 to_reclaim = 0;
638
639         list_for_each_entry(ticket, &space_info->tickets, list)
640                 to_reclaim += ticket->bytes;
641         list_for_each_entry(ticket, &space_info->priority_tickets, list)
642                 to_reclaim += ticket->bytes;
643         if (to_reclaim)
644                 return to_reclaim;
645
646         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
647         if (can_overcommit(fs_info, space_info, to_reclaim,
648                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
649                 return 0;
650
651         used = btrfs_space_info_used(space_info, true);
652
653         if (can_overcommit(fs_info, space_info, SZ_1M,
654                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
655                 expected = div_factor_fine(space_info->total_bytes, 95);
656         else
657                 expected = div_factor_fine(space_info->total_bytes, 90);
658
659         if (used > expected)
660                 to_reclaim = used - expected;
661         else
662                 to_reclaim = 0;
663         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
664                                      space_info->bytes_reserved);
665         return to_reclaim;
666 }
667
668 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
669                                         struct btrfs_space_info *space_info,
670                                         u64 used, bool system_chunk)
671 {
672         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
673
674         /* If we're just plain full then async reclaim just slows us down. */
675         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
676                 return 0;
677
678         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
679                                               system_chunk))
680                 return 0;
681
682         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
683                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
684 }
685
686 /*
687  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
688  * @fs_info - fs_info for this fs
689  * @space_info - the space info we were flushing
690  *
691  * We call this when we've exhausted our flushing ability and haven't made
692  * progress in satisfying tickets.  The reservation code handles tickets in
693  * order, so if there is a large ticket first and then smaller ones we could
694  * very well satisfy the smaller tickets.  This will attempt to wake up any
695  * tickets in the list to catch this case.
696  *
697  * This function returns true if it was able to make progress by clearing out
698  * other tickets, or if it stumbles across a ticket that was smaller than the
699  * first ticket.
700  */
701 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
702                                    struct btrfs_space_info *space_info)
703 {
704         struct reserve_ticket *ticket;
705         u64 tickets_id = space_info->tickets_id;
706         u64 first_ticket_bytes = 0;
707
708         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
709                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
710                 __btrfs_dump_space_info(fs_info, space_info);
711         }
712
713         while (!list_empty(&space_info->tickets) &&
714                tickets_id == space_info->tickets_id) {
715                 ticket = list_first_entry(&space_info->tickets,
716                                           struct reserve_ticket, list);
717
718                 /*
719                  * may_commit_transaction will avoid committing the transaction
720                  * if it doesn't feel like the space reclaimed by the commit
721                  * would result in the ticket succeeding.  However if we have a
722                  * smaller ticket in the queue it may be small enough to be
723                  * satisified by committing the transaction, so if any
724                  * subsequent ticket is smaller than the first ticket go ahead
725                  * and send us back for another loop through the enospc flushing
726                  * code.
727                  */
728                 if (first_ticket_bytes == 0)
729                         first_ticket_bytes = ticket->bytes;
730                 else if (first_ticket_bytes > ticket->bytes)
731                         return true;
732
733                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
734                         btrfs_info(fs_info, "failing ticket with %llu bytes",
735                                    ticket->bytes);
736
737                 list_del_init(&ticket->list);
738                 ticket->error = -ENOSPC;
739                 wake_up(&ticket->wait);
740
741                 /*
742                  * We're just throwing tickets away, so more flushing may not
743                  * trip over btrfs_try_granting_tickets, so we need to call it
744                  * here to see if we can make progress with the next ticket in
745                  * the list.
746                  */
747                 btrfs_try_granting_tickets(fs_info, space_info);
748         }
749         return (tickets_id != space_info->tickets_id);
750 }
751
752 /*
753  * This is for normal flushers, we can wait all goddamned day if we want to.  We
754  * will loop and continuously try to flush as long as we are making progress.
755  * We count progress as clearing off tickets each time we have to loop.
756  */
757 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
758 {
759         struct btrfs_fs_info *fs_info;
760         struct btrfs_space_info *space_info;
761         u64 to_reclaim;
762         int flush_state;
763         int commit_cycles = 0;
764         u64 last_tickets_id;
765
766         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
767         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
768
769         spin_lock(&space_info->lock);
770         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
771                                                       false);
772         if (!to_reclaim) {
773                 space_info->flush = 0;
774                 spin_unlock(&space_info->lock);
775                 return;
776         }
777         last_tickets_id = space_info->tickets_id;
778         spin_unlock(&space_info->lock);
779
780         flush_state = FLUSH_DELAYED_ITEMS_NR;
781         do {
782                 flush_space(fs_info, space_info, to_reclaim, flush_state);
783                 spin_lock(&space_info->lock);
784                 if (list_empty(&space_info->tickets)) {
785                         space_info->flush = 0;
786                         spin_unlock(&space_info->lock);
787                         return;
788                 }
789                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
790                                                               space_info,
791                                                               false);
792                 if (last_tickets_id == space_info->tickets_id) {
793                         flush_state++;
794                 } else {
795                         last_tickets_id = space_info->tickets_id;
796                         flush_state = FLUSH_DELAYED_ITEMS_NR;
797                         if (commit_cycles)
798                                 commit_cycles--;
799                 }
800
801                 /*
802                  * We don't want to force a chunk allocation until we've tried
803                  * pretty hard to reclaim space.  Think of the case where we
804                  * freed up a bunch of space and so have a lot of pinned space
805                  * to reclaim.  We would rather use that than possibly create a
806                  * underutilized metadata chunk.  So if this is our first run
807                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
808                  * commit the transaction.  If nothing has changed the next go
809                  * around then we can force a chunk allocation.
810                  */
811                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
812                         flush_state++;
813
814                 if (flush_state > COMMIT_TRANS) {
815                         commit_cycles++;
816                         if (commit_cycles > 2) {
817                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
818                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
819                                         commit_cycles--;
820                                 } else {
821                                         space_info->flush = 0;
822                                 }
823                         } else {
824                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
825                         }
826                 }
827                 spin_unlock(&space_info->lock);
828         } while (flush_state <= COMMIT_TRANS);
829 }
830
831 void btrfs_init_async_reclaim_work(struct work_struct *work)
832 {
833         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
834 }
835
836 static const enum btrfs_flush_state priority_flush_states[] = {
837         FLUSH_DELAYED_ITEMS_NR,
838         FLUSH_DELAYED_ITEMS,
839         ALLOC_CHUNK,
840 };
841
842 static const enum btrfs_flush_state evict_flush_states[] = {
843         FLUSH_DELAYED_ITEMS_NR,
844         FLUSH_DELAYED_ITEMS,
845         FLUSH_DELAYED_REFS_NR,
846         FLUSH_DELAYED_REFS,
847         FLUSH_DELALLOC,
848         FLUSH_DELALLOC_WAIT,
849         ALLOC_CHUNK,
850         COMMIT_TRANS,
851 };
852
853 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
854                                 struct btrfs_space_info *space_info,
855                                 struct reserve_ticket *ticket,
856                                 const enum btrfs_flush_state *states,
857                                 int states_nr)
858 {
859         u64 to_reclaim;
860         int flush_state;
861
862         spin_lock(&space_info->lock);
863         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
864                                                       false);
865         if (!to_reclaim) {
866                 spin_unlock(&space_info->lock);
867                 return;
868         }
869         spin_unlock(&space_info->lock);
870
871         flush_state = 0;
872         do {
873                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
874                 flush_state++;
875                 spin_lock(&space_info->lock);
876                 if (ticket->bytes == 0) {
877                         spin_unlock(&space_info->lock);
878                         return;
879                 }
880                 spin_unlock(&space_info->lock);
881         } while (flush_state < states_nr);
882 }
883
884 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
885                                 struct btrfs_space_info *space_info,
886                                 struct reserve_ticket *ticket)
887
888 {
889         DEFINE_WAIT(wait);
890         int ret = 0;
891
892         spin_lock(&space_info->lock);
893         while (ticket->bytes > 0 && ticket->error == 0) {
894                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
895                 if (ret) {
896                         /*
897                          * Delete us from the list. After we unlock the space
898                          * info, we don't want the async reclaim job to reserve
899                          * space for this ticket. If that would happen, then the
900                          * ticket's task would not known that space was reserved
901                          * despite getting an error, resulting in a space leak
902                          * (bytes_may_use counter of our space_info).
903                          */
904                         list_del_init(&ticket->list);
905                         ticket->error = -EINTR;
906                         break;
907                 }
908                 spin_unlock(&space_info->lock);
909
910                 schedule();
911
912                 finish_wait(&ticket->wait, &wait);
913                 spin_lock(&space_info->lock);
914         }
915         spin_unlock(&space_info->lock);
916 }
917
918 /**
919  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
920  * @fs_info - the fs
921  * @space_info - the space_info for the reservation
922  * @ticket - the ticket for the reservation
923  * @flush - how much we can flush
924  *
925  * This does the work of figuring out how to flush for the ticket, waiting for
926  * the reservation, and returning the appropriate error if there is one.
927  */
928 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
929                                  struct btrfs_space_info *space_info,
930                                  struct reserve_ticket *ticket,
931                                  enum btrfs_reserve_flush_enum flush)
932 {
933         int ret;
934
935         switch (flush) {
936         case BTRFS_RESERVE_FLUSH_ALL:
937                 wait_reserve_ticket(fs_info, space_info, ticket);
938                 break;
939         case BTRFS_RESERVE_FLUSH_LIMIT:
940                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
941                                                 priority_flush_states,
942                                                 ARRAY_SIZE(priority_flush_states));
943                 break;
944         case BTRFS_RESERVE_FLUSH_EVICT:
945                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
946                                                 evict_flush_states,
947                                                 ARRAY_SIZE(evict_flush_states));
948                 break;
949         default:
950                 ASSERT(0);
951                 break;
952         }
953
954         spin_lock(&space_info->lock);
955         ret = ticket->error;
956         if (ticket->bytes || ticket->error) {
957                 /*
958                  * Need to delete here for priority tickets. For regular tickets
959                  * either the async reclaim job deletes the ticket from the list
960                  * or we delete it ourselves at wait_reserve_ticket().
961                  */
962                 list_del_init(&ticket->list);
963                 if (!ret)
964                         ret = -ENOSPC;
965         }
966         spin_unlock(&space_info->lock);
967         ASSERT(list_empty(&ticket->list));
968         /*
969          * Check that we can't have an error set if the reservation succeeded,
970          * as that would confuse tasks and lead them to error out without
971          * releasing reserved space (if an error happens the expectation is that
972          * space wasn't reserved at all).
973          */
974         ASSERT(!(ticket->bytes == 0 && ticket->error));
975         return ret;
976 }
977
978 /**
979  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
980  * @root - the root we're allocating for
981  * @space_info - the space info we want to allocate from
982  * @orig_bytes - the number of bytes we want
983  * @flush - whether or not we can flush to make our reservation
984  *
985  * This will reserve orig_bytes number of bytes from the space info associated
986  * with the block_rsv.  If there is not enough space it will make an attempt to
987  * flush out space to make room.  It will do this by flushing delalloc if
988  * possible or committing the transaction.  If flush is 0 then no attempts to
989  * regain reservations will be made and this will fail if there is not enough
990  * space already.
991  */
992 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
993                                     struct btrfs_space_info *space_info,
994                                     u64 orig_bytes,
995                                     enum btrfs_reserve_flush_enum flush,
996                                     bool system_chunk)
997 {
998         struct reserve_ticket ticket;
999         u64 used;
1000         int ret = 0;
1001         bool pending_tickets;
1002
1003         ASSERT(orig_bytes);
1004         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1005
1006         spin_lock(&space_info->lock);
1007         ret = -ENOSPC;
1008         used = btrfs_space_info_used(space_info, true);
1009         pending_tickets = !list_empty(&space_info->tickets) ||
1010                 !list_empty(&space_info->priority_tickets);
1011
1012         /*
1013          * Carry on if we have enough space (short-circuit) OR call
1014          * can_overcommit() to ensure we can overcommit to continue.
1015          */
1016         if (!pending_tickets &&
1017             ((used + orig_bytes <= space_info->total_bytes) ||
1018              can_overcommit(fs_info, space_info, orig_bytes, flush,
1019                            system_chunk))) {
1020                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1021                                                       orig_bytes);
1022                 ret = 0;
1023         }
1024
1025         /*
1026          * If we couldn't make a reservation then setup our reservation ticket
1027          * and kick the async worker if it's not already running.
1028          *
1029          * If we are a priority flusher then we just need to add our ticket to
1030          * the list and we will do our own flushing further down.
1031          */
1032         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1033                 ticket.bytes = orig_bytes;
1034                 ticket.error = 0;
1035                 init_waitqueue_head(&ticket.wait);
1036                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1037                         list_add_tail(&ticket.list, &space_info->tickets);
1038                         if (!space_info->flush) {
1039                                 space_info->flush = 1;
1040                                 trace_btrfs_trigger_flush(fs_info,
1041                                                           space_info->flags,
1042                                                           orig_bytes, flush,
1043                                                           "enospc");
1044                                 queue_work(system_unbound_wq,
1045                                            &fs_info->async_reclaim_work);
1046                         }
1047                 } else {
1048                         list_add_tail(&ticket.list,
1049                                       &space_info->priority_tickets);
1050                 }
1051         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1052                 used += orig_bytes;
1053                 /*
1054                  * We will do the space reservation dance during log replay,
1055                  * which means we won't have fs_info->fs_root set, so don't do
1056                  * the async reclaim as we will panic.
1057                  */
1058                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1059                     need_do_async_reclaim(fs_info, space_info,
1060                                           used, system_chunk) &&
1061                     !work_busy(&fs_info->async_reclaim_work)) {
1062                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1063                                                   orig_bytes, flush, "preempt");
1064                         queue_work(system_unbound_wq,
1065                                    &fs_info->async_reclaim_work);
1066                 }
1067         }
1068         spin_unlock(&space_info->lock);
1069         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1070                 return ret;
1071
1072         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1073 }
1074
1075 /**
1076  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1077  * @root - the root we're allocating for
1078  * @block_rsv - the block_rsv we're allocating for
1079  * @orig_bytes - the number of bytes we want
1080  * @flush - whether or not we can flush to make our reservation
1081  *
1082  * This will reserve orig_bytes number of bytes from the space info associated
1083  * with the block_rsv.  If there is not enough space it will make an attempt to
1084  * flush out space to make room.  It will do this by flushing delalloc if
1085  * possible or committing the transaction.  If flush is 0 then no attempts to
1086  * regain reservations will be made and this will fail if there is not enough
1087  * space already.
1088  */
1089 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1090                                  struct btrfs_block_rsv *block_rsv,
1091                                  u64 orig_bytes,
1092                                  enum btrfs_reserve_flush_enum flush)
1093 {
1094         struct btrfs_fs_info *fs_info = root->fs_info;
1095         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1096         int ret;
1097         bool system_chunk = (root == fs_info->chunk_root);
1098
1099         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1100                                        orig_bytes, flush, system_chunk);
1101         if (ret == -ENOSPC &&
1102             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1103                 if (block_rsv != global_rsv &&
1104                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1105                         ret = 0;
1106         }
1107         if (ret == -ENOSPC) {
1108                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1109                                               block_rsv->space_info->flags,
1110                                               orig_bytes, 1);
1111
1112                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1113                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1114                                               orig_bytes, 0);
1115         }
1116         return ret;
1117 }