And so it begins...
[oweals/openssl.git] / fips-1.0 / sha / fips_sha256.c
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
8
9 #include <stdlib.h>
10 #include <string.h>
11
12 #include <openssl/opensslconf.h>
13 #include <openssl/crypto.h>
14 #include <openssl/fips_sha.h>
15 #include <openssl/fips.h>
16 #include <openssl/opensslv.h>
17
18 #ifdef OPENSSL_FIPS
19
20 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
21
22 int SHA224_Init (SHA256_CTX *c)
23         {
24         c->h[0]=0xc1059ed8UL;   c->h[1]=0x367cd507UL;
25         c->h[2]=0x3070dd17UL;   c->h[3]=0xf70e5939UL;
26         c->h[4]=0xffc00b31UL;   c->h[5]=0x68581511UL;
27         c->h[6]=0x64f98fa7UL;   c->h[7]=0xbefa4fa4UL;
28         c->Nl=0;        c->Nh=0;
29         c->num=0;       c->md_len=SHA224_DIGEST_LENGTH;
30         return 1;
31         }
32
33 int SHA256_Init (SHA256_CTX *c)
34         {
35         c->h[0]=0x6a09e667UL;   c->h[1]=0xbb67ae85UL;
36         c->h[2]=0x3c6ef372UL;   c->h[3]=0xa54ff53aUL;
37         c->h[4]=0x510e527fUL;   c->h[5]=0x9b05688cUL;
38         c->h[6]=0x1f83d9abUL;   c->h[7]=0x5be0cd19UL;
39         c->Nl=0;        c->Nh=0;
40         c->num=0;       c->md_len=SHA256_DIGEST_LENGTH;
41         return 1;
42         }
43
44 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
45         {
46         SHA256_CTX c;
47         static unsigned char m[SHA224_DIGEST_LENGTH];
48
49         if (md == NULL) md=m;
50         SHA224_Init(&c);
51         SHA256_Update(&c,d,n);
52         SHA256_Final(md,&c);
53         OPENSSL_cleanse(&c,sizeof(c));
54         return(md);
55         }
56
57 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
58         {
59         SHA256_CTX c;
60         static unsigned char m[SHA256_DIGEST_LENGTH];
61
62         if (md == NULL) md=m;
63         SHA256_Init(&c);
64         SHA256_Update(&c,d,n);
65         SHA256_Final(md,&c);
66         OPENSSL_cleanse(&c,sizeof(c));
67         return(md);
68         }
69
70 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
71 {   return SHA256_Update (c,data,len);   }
72 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
73 {   return SHA256_Final (md,c);   }
74
75 #ifndef SHA_LONG_LOG2
76 #define SHA_LONG_LOG2   2       /* default to 32 bits */
77 #endif
78
79 #define DATA_ORDER_IS_BIG_ENDIAN
80
81 #define HASH_LONG               SHA_LONG
82 #define HASH_LONG_LOG2          SHA_LONG_LOG2
83 #define HASH_CTX                SHA256_CTX
84 #define HASH_CBLOCK             SHA_CBLOCK
85 #define HASH_LBLOCK             SHA_LBLOCK
86 /*
87  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
88  * default: case below covers for it. It's not clear however if it's
89  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
90  * but if it is, then default: case shall be extended. For reference.
91  * Idea behind separate cases for pre-defined lenghts is to let the
92  * compiler decide if it's appropriate to unroll small loops.
93  */
94 #define HASH_MAKE_STRING(c,s)   do {    \
95         unsigned long ll;               \
96         unsigned int  n;                \
97         switch ((c)->md_len)            \
98         {   case SHA224_DIGEST_LENGTH:  \
99                 for (n=0;n<SHA224_DIGEST_LENGTH/4;n++)  \
100                 {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
101                 break;                  \
102             case SHA256_DIGEST_LENGTH:  \
103                 for (n=0;n<SHA256_DIGEST_LENGTH/4;n++)  \
104                 {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
105                 break;                  \
106             default:                    \
107                 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
108                     return 0;                           \
109                 for (n=0;n<(c)->md_len/4;n++)           \
110                 {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
111                 break;                  \
112         }                               \
113         } while (0)
114
115 #define HASH_UPDATE             SHA256_Update
116 #define HASH_TRANSFORM          SHA256_Transform
117 #define HASH_FINAL              SHA256_Final
118 #define HASH_BLOCK_HOST_ORDER   sha256_block_host_order
119 #define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
120 void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
121 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
122
123 #include "fips_md32_common.h"
124
125 #ifdef SHA256_ASM
126 void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host);
127 #else
128 static const SHA_LONG K256[64] = {
129         0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
130         0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
131         0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
132         0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
133         0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
134         0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
135         0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
136         0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
137         0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
138         0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
139         0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
140         0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
141         0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
142         0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
143         0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
144         0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
145
146 /*
147  * FIPS specification refers to right rotations, while our ROTATE macro
148  * is left one. This is why you might notice that rotation coefficients
149  * differ from those observed in FIPS document by 32-N...
150  */
151 #define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
152 #define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
153 #define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
154 #define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
155
156 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
157 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
158
159 #ifdef OPENSSL_SMALL_FOOTPRINT
160
161 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
162         {
163         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
164         SHA_LONG        X[16];
165         int i;
166         const unsigned char *data=in;
167
168                         while (num--) {
169
170         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
171         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
172
173         if (host)
174                 {
175                 const SHA_LONG *W=(const SHA_LONG *)data;
176
177                 for (i=0;i<16;i++)
178                         {
179                         T1 = X[i] = W[i];
180                         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
181                         T2 = Sigma0(a) + Maj(a,b,c);
182                         h = g;  g = f;  f = e;  e = d + T1;
183                         d = c;  c = b;  b = a;  a = T1 + T2;
184                         }
185
186                 data += SHA256_CBLOCK;
187                 }
188         else
189                 {
190                 SHA_LONG l;
191
192                 for (i=0;i<16;i++)
193                         {
194                         HOST_c2l(data,l); T1 = X[i] = l;
195                         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
196                         T2 = Sigma0(a) + Maj(a,b,c);
197                         h = g;  g = f;  f = e;  e = d + T1;
198                         d = c;  c = b;  b = a;  a = T1 + T2;
199                         }
200                 }
201
202         for (;i<64;i++)
203                 {
204                 s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);
205                 s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);
206
207                 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
208                 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
209                 T2 = Sigma0(a) + Maj(a,b,c);
210                 h = g;  g = f;  f = e;  e = d + T1;
211                 d = c;  c = b;  b = a;  a = T1 + T2;
212                 }
213
214         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
215         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
216
217                         }
218 }
219
220 #else
221
222 #define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
223         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
224         h = Sigma0(a) + Maj(a,b,c);                     \
225         d += T1;        h += T1;                } while (0)
226
227 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
228         s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
229         s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
230         T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
231         ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
232
233 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
234         {
235         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
236         SHA_LONG        X[16];
237         int i;
238         const unsigned char *data=in;
239
240                         while (num--) {
241
242         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
243         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
244
245         if (host)
246                 {
247                 const SHA_LONG *W=(const SHA_LONG *)data;
248
249                 T1 = X[0] = W[0];       ROUND_00_15(0,a,b,c,d,e,f,g,h);
250                 T1 = X[1] = W[1];       ROUND_00_15(1,h,a,b,c,d,e,f,g);
251                 T1 = X[2] = W[2];       ROUND_00_15(2,g,h,a,b,c,d,e,f);
252                 T1 = X[3] = W[3];       ROUND_00_15(3,f,g,h,a,b,c,d,e);
253                 T1 = X[4] = W[4];       ROUND_00_15(4,e,f,g,h,a,b,c,d);
254                 T1 = X[5] = W[5];       ROUND_00_15(5,d,e,f,g,h,a,b,c);
255                 T1 = X[6] = W[6];       ROUND_00_15(6,c,d,e,f,g,h,a,b);
256                 T1 = X[7] = W[7];       ROUND_00_15(7,b,c,d,e,f,g,h,a);
257                 T1 = X[8] = W[8];       ROUND_00_15(8,a,b,c,d,e,f,g,h);
258                 T1 = X[9] = W[9];       ROUND_00_15(9,h,a,b,c,d,e,f,g);
259                 T1 = X[10] = W[10];     ROUND_00_15(10,g,h,a,b,c,d,e,f);
260                 T1 = X[11] = W[11];     ROUND_00_15(11,f,g,h,a,b,c,d,e);
261                 T1 = X[12] = W[12];     ROUND_00_15(12,e,f,g,h,a,b,c,d);
262                 T1 = X[13] = W[13];     ROUND_00_15(13,d,e,f,g,h,a,b,c);
263                 T1 = X[14] = W[14];     ROUND_00_15(14,c,d,e,f,g,h,a,b);
264                 T1 = X[15] = W[15];     ROUND_00_15(15,b,c,d,e,f,g,h,a);
265
266                 data += SHA256_CBLOCK;
267                 }
268         else
269                 {
270                 SHA_LONG l;
271
272                 HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
273                 HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
274                 HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
275                 HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
276                 HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
277                 HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
278                 HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
279                 HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
280                 HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
281                 HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
282                 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
283                 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
284                 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
285                 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
286                 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
287                 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
288                 }
289
290         for (i=16;i<64;i+=8)
291                 {
292                 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
293                 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
294                 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
295                 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
296                 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
297                 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
298                 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
299                 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
300                 }
301
302         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
303         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
304
305                         }
306         }
307
308 #endif
309 #endif /* SHA256_ASM */
310
311 /*
312  * Idea is to trade couple of cycles for some space. On IA-32 we save
313  * about 4K in "big footprint" case. In "small footprint" case any gain
314  * is appreciated:-)
315  */
316 void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
317 {   sha256_block (ctx,in,num,1);   }
318
319 void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
320 {   sha256_block (ctx,in,num,0);   }
321
322 #endif
323
324 #endif /* OPENSSL_NO_SHA256 */
325